Skip to main content
. 2021 Apr 8;9:641253. doi: 10.3389/fpubh.2021.641253

Table 1.

Results of the performance of the linear regression algorithms, the multilayer perceptron (MLP), and the support vector regressor (SVR) for Brazil's data set.

Correlation coefficient RMSE (%) Training time (s)
Regression method Configuration Average Standard deviation Average Standard deviation Average Standard deviation
Linear regression 0.9826 0.143 11.42 22.94 0.003 0.006
10 trees 0.9737 0.072 22.35 24.08 0.06 0.01
20 trees 0.9752 0.070 21.59 23.03 0.20 0.04
30 trees 0.9756 0.069 21.32 22.68 0.29 0.06
Random forest 40 trees 0.9759 0.068 21.17 22.33 0.22 0.04
20 neurons 0.9948 0.006 11.29 7.12 13.91 0.19
MLP 30 neurons 0.9867 0.011 17.9 4.12 6.48 0.30
Polynomial kernel, p = 1 0.9670 0.109 18.39 24.08 3.82 2.14
Polynomial kernel, p = 2 0.9818 0.006 31.70 10.62 7.99 10.57
Polynomial kernel, p = 3 0.9623 0.004 45.15 17.35 7.55 9.45
SVR RBF kernel 0.5341 0.375 87.19 14.94 39.97 56.17

For each regressor, we calculated the correlation coefficient, the relative square error [RMSE (%)], and the training time.