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Abstract

Purpose of Review From single cells to entire organisms, biological entities are in constant communication with their surround-
ings, deciding what to ‘allow’ in, and what to reject. In very different ways, the immune and taste systems both fulfill this
function, with growing evidence suggesting a relationship between the two, through shared signaling pathways, receptors, and
feedback loops. The purpose of this review was to explore recent reports on taste and immunity in model animals and in humans
to explore our understanding of the interplay between these systems.

Recent Findings Acute infections in the upper airway, as with SARS-CoV-2, are associated with a proinflammatory state, and
blunted taste perception. Further, recent findings highlight taste receptors working as immune sentinels throughout the body.
Work in humans and mice also points to inflammation from obesity impacting taste, altering taste bud abundance and
composition.

Summary There is accumulating evidence that taste cells, and particularly their receptors, play a role in airway and gut immunity,
responsive to invading organisms. Inflammation itself may further act on taste buds and other taste receptor expressing cells

throughout the body as a form of homeostatic control.

Keywords Taste - Inflammation - Immunity - Obesity

Introduction

Taste is fundamentally linked to quality of life, and is vital in
determining food choice. However, as well as to assay the appeal
of foods with appetitive characteristics, the taste system chemi-
cally interrogates the food we eat, serving as a gatekeeper,
protecting against the ingestion of aversive, unpalatable items
that may cause harm if taken into the body. The immune system
serves an analogous function, detecting things that are harmful,
or that bear the molecular signals of those that have been harmful
in the past, acutely activating against systemic insult as a first line
of defense. In the time necessary for an adaptive immune re-
sponse to generate, a pathogen may have grown to a problematic
degree within the host, and therefore the innate immune response
gives an “always on” protection to the body from novel
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pathogens it may be initially naive to. The innate immune re-
sponse utilizes an array of cells, signaling factors and proteins to
isolate, destroy and recycle potential pathogens before they can
reproduce to the point where they may become harmful to the
host. Without an index of specific pathogens to identify, the
innate immune response instead relies on detecting common
molecules which are absent in the host, but which are often signs
of a pathogenic entity, the classical example being
Lipopolysaccharides, molecules commonly found in the external
membranes of Gram-negative bacteria. Upon detection, the in-
nate immune system responds to neutralize a perceived threat
with both phagocytosis, whereby a potential intruder is engulfed
and ingested, and with inflammation.

As the basic roles of immunity and taste share some over-
lap in function, it is unsurprising then that recent evidence has
begun to suggest that these systems may interact, and further
may influence one another. Most visibly in the past year dur-
ing the Covid-19 pandemic, infection with the novel corona-
virus was strongly and publicly associated with anosmia, a
loss of smell [1], in a manner that may correlate with an acti-
vated inflammatory response [2], as well as with ageusia, a
loss of taste, and further loss of oral perception of irritants
[3¢°]. Taste cells and their canonical signaling cascades are

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13668-021-00355-3&domain=pdf
mailto:robin.dando@cornell.edu

138

Curr Nutr Rep (2021) 10:137-145

commonly implicated in auto and hyperimmune diseases.
Many genes associated with the innate immune response are
over-expressed in taste cells, particularly in those isolated
from taste cells bearing the molecular signals of type II taste
cells [4], the cells responsible for sweet, umami and bitter taste
detection. In the taste buds of humans, inflammation and in-
nate immune-associated genes are readily up-regulated in
obese compared to lean individuals [Se¢]. Being overweight
or obese (a condition affecting over 65% of adults in the
USA), is associated with chronic low-grade inflammation,
and is linked to alterations in taste or food intake patterns,
usually promoting overconsumption, and correlating with a
loss of taste function. Taken together, evidence points toward
a feedback relationship between the immune and taste systems
that may have implications for how the body functions to keep
us safe from pathogens, and for our metabolic health in
general.

In this review, we will concentrate on recent findings (pri-
marily those from the past 5 years) regarding immunity, in-
flammation, and taste to provide a snapshot of our current
understanding of how these systems interact, and highlight
further interesting questions that future work may explore.

Search strategy and selection criteria

PubMed and Google Scholar were used to search for primary
research articles, over the previous 5 full years from 2016 to
2020, with a small number of important articles from earlier
than this also included for context. Search terms included
“taste”, “inflammation”, “immunity”, “autoimmune”, “obesi-
ty”, “cancer”, and various combinations thereof. Summaries
and reviews were largely excluded to concentrate on most
recent primary literature from the lab or clinic. Recent studies
in non-human animals are highlighted in Table 1, with studies
in human subjects in Table 2.

Molecular markers of inflammation

Inflammation as a term encompasses the activation of the
immune system toward an insult. This is characterized on
the macroscale by an increase in blood flow leading to red-
ness, swelling, and an increase in temperature, along with pain
and potentially a temporary loss of function [18], and on the
cellular scale by the recruitment of neutrophils, macrophages,
and monocytes, as well as proinflammatory cytokines like
Tumor Necrosis Factor alpha (TNF) [19] and Interluekin-6
(IL-6) [20], other markers of inflammation like C-Reactive
Protein (CRP) [21] and chemokines like Monocyte
Chemoattractant Protein-1 (MCP-1) [20]. This contrasts with
the more specific actions of the adaptive immune system

@ Springer

acting post antigen presentation via B or T cells, to an already
familiar threat.

While, in many cases, these acute phase effectors resolve
after insult, a chronic low-grade inflammation, or
metaflammation [22], has been observed in overnutrition
and obesity [23]. Overfeeding also leads to hyperinsulemia
and hyperleptinemia [24], as resistance to the effects of insulin
or leptin necessitates their overproduction. Evidence points to
proinflammatory cytokines directly acting on the insulin [25]
receptor, and leptin receptors (among other mechanisms of
leptin resistance [26, 27]) to affect this change. Interestingly,
many proinflammatory signaling factors associated with in-
flammation also have their cogent receptors expressed in taste
buds [28-30], proffering a potential mechanism for their up-
or down-regulation being associated with a modulation of
taste function. TNFax knock out (KO) mice are less sensitive
to bitter stimuli than wild type animals [31], and exogenous
TNFa seems to blunt sodium taste by inhibiting sodium flux
in taste buds [32].

Bacterial infection

Lipopolysaccharide (LPS), an inducer of acute inflammation
of bacterial origin, has been utilized by multiple groups to
model the influence of systemic inflammation on the taste
system. Exogenous LPS resulted in a reduction in the prolif-
erative capacity of taste buds [33] which are constantly
renewing in nature, and altered licking response to NaCl in
mice [32, 34], supported by reduced activity in the chorda
tympani nerve which takes taste information from the anterior
tongue to the brain, in response to various taste stimuli [34e].
Serum-LPS is also elevated in mice experiencing systemic
inflammation through consuming a high-fat diet (HFD)
[[1ee]. In one intriguing study, the bitter tastant (of recent
infamy), chloroquine, was found to exhibit protective effects
on pre-term birth in mice, when induced through LPS injec-
tions (inflammation is a key risk factor for pre-term labor)
[35]. Protective effects were much weaker in animals lacking
the G-protein alpha-subunit Gustducin (originally thought to
be taste-specific, although now associated with many
chemosensory cells throughout the body), suggesting that pro-
tective effects were mediated in a manner analogous to taste
signaling, via bitter receptors which were found expressed in
myometrial cells. Interestingly, the primary receptor for LPS,
TLR4 [30], is also expressed in taste buds, whereby taste
preference is altered in mice deficient in TLR4, with KO mice
displaying a reduced preference for sugars, lipids, and umami
[36], further suggesting that an innate inflammatory response
may alter taste function. Taken together with earlier work, this
suggests a dual function for the LPS/TLR4 pathway; (1) as a
sensor of inflammation which can damage taste buds, and (2)
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Conclusions

Model Measures Results

Study Design

Study objective

Table 1 (continued)

Reference

@ Springer

WT and TRPM5” mice

Upon infection with Tm, TRPM5” had reduced IL- TRPMS taste transduction signaling may be used to

Interleukin gene expression

WT and TRPMS5™ mice,

Tuft cells, a gut immune

Howitt et al.

detect Tm, which excited innate lymphoid type 2
cells (ILC2s), producing IL-13 and thereby

promoting their own proliferation

25, IL-13, fewer Type2 innate lymphoid cells,

and concomitant tuft cell expansion.

cell that can detect challenged with DCLK 1+ (tuft cells), Flow cytometry cell counting
Additionally,

(2016) [14+]

intestinal organoids

Tritrichomonas muris

parasites, contain taste
receptors. Here their

(Tm) in a model of

helminth infection. Tuft
cells were analyzed by

IHC + Intestinal

downstream signaling

pathway is investigated

in detail.

organoids cultured to
measure Interleukin

production.
Rag2”-1lr2"" Mice lacking
Ty2 and ILC2 cells

as an integral part of the sensory transduction pathway, with-
out which taste sensations are altered.

A critical recent finding that will doubtlessly accelerate our
understanding of the nexus between innate immunity and taste
is that taste organoid cultures are also able to model an inflam-
matory response such as that in bacterial infiltration in vivo,
with rapid induction of TNF and IL-6 observed in these
in vitro cultures after stimulation with LPS [37]. These taste
organoids also expressed many other classical markers of the
immune response, including all members of the NF-«kB pro-
tein complex (NF-kB1, NF-kB2, RelA, RelB, c-Rel,) and
multiple Toll-like receptors, most markedly TLR2, 3,4, and 5.

The gastrointestinal tract

Several autoimmune diseases are also linked to taste dysfunc-
tion, notably Sjogren’s Syndrome (SS) [38], Inflammatory
Bowel Disease (IBD) [39], and Systemic Lupus
Erythematosus (SLE) in mice [40]. Each of these diseases
impact taste signaling in their own way. For example, in SS,
patients experience an infiltration of macrophages, plasma,
and T cells into their lacrimal and salivary glands [41]. This
leads to a reduction in salivary production, which itself re-
duces the ability to detect taste compounds, though not nec-
essarily through a direct action on taste cells. In a mouse
model of autoimmune disease with a phenotype akin to that
of lupus or Sjogren's syndrome, taste buds were smaller, and
fewer taste cells regenerated from taste stem cells in the native
turnover process the a taste bud relies on to maintain fidelity
[42]. In humans with IBD, taste sensitivity was generally
blunted versus healthy controls, save for sour taste, which
was elevated in IBD. Sour is thought to be transduced through
Type III taste cells [43]; however, most of the receptors asso-
ciated with the immune response that are reported to be pres-
ent in the taste bud tend to be expressed in Type II cells [29,
44, 45]. In human colonic mucosa, the number of bitter-
receptor (T2R38) expressing cells is higher in those who are
obese than lean, and is confined to cells seeming to fit an
enteroendocrine phenotype [46]. These cells would presum-
ably be responsible for the chemical sensing of luminal con-
tents, with their abundance strongly correlating with BMI in
this sample. Interestingly, the stimulation of T2R 108 receptors
in enteroendocrine cells in the guts of diet-induced obese mice
with a bitter extract from hops was linked to GLP-1 release,
and an improvement in multiple metabolic measures including
fat mass, glucose homeostasis and insulin sensitivity [47].

Airway immunity

When encountering microbes in the airway, the innate im-
mune response must detect and respond to potentially harmful
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invaders, in a manner thought to be partially dependent on the
T2R family of bitter receptors (for review see [44]). A recent
report suggested that cells in the trachea expressing bitter taste
receptors also expressed the tuft cell marker (a chemosensory
cell located in the epithelium, linked to type 2 immunity
through the taste-linked signaling channel TRPMS5
(Transient receptor potential cation channel subfamily M
member 5) [14¢+], DCLK1 (microtubule-linked protein kinase
1), comprising around 4% of epithelial cells [48]. When iso-
lating mRNA from these cells, sequencing revealed RNA for
multiple additional taste signaling elements, as well as for
multiple cytokines implicated in the immune response.

Interestingly, many of the antibiotics commonly used to
treat airway infections (including levofloxacin, tobramycin,
and azithromycin) are also capable of activating the T2Rs
(T2R1, T2R4, T2R 14, and T2R20) present in the airway,
validated in an in vitro FLAG tagged HEK cell system [49].
These receptors are expressed in smooth muscle cells within
the airway walls, functioning in a manner that seems ancillary
to the inflammatory response, to relax smooth muscles and aid
in bronchodilation [50]. Using cultured human sinonasal epi-
thelial cells, Lee et al. [S1¢¢] were able to demonstrate that
solitary chemosensory cells in the airway express the same
T1R2/T1R3 receptor heterodimers present in taste buds used
for sweet taste detection. While amino acids have a range of
tastes, some D-amino acids are able to activate the
T1R2/T1R3 receptor, where in the mouth this would correlate
to the eliciting of a sweet taste [52]. Lee et al. found that not
only do bacterial isolates, for example Staphylococcus, from
human airways produce several of such T1R-activating D-
amino acids (D-Leucine, D-Isoleucine, D-Phenylalanine),
but also D-amino acids taken from these isolates were able
to inhibit biofilm formation in a T1R-dependant manner.

Cancer and its treatment

Cancer, the inflammatory state association with it, and the
treatment side-effects thereof are also all associated with
changes in taste in humans [53, 54]. In mice, the effects of
cyclophosphamide, a common chemotherapeutic agent, are
acutely damaging to taste cells, in particular type II and III
cells [55]. This loss of taste cells seems to act through apopto-
sis, and be particularly damaging to the progenitor cells re-
sponsible for resupplying the taste bud. When fractionating
doses of cyclophosphamide, a practice common in cancer
treatment that can alleviate some of the more negative side
effects commonly encountered, loss of taste was in fact
prolonged, and more severe [56]. As taste loss can discourage
eating, leading to broad negative outcomes, and further result
in a significant reduction in quality of life, careful consider-
ation should be made of the implications of these findings.

As cancer patients are at risk of cachexia (a wasting disor-
der characterized by severe extreme weight loss along with
loss of muscle and body fat, and marked by a loss of appetite)
and its associated morbidity and mortality, a recent study
worked to untangle the attribution of each [15]. Counter to
the hypothesis that treatment which damages rapidly dividing
cells would impact taste cell renewal, the authors found no
impact of chemotherapy on taste detection in hospitalized pa-
tients. They did find altered taste perception in both the che-
motherapy and acute inflammatory group versus healthy con-
trols; however, the marker CRP, and leukocyte counts did not
correlate with dysfunction. This suggests that a broader in-
flammatory state may be affecting both populations. Care
should be taken in interpreting these results as the study pop-
ulations were, by the nature of the study, not standardized.

Obesity, inflammation and taste

While acute inflammation in the form of infection is well
characterized, a chronic low-grade inflammation associated
with obesity [57] is a remarkably widespread manifestation
of long-term activation of the immune system. In obesity,
white adipose tissue (WAT) is broadly remodeled, and is itself
a source of cytokines [58], and a harbor for macrophages that
promote systemic inflammation [59]. Further, pathologies as-
sociated with obesity such as atherosclerosis have an immune
component themselves, with associated plaques composed of
several types of immune cells, including macrophages and
neutrophils [60]. Obesity is associated with lower levels of
adiponectin, and higher levels of TNF«x [61], IL-6, and C-
Reactive Protein (CRP) [62]. IL-6 and CRP are associated
with disease complications [63, 64], while TNF is associated
with insulin resistance and hyperleptinemia [65, 66]. One re-
cent study also implicated various signaling elements of taste
(T1R2, TIR3, Ga-Gustducin, phospholipase C-beta 2, and
TRPMS channels) expressed in renal tissues in stimulation
of the inflammasome, in a diabetic mouse model, where acti-
vation of the inflammasome could further be partially mediat-
ed by the sweet taste blocker lactisole [67].

A great deal of studies associate taste changes with obesity,
with the preponderance of evidence supporting a reduction
taste acuity [7, 68—70], although some work does show the
opposite effect [71] or no change at all [72]. Recent work from
our own group suggested a reduction in taste bud abundance
in both mice [10¢¢] and humans [7] with adiposity, alongside a
reduction in expression of various taste-linked signaling ele-
ments in mice [7]. The latter result is paralleled in humans in
work from Archer et al. [5e¢], where a pioneering RNA se-
quencing experiment examined differential expression pat-
terns of obese and lean Caucasian women, from isolated fun-
giform taste papillae. In fact, 2 of the 3 ontological groupings
of genes found to vary significantly between subjects were

@ Springer
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those associated with the immune response, and with sensory
signaling.

Interestingly, in regions of the brain related to energy ho-
meostasis (the hypothalamus and brainstem), both taste recep-
tors (T1R3, T2R116) and taste signaling elements (Gx14,
TRPMS) are down-regulated by obesity in mice [73], in a
manner which, we might speculate, seems itself homeostatic
in nature. Although in an acute model of taste loss panelists
tend to select foods of a higher sensory impact, and thus ca-
loric content [16], a large genome-wide association study
found limited evidence for an association between taste re-
sponse and polymorphisms in taste genes, although GNAT3
alleles associated with greater sweet taste response were neg-
atively associated with sugar intake in one sample [74].
Studies of patients undergoing bariatric surgery point toward
rapid changes in taste after extreme weight loss [75-77],
which may be inflammation-linked, as well as depending on
the hormonal remodeling common in such interventions.
Further work even implicates dampened CNS reward circuity
linked to taste with an increase in obesity in adults [78, 79],
which may differ from that seen in children [80].

Taste buds, or more specifically the population of special-
ized epithelial cells that make them up, are constantly renewed
from a population of stem cells, which produce taste progen-
itor cells that further differentiate into 3 functionally and mor-
phologically distinct taste cells [81], each cell type having a
distinct half-life [82], or supporting keratinocytes. This com-
plex and constant state of development requires a finely tuned
balance of developmental and transcriptional regulators with-
in the taste bud to ensure the judicious turnover of taste cells
within the bud. The recent report by Archer [5¢¢] showed a
downregulation of genes expressed in the Type II taste cells
responsible for sweet, bitter or umami detection in the fungi-
form papillae of obese versus lean women, as well as a reduc-
tion in expression of sonic hedge-hog (SHH), a morphogen
vital for taste cell development [83, 84]. Kaufman et al.
showed a similar decrease in taste cell developmental markers
in obese mice [7], with a concomitant increase in inflamma-
tory markers and fewer taste buds in obese mice from an
earlier work [10ee].

Conclusions and future work

Taste perception in humans is sensitive to disease states, in-
cluding obesity and acute infection. Circulating factors arising
from our inflammatory state can also interact with taste cells
themselves, their progenitor cells, innervating nerves, and
with processing within the brain.

Recent work has made it clear that the taste system is plas-
tic and responds to inflammatory insult, whether acute or
chronic, and thus inflammation has a role in taste function
and intake which cannot be discounted as we work toward

behavioral approaches to treat metabolic diseases. Further,
the identification of cells strikingly similar in phenotype to
those we think of as taste cells throughout the body, which
are seemingly fulfilling an immune sentinel role, highlights
further links between immunity and taste. Future work should
take advantage of the expanding array of molecular tech-
niques available to study taste cells in vitro, and aim for lon-
gitudinal studies of taste and immunity pre- and post-obesity,
to further elucidate the complex relationship between our per-
ception of foods, and the consequences of over consumption.
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