Table 1.
Correlation coefficient | RMSE (%) | Training time (s) | |||||
---|---|---|---|---|---|---|---|
Regression method | Configuration | Average | Standard deviation | Average | Standard deviation | Average | Standard deviation |
Linear regression | – | 0.9826 | 0.143 | 11.42 | 22.94 | 0.003 | 0.006 |
10 trees | 0.9737 | 0.072 | 22.35 | 24.08 | 0.06 | 0.01 | |
20 trees | 0.9752 | 0.070 | 21.59 | 23.03 | 0.20 | 0.04 | |
30 trees | 0.9756 | 0.069 | 21.32 | 22.68 | 0.29 | 0.06 | |
Random forest | 40 trees | 0.9759 | 0.068 | 21.17 | 22.33 | 0.22 | 0.04 |
20 neurons | 0.9948 | 0.006 | 11.29 | 7.12 | 13.91 | 0.19 | |
MLP | 30 neurons | 0.9867 | 0.011 | 17.9 | 4.12 | 6.48 | 0.30 |
Polynomial kernel, p = 1 | 0.9670 | 0.109 | 18.39 | 24.08 | 3.82 | 2.14 | |
Polynomial kernel, p = 2 | 0.9818 | 0.006 | 31.70 | 10.62 | 7.99 | 10.57 | |
Polynomial kernel, p = 3 | 0.9623 | 0.004 | 45.15 | 17.35 | 7.55 | 9.45 | |
SVR | RBF kernel | 0.5341 | 0.375 | 87.19 | 14.94 | 39.97 | 56.17 |
For each regressor, we calculated the correlation coefficient, the relative square error [RMSE (%)], and the training time.