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Introduction
Periodontitis is a chronic inflammatory disease that is associ-
ated with microbial dysbiosis and characterized by loss of con-
nective tissue attachment and alveolar bone (Kinane et al. 
2017). Although our understanding of the pathobiology of the 
disease has been significantly enhanced in the past 2 decades, 
the mapping of intra- and intercellular signaling pathways 
orchestrating the host response to bacterial dysbiosis is a work 
in progress (Ebersole et al. 2013; Cekici et al. 2014). 
Delineation of transcriptomic signatures in the gingival tissues 
at various disease stages has the potential to elucidate key 
molecular mechanisms underlying the initiation and progres-
sion of periodontitis (Demmer et al. 2008; Sawle et al. 2016). 
Genome-wide transcriptomic analyses in gingival tissues using 
microarray and RNA sequencing have been used to this end by 
our group and others (Demmer et al. 2008; Kebschull et al. 
2013; Horie et al. 2016), reflecting the average level of gene 
expression in a mixed population of cells, including resident 
tissue components (e.g., epithelial cells, fibroblasts), as well as 
migratory cells responsible for immune surveillance and 
inflammatory responses (including polymorphonuclear neu-
trophils, monocytes/macrophages, and T and B cells, among 
others). However, the onset and progression of periodontitis 
are likely orchestrated by contributions of distinct cell popula-
tions whose interactions form complex molecular networks 
that underlie homeostatic or catabolic processes in the gingival 

tissues (Takayanagi 2005; Cekici et al. 2014). Analyses based 
on whole-tissue transcriptomes are not suited to identify cell 
type–specific information, because the expression of a particu-
lar gene can increase during the transition from health to dis-
ease in one cell type and decrease in another, but these opposing 
changes will remain largely undetected when only a net change 
is assessed (Heath et al. 2016). Another shortcoming of the 
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Abstract
Genome-wide transcriptomic analyses in whole tissues reflect the aggregate gene expression in heterogeneous cell populations 
comprising resident and migratory cells, and they are unable to identify cell type–specific information. We used a computational method 
(population-specific expression analysis [PSEA]) to decompose gene expression in gingival tissues into cell type–specific signatures for 8 
cell types (epithelial cells, fibroblasts, endothelial cells, neutrophils, monocytes/macrophages, plasma cells, T cells, and B cells). We used a 
gene expression data set generated using microarrays from 120 persons (310 tissue samples; 241 periodontitis affected and 69 healthy). 
Decomposition of the whole-tissue transcriptomes identified differentially expressed genes in each of the cell types, which mapped to 
biologically relevant pathways, including dysregulation of Th17 cell differentiation, AGE-RAGE signaling, and epithelial-mesenchymal 
transition in epithelial cells. We validated selected PSEA-predicted, differentially expressed genes in purified gingival epithelial cells and 
B cells from an unrelated cohort (n = 15 persons), each of whom contributed with 1 periodontitis-affected and 1 healthy gingival tissue 
sample. Differential expression of these genes by quantitative reverse transcription polymerase chain reaction corroborated the PSEA 
predictions and pointed to dysregulation of biologically important pathways in periodontitis. Collectively, our results demonstrate the 
robustness of the PSEA in the decomposition of gingival tissue transcriptomes and its ability to identify differentially regulated transcripts 
in particular cellular constituents. These genes may serve as candidates for further investigation with respect to their roles in the 
pathogenesis of periodontitis.
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assessment of aggregate fold changes of expression in mixed 
cell populations is that they cannot distinguish between true 
changes in expression and those resulting from dynamic fluc-
tuations in the relative proportion of individual cell types that 
commonly occur during the transition to a pathological state 
(Newman et al. 2015).

To mitigate the shortcomings associated with whole-tissue 
transcriptomic signatures, a novel computational method was 
developed to decompose aggregate gene expression profiles in 
tissue samples that comprise a heterogeneous cellular compo-
sition (Kuhn et al. 2011). The method, termed population- 
specific expression analysis (PSEA), uses cell population– 
specific marker genes to generate individual population expres-
sion profiles in silico without a need for additional experimental 
steps such as fluorescence-activated cell sorting or laser-cap-
ture microdissection. The method can also account for expres-
sion changes that occur due to the differential abundance of 
particular cell types in each sample (Kuhn et al. 2011). In the 
present study, we first applied PSEA to transcriptomic data sets 
derived from gingival tissues harvested from states of gingival 
health or established periodontitis and identified genes that are 
differentially expressed specifically in each of 8 cell types that 
represent major constituents of the gingival tissues. Next, we 
used tissue dissociation and immune-magnetic bead purifica-
tion methods to isolate epithelial cells and B cells from an 
independent set of gingival biopsies that were not involved in 
the above computational decomposition and performed quanti-
tative reverse-transcription polymerase chain reaction (qRT-
PCR) assays to validate the PSEA-predicted differential 
expression of selected genes in states of health and periodonti-
tis. Our results demonstrate that PSEA can be successfully 
used in the decomposition of the human gingival transcriptome 
and can facilitate an understanding of the cell-specific molecu-
lar processes that occur in the gingival tissues during the course 
of periodontitis.

Methods

PSEA Analysis

Gene Expression Data Set.  We used a gene expression data set 
in gingival tissues that we generated earlier using Affymetrix 
HG-U133Plus 2.0 microarrays (Papapanou et al. 2009), avail-
able through GSE16134. A detailed description of the data set 
is presented in the Appendix.

The PSEA Method.  Decomposition of the gene expression sig-
nal into molecular subtypes was performed using the PSEA 
method (Kuhn et al. 2011). Briefly, probesets expressed in a 
given cell type were identified by assessing the linear depen-
dence of their expression against the expression of marker 
probesets uniquely expressed in the particular cell type, among 
all cell types considered. Differential expression was identified 
by comparing the slope of healthy tissue samples with that of 
periodontitis-affected samples. For each given gene (probeset), 
a log2 fold change, a P value of expression in the cell type, and 

a P value for differential expression in the cell type were com-
puted. Note that since the expression of each gene tested was 
plotted against that of the marker genes in the same sample, the 
number of cells of a given type was constant at each point, and 
differences in cell composition between health and disease did 
not confound the analyses.

Identification of Marker Genes.  Marker genes were identified 
using Gene Expression Barcode 3.0 (McCall et al. 2014) that 
reports the probability that a given probeset is expressed in a 
particular cell type (see Appendix). To define markers, we 
identified probesets that had a probability of expression of 1 in 
a given cell type of interest and of 0 in each of the other cell 
types under consideration. These genes were derived by set-
theoretic (Venn) operations on Barcode entries for each of the 
following 8 cell types: epithelial cells, endothelial cells 
(CD31+), fibroblasts, monocytes (CD14+), neutrophils, plasma 
cells, T cells (CD3+), and B cells (CD19+). Additional filtering 
steps of the marker probesets are described in the Appendix. 
The final list of the marker probesets used in the analyses is 
presented in Appendix Table 1.

Model Fitting.  The expression of the 54,675 probesets in all 
samples was fitted to each of 1,208 linear models, each of 
which had 1 or more cell types expressed but only 1 cell type 
differentially expressed. The best model for each probeset was 
determined using the Akaike information criterion (AIC) units 
(Akaike 1973). Models within 2 AIC units of the best one were 
selected. Additional filtering of probesets resulted in their 
removal from differential expression analyses (Appendix).

Gene Set Overrepresentation Analysis.  Differentially expressed 
genes for each cell type with P value <0.05 were included to 
identify potentially overrepresented processes according to 
KEGG and Wiki (WP) pathways, using overrepresentation 
analysis as implemented in gProfiler (Reimand et al. 2007). 
Pathways with a false discovery rate (FDR) ≤0.1 were reported.

Validation of PSEA-Predicted Genes

Validation of PSEA-predicted genes was performed in an inde-
pendent set of gingival tissue samples (15 pairs of healthy and 
periodontitis-affected sites). After preparation of single cell 
suspensions and immunomagnetic separation of epithelial cells 
and B cells, selected PSEA-predicted genes were validated 
using qRT-PCR. Experimental details are presented in the 
Appendix.

Results

PSEA Analysis

Table 1 lists PSEA-decomposed, cell type–specific gene 
expression profiles that fulfilled all filtering steps mentioned 
above. These included 11 transcripts in epithelial cells, 4 in 
fibroblasts, 5 in endothelial cells, 13 in neutrophils, 6 in plasma 
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cells, and 8 in B cells. No PSEA-decomposed transcripts ful-
filled both the absolute log2 fold change differential expres-
sion of >0.4 or the CC = 1 filtering steps in monocytes/
macrophages or in T cells. A more extensive list of PSEA-
decomposed genes by cell type, irrespective of |log2 FC| or 
CC, is presented in Appendix Table 3. This list includes 29 
transcripts in epithelial cells, 12 in fibroblasts, 13 in endothe-
lial cells, 21 in neutrophils, 5 in monocytes/macrophages, 11 in 
plasma cells, 3 in T cells, and 13 in B cells.

Gene Set Overrepresentation Analysis

Significantly (FDR ≤0.1) enriched KEGG and WP pathways 
by cell type, based on ≥2 PSEA-decomposed differentially 
expressed genes, are presented in Table 2. Observe that the 
input in these analyses included all probesets listed in Appendix 
Table 3. Five KEGG pathways (Th17 cell differentiation, 
AGE-RAGE signaling pathway in diabetes complications, 
relaxin signaling pathway, pathogenetic Escherichia coli infec-
tion, and inflammatory bowel disease) and 4 WP pathways 
(including epithelial to mesenchymal transition in colorectal 
cancer and cannabinoid receptor signaling) were identified as 
differentially enriched in epithelial cells in periodontitis-
affected versus healthy gingival tissues (Fig. 1). VEGFA-
VEGFR2 signaling and senescence and autophagy in cancer 
were among the significantly enriched pathways in fibroblasts. 
Fat digestion and absorption (KEGG) and sterol regulatory 
element-binding proteins (SREBP) signaling (WP) were sig-
nificantly enriched in endothelial cells, and nuclear receptors 
meta-pathway (WP) and human complement system pathway 
(WP) were among those enriched in neutrophils. The protein 
processing in endoplasmic reticulum pathway (KEGG) was 
among those overrepresented in plasma cells, and the human 
cytomegalovirus infection pathway (KEGG) was among those 
enriched in B cells.

Experimental Validation of Top  
PSEA Assignments in Gingival Epithelial  
Cells and B Cells

We selected 2 predicted differentially expressed transcripts in 
epithelial cells (TGF-β and RORA) and B cells (CAMSAP1 and 
CERS3) for experimental validation based on high differential 
fold change, high level of confidence, and established associa-
tion with a translated protein. The qRT-PCR analyses showed 
statistically significant lower expression levels of both TGF-β1 
and RORA in epithelial cells isolated from periodontitis-affected 
versus healthy gingival tissues, consistent with the PSEA pre-
diction (P < 0.05, for both matched and unmatched analysis; 
Fig. 2A–D). Validation in B cells involved only unmatched 
samples, as no pairs of healthy/periodontitis-affected samples 
from the same donor and of sufficient quality were available. 
We detected a significantly lower expression of CERS3 in B 
cells isolated from periodontitis-affected sites compared to 
healthy sites, as predicted (P < 0.05; Fig. 3A), but no statisti-
cally significant difference in the expression of CAMSAP1 
could be detected (Fig. 3B).

Table 1.  PSEA-Decomposed, Cell Type–Specific Gene Expression 
Profiles That Fulfilled All Filtering Steps.

Probe ID Gene Symbol Log2FC Ref P Value Diff P Value

Epithelial cells
  210479_s_at RORA –0.67 1.1E-10 1.1E-07
  205637_s_at SH3GL3 –0.43 2.1E-21 4.5E-07
  227309_at YOD1 –0.45 3.5E-21 1.0E-06
  211966_at COL4A2 –1.59 8.7E-04 3.2E-06
  223895_s_at EPN3 –0.42 1.4E-13 3.3E-05
  222190_s_at C16orf58 –1.46 3.4E-02 1.9E-03
  225510_at OAF –0.57 2.2E-05 2.7E-03
  226632_at CYGB –1.26 3.9E-02 5.7E-03
  203085_s_at TGFB1 –0.69 2.1E-03 0.01
  209216_at WDR45 –0.46 1.0E-04 0.01
Fibroblasts
  208872_s_at REEP5 0.95 0.047 1.10E-03
  219315_s_at TMEM204 –0.71 1.60E-04 6.80E-03
  202828_s_at MMP14 0.57 2.50E-03 0.012
  208851_s_at THY1 –0.46 3.10E-09 3.50E-03
Endothelial cells
  225369_at ESAM –0.41 4.5E-26 5.7E-07
  228339_at ECSCR –0.44 5.5E-24 3.2E-06
  215535_s_at AGPAT1 –0.65 8.7E-08 1.0E-03
  212494_at TNS2 –0.52 2.1E-07 6.0E-03
  209166_s_at MAN2B1 –0.68 9.73E-05 0.01
Neutrophils
  226907_at PPP1R14C –1.14 5.7E-09 2.4E-10
  223694_at TRIM7 –0.99 1.1E-07 1.9E-08
  202428_x_at DBI –3.19 1.3E-02 1.3E-05
  232116_at GRHL3 –0.74 2.7E-07 2.5E-05
  227736_at C10orf99 –1.15 2.1E-04 4.5E-05
  220013_at EPHX3 –0.95 3.2E-05 5.4E-05
  204203_at CEBPG –0.39 5.2E-14 6.3E-05
  230769_at DENND2C –0.97 7.9E-05 1.1E-04
  214626_s_at GANAB 0.83 1.0E-02 1.1E-04
  228587_at FAM83G –0.43 4.8E-12 2.2E-04
  204616_at UCHL3 –0.61 3.1E-07 3.1E-04
  209311_at BCL2L2 –1.2 3.1E-03 4.7E-04
  201315_x_at IFITM2 0.75 2.0E-02 1.2E-03
  224615_x_at HM13 0.55 1.0E-02 0.02
Plasma cells
  212890_at SLC38A10 –1.17 1.3E-11 1.4E-05
  55093_at CHPF2 –1.3 1.4E-09 4.2E-05
  206593_s_at MED22 –2.75 1.5E-03 2.6E-03
  204158_s_at TCIRG1 –1.21 2.5E-04 0.02
  200644_at MARCKSL1 –1.49 3.9E-03 0.04
  202369_s_at TRAM2 –0.55 3.7E-08 0.05
B cells
  202539_s_at HMGCR –0.89 1.20E-09 4.00E-05
  204552_at INPP4A 0.86 0.01 3.00E-03
  210785_s_at THEMIS2 0.85 0.02 6.00E-03
  204912_at IL10RA 0.6 2.20E-04 6.00E-03
  212712_at CAMSAP1 –0.89 9.30E-05 8.00E-03
  220306_at FAM46C 0.83 0.02 0.01
  1554252_a_at CERS3 –1.65 0.02 0.02
  206896_s_at GNG7 0.78 0.04 0.04

Filtering steps included: P value of presence of the gene in the cell type 
that is differentially expressed <0.05; P value of differential expression in 
periodontitis-affected versus healthy gingiva <0.05; |log2FC differential 
expression| >0.4, and confidence coefficient (CC) = 1. 
Log2FC: Log2-based fold change of expression in periodontitis-affected 
over healthy gingival tissues. Ref P value: P value for expression of the 
particular probe at the specific cell type. Diff P value: P value for the 
differential expression of the particular probe between periodontitis-
affected and healthy gingival tissues at the specific cell type.
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Discussion

Deciphering molecular signatures that distinguish between 
healthy gingival tissues and those at different stages of peri-
odontitis offers insights into the pathophysiology of the disease 
process and may, ultimately, identify potential therapeutic tar-
gets. However, detection of cellular-level perturbations based 
on whole-tissue transcriptomic analyses is challenging due to 
tissue heterogeneity and cellular population shifts during the 
transition from health to disease. To our knowledge, we applied 
for the first time a computational method, PSEA, to decompose 
whole gingival tissue transcriptomes into cell type–specific 
differential gene expression between periodontal health and 

periodontitis. Subsequently, we validated the PSEA computa-
tions by assessing the differential expression of specific genes 
in purified gingival epithelial cells and B cells derived from 
unrelated healthy or periodontitis-affected tissue samples using 
qRT-PCR. Our findings point to the utility of PSEA as an alter-
native to more labor-intensive and costly methodologies in 
transcriptomic studies of the pathobiology of periodontitis.

In recent years, several medium- or high-throughput technol-
ogies have been introduced to study specific cellular components 
in heterogeneous tissue samples, including single-cell and 
population-specific transcriptome analysis using qRT-PCR, 
RNA fluorescence in situ hybridization (RNA-FISH), RNA-
seq, cDNA microarrays, and serial analysis of gene expression 

Table 2.  Overrepresented KEGG and WP Pathways Based on ≥2 PSEA-Decomposed Differentially Expressed Genes between Periodontitis-Affected 
and Healthy Gingival Tissues, by Cell Type.

Pathway Pathway ID Adjusted P Value Genes

Epithelial cells
  Th17 cell differentiation KEGG:04659 0.03031515 RORA, MAPK13, TGFB1
  AGE-RAGE signaling pathway in diabetic complications KEGG:04933 0.03031515 COL4A2, MAPK13, TGFB1
  Relaxin signaling pathway KEGG:04926 0.03701637 COL4A2, MAPK13, TGFB1
  Pathogenic Escherichia coli infection KEGG:05130 0.09286103 OCLN, MAPK13, TUBB2A
  Inflammatory bowel disease (IBD) KEGG:05321 0.09286103 RORA, TGFB1
  Epithelial to mesenchymal transition in colorectal cancer WP:WP4239 0.00876677 COL4A2, OCLN, MAPK13, TGFB1
  Cannabinoid receptor signaling WP:WP3869 0.04737078 MAPK13, CYP2C9
  Hepatitis C and hepatocellular carcinoma WP:WP3646 0.06769704 COL4A2, TGFB1
  Pathogenic Escherichia coli infection WP:WP2272 0.06769704 OCLN, TUBB2A
Fibroblasts
  VEGFA-VEGFR2 signaling WP:WP3888 0.04963475 CALU, MMP14, PBXIP1
  Senescence and autophagy in cancer WP:WP615 0.04963475 IGFBP5, MMP14
Endothelial cells
  Fat digestion and absorption KEGG:04975 0.05687131 AGPAT1, SCARB1
  Sterol regulatory element-binding proteins (SREBP) signaling WP:WP1982 0.060402348 SEC24A, SCARB1
Neutrophils
  Human complement system WP:WP2806 0.080752415 SELPLG, LAMC1
  Nuclear receptors meta-pathway WP:WP2882 0.080752415 PPP1R14C, DBI, CYP2C9
Plasma cells
  Protein processing in endoplasmic reticulum KEGG:04141 0.005626135 WFS1, RRBP1, PREB
B cells
  Human cytomegalovirus infection KEGG:05163 0.071917892 IL10RA, GNG7, TAPBP

PSEA, population-specific expression analysis.

Figure 1.  KEGG and WP pathway analysis in epithelial cells. Significantly enriched pathways (false discovery rate of ≤0.1) based on ≥2 population-
specific expression analysis (PSEA)–decomposed differentially expressed genes are presented, along with the adjusted P value, the −log10 of the 
adjusted P value, and the involved genes.
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(SAGE) (Hunt-Newbury et al. 2007; Esumi et al. 2008; Deng 
et al. 2014). Alternatively, use of a computational method such 
as PSEA can help to decompose these aggregate signals into 
cell type–specific signatures while partly circumventing a 
number of technical difficulties associated with the above 
methodologies. However, a number of limitations associated 
with our study must be acknowledged. First, PSEA is inher-
ently dependent on availability of cell markers previously 
identified; thus, potential inaccuracies in the specificity of the 
used markers may inevitably affect the metadata generated. It 
is conceivable that the relatively limited number of the avail-
able cell type–specific markers, in combination with the diver-
sity of the composite cell populations in the gingival tissues, 
has limited our power to detect differentially expressed tran-
scripts of low abundance or to accurately predict transcription 
in less populous cell types. Discovery of additional cell- 
specific markers and use of larger databases may address these 
shortcomings in future work. However, we emphasize that 
PSEA decomposition does not require consideration of every 
conceivable cell type in the tissues, provided that the models 

generated using the ultimately filtered probes have a good sta-
tistical fit (i.e., high R2 values), as was the case in our analyses 
(Appendix Table 3). Thus, the fact that we did not include less 
abundant cell types that occur in the gingiva in our models did 
not affect our inferences regarding genes differentially 
expressed in the 8 studied cell types.

In our validation experiments, we selected 2 PSEA-
predicted differentially expressed genes, on the basis of maxi-
mum absolute fold change and high confidence coefficient, in 
2 cell types that are highly prevalent in periodontal tissues (epi-
thelial cells and B cells) and used pairs of healthy and  
periodontitis-affected gingival tissues from 15 de novo 
recruited individuals. As the cells of interest were dissociated 
and cryopreserved immediately, the distortion in the transcrip-
tional profiles after tissue harvesting was kept to a minimum, 
as recently demonstrated in a comprehensive study 
(Guillaumet-Adkins et al. 2017). The amount of tissue har-
vested in each biopsy did not allow us to separate additional 
cell types, and the RNA obtained from each cell subset did not 
allow us to validate more than 2 genes in each. Thus, these 
experiments should be viewed as a “proof-of-principle” vali-
dation of the PSEA method in the context of gingival transcrip-
tomes, rather than as specific verification of each predicted 
probe. Additional validation studies will be obviously neces-
sary for other specific cell types and genes of interest.

The PSEA-predicted lower expression of TGF-β in epithe-
lial cells in periodontitis-affected tissues was validated in puri-
fied epithelial cells from independent samples. Epithelial cells 
are the first line of defense against toxic stimuli and periodon-
tal pathogens, orchestrate oral tissue homeostasis, and play 
crucial roles in the initiation of dysbiotic changes at the dento-
gingival niche (Cekici et al. 2014). Epithelial cell–derived 
TGF-β plays a pivotal role in maintaining a balance between 
tolerance and immunity (Denney et al. 2015) and exerts its 
functions through activation of intracellular Smad2/3 proteins 

Figure 2.  Validation of differential expression of population-specific 
expression analysis (PSEA)–predicted genes in isolated epithelial cells 
from gingival tissues. Relative expression levels (ΔCt values) of TGF-β1 
assessed through quantitative reverse-transcription polymerase chain 
reaction (qRT-PCR) in matched (n = 7 pairs connected by horizontal 
lines; A) and nonmatched analyses (n = 18; B). Relative expression 
levels of RORA assessed through qRT-PCR in matched (n = 8 pairs 
by horizontal lines; C) and nonmatched analyses (n = 22; D). Data 
are presented as mean and standard error of mean; 18s was used as 
normalizer. P values are derived by 1-tailed t tests, for paired (A, C) and 
nonpaired observations (B, D). Note that higher ΔCt values indicate 
lower expression.

Figure 3.  Validation of differential expression of population-specific 
expression analysis (PSEA)–predicted genes in isolated B cells from 
gingival tissues. (A) Relative expression levels of CERS3 (ΔCt values) 
assessed through quantitative reverse-transcription polymerase 
chain reaction (qRT-PCR) (n = 14). (B) Relative expression levels of 
CAMSAP1 (ΔCt values) assessed through qRT-PCR (n = 12). Data 
are presented as mean and standard error of mean. 18s was used as 
normalizer. P values are derived using 1-tailed t tests for nonpaired 
observations. Note that higher ΔCt values indicate lower expression.
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and suppression of inflammatory pathways. Concomitantly, 
TGF-β promotes expression of adhesion molecules and tight 
junction proteins such as claudin 1, which maintain epithelial 
barrier integrity (Howe et al. 2005). In intestinal epithelia, 
TGF-β is a potent inducer of epithelial cell margination, an 
essential process for tissue repair and wound healing (Troncone 
et al. 2018). Furthermore, TGF-β1 promotes differentiation of 
M2 macrophages, an anti-inflammatory subset that actively 
participates in tissue repair and homeostasis and attenuates the 
macrophage inflammatory response to bacterial products 
(Troncone et al. 2018). The disruption of the monocyte/macro-
phage phenotype and a significant shift toward proinflamma-
tory polarization of macrophages have been recently reported 
to be associated with the pathogenesis of periodontal disease 
(Almubarak et al. 2020). The current data further point to the 
importance of epithelial TGF-β signaling in periodontitis.

RORA is another computationally predicted differentially 
expressed gene in gingival epithelium, the lower expression of 
which in states of health was also validated in epithelial cells 
isolated from unrelated gingival tissue samples. Earlier mecha-
nistic studies in human monocytes showed that deletion of 
RORA leads to activation of the nuclear factor κB (NF-κB) 
signaling pathway and to downstream induction of proinflam-
matory cytokines such as TNF, IL-1β, and IL-6 at both the 
transcriptional and the protein levels (Nejati Moharrami et al. 
2018). In the same study, RORA knockout cells were found to 
produce high levels of pro–IL-1β, even in the absence of lipo-
polysaccharide challenge. Corroborating these observations, 
studies using an intestinal epithelium-specific, RORA-
deficient mouse model showed that RORA is crucial for  
maintaining intestinal homeostasis by attenuating NF-κB tran-
scriptional activity and preventing inflammation (Oh et al. 
2019). In an earlier study using reverse engineering approaches, 
we identified RORA as a master regulator of the transcriptional 
landscape in periodontitis (Sawle et al. 2016). Consistent with 
these observations, our finding of higher expression of RORA 
in epithelial cells from healthy gingiva highlights its impor-
tance as a potential molecular target for the restoration of epi-
thelial homeostasis and attenuation of innate immunity in 
periodontitis.

Pathway enrichment analysis of genes predicted by PSEA 
to be differentially expressed in gingival epithelium showed 
enrichment of Th17 signaling, AGE-RAGE receptor signaling, 
and the epithelial-mesenchymal transition (EMT) signaling 
pathways. Earlier work has demonstrated the involvement of 
Th17 cells and their signature cytokine profiles in the patho-
genesis of periodontitis (Gaffen and Hajishengallis 2008), 
whereas AGE-RAGE signaling plays a pivotal role in the 
pathogenesis of both periodontitis and diabetes mellitus (Lalla 
et al. 2000, 2001). Higher expression of the receptor for AGEs, 
RAGE, has been reported in periodontitis-affected gingival tis-
sues and in the peripheral blood of patients with periodontitis 
when compared to periodontally healthy individuals; circulat-
ing soluble forms of RAGE were proposed as biomarkers for 
the presence and severity/extent of periodontitis (Detzen et al. 
2019). Challenge of epithelial cells with AGEs was found to 
result in the phosphorylation of ERK, p38, and subsequent 

activation of NF-κB (Kido et al. 2020). The third significantly 
enriched pathway in epithelial cells (EMT) represents a cellu-
lar process characterized by changes in transcriptional and pro-
teomic changes that result in the transdifferentiation of the 
epithelial phenotype to a mesenchymal phenotype. Indeed, 
PSEA-predicted differential expression of MAPK13, OCL, 
TGFB, and COL4A2 in epithelial cells, all of which are associ-
ated with EMT (Scanlon et al. 2013). These findings point to a 
possible mechanistic overlap between the transcriptional land-
scape of periodontitis and carcinogenesis, which is intriguing 
and warrants further investigation.

We also predicted and independently validated the down-
regulation of CERS3 in B cells isolated from periodontitis-
affected tissue compared to healthy gingiva. CERS3 is a 
member of the ceramide synthetases protein family, and 
ceramide is an important signaling molecule in sphingolipid 
metabolism (Levy and Futerman 2010). Ceramides are present 
in the cytoplasm of host cells and play essential roles in orches-
trating immune responses (Albeituni and Stiban 2019). 
Recently, a diminished expression of acid ceramidase in peri-
odontal lesions as well as in Porphyromonas gingivalis– 
stimulated epithelial cells in vitro was reported (Azuma et al. 
2018). Furthermore, overexpression of acid ceramidase in epi-
thelial cells resulted in attenuation of the proinflammatory 
immune response and apoptosis in response to challenge by  
P. gingivalis, highlighting a possible anti-inflammatory role of 
ceramides in gingival tissue (Azuma et al. 2018).

Pathway analysis on predicted differentially expressed 
genes in fibroblasts showed enrichment of VEGFA-VEGFR2 
and senescence and autophagy pathways. Activation of the 
VEGF/VEGFR2 axis has been reported in periodontal disease, 
and high angiogenesis activity in periodontal lesions was cor-
related with VEGF expression in the stroma (Vladau et al. 
2016). Similar to other chronic inflammatory diseases, peri-
odontitis has been associated with autophagic alterations 
(Zhuang et al. 2016). Increased levels of autophagy gene 
expression and high levels of mitochondrial reactive oxygen 
species production in peripheral blood mononuclear cells were 
observed in patients with periodontitis (Bullon et al. 2012). We 
also found that sterol regulatory element-binding protein sig-
naling was among the dysregulated pathways in endothelial 
cells. SREBP1C is a key lipogenic transcription factor that 
regulates cholesterol and fatty acid metabolism and synthesis 
(Wang et al. 2015). Activation and higher levels of SREBP1C 
have been reported in periodontal disease–affected tissue in 
patients with diabetes (Kuo et al. 2016). Upregulation of 
SREBP1C was critical for induction of NLRP3, an inflamma-
some component, by high-glucose-treated P. gingivalis (Kuo  
et al. 2016). Convergence of these important pathways and 
their biological relevance to periodontal disease warrant fur-
ther investigation.

Collectively, our results demonstrate the robustness of the 
PSEA in the decomposition of gingival tissue transcriptomes 
and its ability to identify differentially regulated transcripts in 
particular cellular constituents. These genes may serve as can-
didates for further investigation with respect to their roles in 
the pathogenesis of periodontitis.
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