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Abstract

Objective: This study attempted to clarify the applicability of standard error (SE) terms in clinical research when examining
the impact of short-term practice effects on cognitive performance via reliable change methodology.

Method: This study compared McSweeney’s SE of the estimate (SE¢) to Crawford and Howell’s SE for prediction of the
regression (SEpeq) using a developmental sample of 167 participants with either normal cognition or mild cognitive impairment
(MCI) assessed twice over 1 week. One-week practice effects in older adults: Tools for assessing cognitive change. Using these
SEs, previously published standardized regression-based (SRB) reliable change prediction equations were then applied to an
independent sample of 143 participants with MCI.

Results: This clinical developmental sample yielded nearly identical SE values (e.g., 3.697 vs. 3.719 for HVLT-R Total Recall
SEese and SEpreq, respectively), and the resultant SRB-based discrepancy z scores were comparable and strongly correlated
(r = 1.0, p < .001). Consequently, observed follow-up scores for our sample with MCI were consistently below expectation
compared to predictions based on Duff’s SRB algorithms.

Conclusions: These results appear to replicate and extend previous work showing that the calculation of the SEes and SEpred
from a clinical sample of cognitively intact and MCI participants yields similar values and can be incorporated into SRB
reliable change statistics with comparable results. As a result, neuropsychologists utilizing reliable change methods in research
investigation (or clinical practice) should carefully balance mathematical accuracy and ease of use, among other factors, when
determining which SE metric to use.
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Introduction

Statistical procedures collectively known as reliable change methods have been developed to discriminate clinically meaning-
ful change in serial neuropsychological assessment from repeated test exposure benefits (i.e., practice effects; Hammers, Duff,
& Chelune, 2015; Lezak, Howieson, Bigler, & Tranel, 2012). Several such procedures exist, with McSweeny and colleagues’
(McSweeny, Naugle, Chelune, & Luders, 1993) standardized regression-based (SRB) predicted difference method gaining wide
acceptance (Attix et al., 2009; Crockford et al., 2018; Duff et al., 2010; Duff et al., 2004; Duff et al., 2005; Gavett, Ashendorf,
& Gurnani, 2015; Rinehardt et al., 2010; Sanchez-Benavides et al., 2016; Stein, Luppa, Brahler, Konig, & Riedel-Heller,
2010). SRB methods use linear regression to predict retest scores (Time 2) for individuals based on their baseline (Time 1)
performance and other relevant information and are able to consider the impact of practice effects and other sys-
tematic biases, regression to the mean, and measurement error (Chelune, 2003; Hinton-Bayre, 2010) on repeated test
performance.
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SRB equations generate a discrepancy change score (z score) with the difference between observed and predicted Time 2
scores in the numerator and a standard error (SE) term in the denominator (z = (T>—T3')/SE). The specific SE term to use has
been a source of long-standing statistical debate and factors to consider include test unreliability, differential practice effects,
and the inequality of variances (Hinton-Bayre, 2010; Maassen, Bossema, & Brand, 2006). Commonly utilized throughout the
literature is McSweeney’s (McSweeny et al., 1993) SE of the estimate (SEes), which is the standard deviation of the residuals
from a linear regression model. The SE; is calculated from summary test statistics and is readily available on statistical software
printouts. Despite McSweeney’s SE¢s prevalence throughout the literature, it has been argued that this error term fails to account
for all sources of error when prediction equations are calculated in a developmental sample and are subsequently applied to an
independent sample (Crawford & Howell, 1998), which is a common application of SRB equations. Specifically, although the
SE¢s accounts for uncertainty in the regression line, itignores error arising from predicting an individual observation. In contrast,
Crawford and Howell’s (Crawford & Howell, 1998) SE for prediction of the regression (SEpreq) is a SE term that incorporates
uncertainty from both the regression line and from predicting an individual test observation and is consequently calculated for
each individual observation in a sample. Additionally, Crawford and Howell’s approach is expected to result in more accurate
standard error estimates and confidence intervals in the context of smaller sample sizes and extreme scores (Crawford & Howell,
1998). As aresult of incorporating more sources of error, the SEjreq Will be larger than the SE;, which may have consequences
when applying these different error terms to SRB equations to assess reliable change.

In a manuscript examining a variety of reliable change statistics and SE variables, Hinton-Bayre (2010) calculated SEcg
and SEpreq values from a sample of 57 healthy control participants tested 1 year apart. The resultant error terms were then
incorporated into SRB equations for a variety of commonly administered cognitive variables using a case example. The results
suggested that the error terms yielded generally comparable values, with differences between the SEes; and SEpreq values being
within 1% of each other (e.g., SEest of 3.54 and SEpeq of 3.57). However, Hinton-Bayre (2010) concluded that “... while
numerous authors have concluded that there is little difference in classifications across [reliable change] models in control data,
there is limited systematic consideration of variations in clinical samples.” As such, it can be questioned whether these different
error variables would have resulted in a greater discrepancy—and subsequently different SRB discrepancy change z scores—if
they were calculated under different conditions, including using clinical samples or when greater practice effects are expected.
For example, Duff (2014) created regression-based prediction equations from 167 community-dwelling older adults (93 were
cognitively intact and 74 were classified as having Mild Cognitive Impairment [MCI]) assessed twice over 1 week. As has been
shown previously, length of test-retest interval is associated with differences in practice effects (Calamia, Markon, & Tranel,
2012), such that shorter test-retest intervals correspond to greater practice effects. Consequently, the current study sought to
replicate Hinton-Bayre’s previous work (2010) and extend it to this clinical sample re-tested over a shorter interval (when
practice effects are likely to be their highest) by comparing the application of Duff’s SRB equations for the Hopkins Verbal
Learning Test—Revised (HVLI-R; Brandt & Benedict, 2001) to a validation sample when using both the SEes; and SEpreq.
The aim of this research is to provide some clarity regarding the applicability of these error terms in clinical research when
examining the impact of variance—including systematic bias like short-term practice effects and sources of non-systematic
bias—on cognitive performance.

Method
Farticipants

Please see Table 1 for a description of Duff’s (2014) SRB equation development sample and the current validation sample.
Briefly, Duff’s (2014) developmental sample, for which the SE and SRB prediction equations were calculated, included 167
community-dwelling older adults with a mean age of 78.6 (SD = 7.8) years and an average of 15.4 (SD = 2.5) years of
education. The sample of participants were all Caucasian and predominantly female (81.1%). Premorbid intellect at baseline
was average according to the Wide Range Achievement Test—fourth edition (WRAT-4; Wilkinson & Robertson, 2006) Reading
subtest (standard score: M = 107.2, SD = 6.2), and their performances on the Repeatable Battery for the Assessment of
Neuropsychological Status (RBANS; Randolph, Tierney, Mohr, & Chase, 1998) were generally intact.

For the current validation sample, 143 participants were recruited from either a cognitive disorders clinic (61%) or senior
centers and independent living facilities (39%). Their mean age was 75.5 (SD = 6.1, range = 65-91) years, and they averaged
16.2 (SD = 2.9, range = 12-20+) years of education. The sample of participants was evenly divided by sex (50.3% female),
and the majority were Caucasian (97.9%). Premorbid intellect at baseline was average (WRAT-4 Reading subtest: M = 108.2,
SD = 8.8, range = 85-145). For inclusion in the study, all participants from this sample were classified as having either single-
domain or multi-domain amnestic MCI using a larger battery of cognitive tests. Classification of participants from this sample
has been described previously (Duff et al., 2017). Briefly, participants were classified as amnestic MCI by participant and
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Table 1. Demographic characteristics of Duff’s (2014) test development and the current validation samples

Duff (2014) Current validation sample
Variable Mean (SD) Mean (SD)
n 167 143
Cognitively intact 93 0
Mild cognitive impairment 74 143
Age (years) 78.6 (7.8) 75.5(6.1)
Education (years) 154 (2.5) 16.2 (2.9)
Gender (% female) 81.1% 50.3%
Race (n)
African American 0 1
Hispanic/Latino American 0 1
Native American 0 1
White, non-Hispanic 167 140
Test interval (days) 7.6 (2.2) 7.2(0.9)
WRAT-3 or -4 premorbid intellect 107.8 (6.2) 108.2 (8.8)
RBANS indexes (SS)
Immediate memory 99.8 (15.4) 81.9 (16.7)
Visuospatial/constructional 106.5 (15.1) 97.7 (15.5)
Language 101.4 (11.9) 90.9 (12.3)
Attention 102.8 (14.9) 96.1 (15.2)
Delayed memory 100.1 (13.9) 77.7 (21.0)
Total scale 102.8 (13.3) 85.1(13.2)

Note: SD = standard deviation; WRAT-3 or -4 premorbid intellect = Wide Range Achievement Test—third or fourth edition
Reading Subtest; RBANS = Repeatable Battery for the Assessment of Neuropsychological Status; SS = Standard Score.

knowledgeable informant report and a baseline cognitive evaluation. Cognitive impairment for a domain was defined as a
significant discrepancy (e.g., 1.5 SD) between current cognitive performance and an estimate of premorbid intellect. As can
be observed in Table 1, on average the sample displayed below expectation abilities for immediate and delayed memory skills,
particularly after considering their strong premorbid intellect, though their cognition was otherwise generally intact. General
inclusion criteria for the study involved being aged 65 years or older and functionally independent (according to participant
and/or knowledgeable informant), along with possessing adequate vision, hearing, and motor abilities to complete the cognitive
evaluation. General exclusion criteria included neurological conditions likely to affect cognition, dementia, major psychiatric
condition, current severe depression, substance abuse, anti-convulsant or anti-psychotic medications, or residence in a skilled
nursing or living facility.

Procedure

All procedures were approved by the local Institutional Review Board before the study commenced. All participants provided
informed consent before completing any procedures. The following measures were administered to the validation sample at a
baseline visit as part of a larger battery:

* HVLT-R (Brandt & Benedict, 2001) is a verbal memory task with 12 words learned over three trials, with the correct words
summed for the Total Recall score (range = 0-36). The Delayed Recall score is the number of correct words recalled after a
20-25-min delay (range = 0—12). For all HVLT-R scores, higher raw score values indicate better performance (Durant, Duff,
& Miller, 2019).

* WRAT-4 Reading (Wilkinson & Robertson, 2006) is used as an estimate of premorbid intellect, in which an individual
attempts to pronounce irregular words. The score is standardized (M = 100, SD = 15) to age-matched peers, and higher
values indicate better performance.

* RBANS (Randolph et al., 1998) is a neuropsychological test battery comprising 12 subtests that are used to calculate Index
scores for domains of immediate memory, visuospatial/constructional, attention, language, delayed memory, and global
neuropsychological functioning. The index scores utilize age-corrected normative comparisons from the test manual to
generate standard scores (M = 100, SD = 15), with higher scores indicating better cognition.

For the current validation sample, after approximately 1 week (M = 7.2 days, SD = 0.9, range = 6-13), the HVLT-R was
repeated, with the same form being used to maximize practice effects. The RBANS and WRAT-4 were only administered at
baseline.
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Table 2. Complex standardized regression based change scores from Duff (2014)

Cognitive scores Predicted T> ' SEsoftware ~ SEest  SEpred
Duff (2014) observed Duff (2014) observed ;
Time 1 score Time 2 score
HVLT-R Total Recall 23.2 (5.6) 27.7 (5.7) 9.18 + (T1*0.79) 0.582 3.71 3.697 3.719
HVLT-R delayed recall 6.7 (3.4) 9.0 (2.6) 8.87 + (T1*0.50) — (age*0.04)  0.490 1.88 1.890 1.901

Note: HVLT-R = Hopkins Verbal Learning Test—Revised; 7'y = unstandardized beta weight for the Time 1 raw score; age = years old at baseline. To
calculate the predicted Time 2 (T'2) score, use the formula in the column titled “Predicted T.” ry,® = squared value of Pearson’s correlation coefficient for
initial and retest score, SEgqfiware = standard error of the estimate from Duff (2014) as calculated by statistical software packages, SEest = standard error of
the estimate using McSweeny et al.’s (1993) equation, SEpreq = standard error for prediction of regression using Crawford and Howell’s (1998) equation. To
calculate the reliable change score, use either (observed T'p—predicted 77)/SEest or (observed Tr—predicted 72)/SEpreq-

Analyses

SRB group analyses. Previously published SRB prediction equations for the HVLT-R were applied to the current sample’s
baseline and 1-week scores. As has been described previously (Duff, 2014), the SRB prediction algorithms were calculated
from a developmental sample using stepwise multiple-regression analyses to maximize the prediction of performance for each
repeated measure in the cognitive battery. Specifically, the combination of demographic variables (e.g., age, education, sex), test
interval, and baseline test score was used to predict the respective test score at follow-up 1 week later (Table 2).

When applying these SRB prediction equations to the current MCI sample, two different SE values were calculated
for each participant. First, McSweeny and colleagues’ (Hinton-Bayre, 2010; McSweeny et al., 1993) equation was used
to calculate the SE of the estimate (SEesq = SD, * \/(l—rxyz) from summary statistics, where SDy = control group retest
standard deviation, and ry, = Pearson’s correlation coefficient for initial and retest scores. Second, Crawford and Howell’s
(Crawford & Howell, 1998) equation was used to calculate the averaged SE for prediction of the regression (SEpreq = SEegt *
J[l + 1/n + (xo—x%)*/SD*(n—1)]) from individual test performances, where n = sample size, x, = individual initial test score,
XX = control group initial test mean, and SD, = control group initial standard deviation. Following these calculations, z scores
were then calculated for each participant’s performance on the HVLT-R Total and Delayed Recall subtests, each of which reflects
a normalized deviation of change for an individual participant. Specifically, the Observed One-Week score was compared to the
Predicted One-Week score, normalized by both the SEe (i.€., z = (To—T2")/SEeg) and the SEpred (€., 2= (TQ—TZ’)/SEpred). Z
scores calculated from both the SEes and SEpreq for the HVLT-R Total Recall and Delayed Recall subtests were then compared
to each other (e.g., SEest vS. SEpred for both HVLT-R subtests), as well as to expectation (z = 0) based on the normal distribution
of z scores using a one-sample 7 test.

Individual distribution analyses. In a further application of the resultant z scores, they were trichotomized into “smaller-
than-expected variance” (z score < —1.645), “expected variance” (z score falling between + 1.645), or “greater-than-expected
variance” (z score > 1.645) for the HVLT-R subtests. If the z scores were normally distributed, then one would expect that
5% of participants would show “smaller-than-expected variance,” 90% would indicate “expected variance,” and 5% would
reflect “greater-than-expected variance.” As alluded to previously, the term “variance” is being used to reflect changes in
test performance between the two testing sessions that incorporate both systematic (practice effects) and non-systematic
(measurement error, etc.) sources of bias. Using this trichotomization, individual chi-square analyses were conducted for both
the HVLT-R Total Recall and Delayed subtests for z scores calculated from both the SEes; and SEjreq to determine if the observed
distribution of participants deviated significantly from the expected distribution based on the normal distribution of z scores.
Further, chi-square analyses were conducted comparing observed distributions of variance for HVLT-R subtests when using z
scores calculated with the SEeg; vs. the SEpreq.

Measures of effect size were expressed throughout as Cohen’s d values for continuous data, and Phi coefficients for categorical
data. A two-tailed alpha level was set at .05 for all statistical analyses.

Results
Differences between SE.s; and SEpreq

SE et (McSweeny et al., 1993) and SEpreq (Crawford & Howell, 1998) values were calculated using summary statistics and
individual test performance values, respectively, from the sample that was used to create Duff’s (2014) SRB prediction equations
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Table 3. Baseline, observed, and predicted 1-week cognitive scores, standardized z scores using different standard error
methods, and p values for difference from expectation (z = 0) based on the normal distribution of z scores in MCI participants

Hopkins Verbal Learning Test—Revised

Total recall Delayed recall

Observed baseline score 18.0 (5.1) 3.5(3.3)
Observed 1-week score 21.6 (6.5) 5.8 (3.7)
Predicted 1-week score 23.4(4.0) 7.6 (1.7)

z score using SEeg —0.485 (1.1) —0.931 (1.3)
z score using SEpreq —0.482 (1.1) —0.926 (1.3)
r between z scores using SEeg and SEpreq 1.0 1.0

t and p values for z scores using SEest and SEpred —0.03;0.975 —0.05; 0.960

Note: MCI = mild cognitive impairment; SEest = standard error of the estimate using McSweeny et al.’s (1993) equation;
SEpred = standard error for prediction of regression using Crawford and Howell’s (1998) equation, r between z scores
using SEest and SEpreq = Pearson product correlation coefficient between standardized regression-based z scores calculated
using SEest and standardized regression-based z scores calculated using SEpreq, 7, and p values for z scores using SEegt and
SEpreq = paired sample ¢ test values and significance levels between the standardized regression-based z score using SEest
and the standardized regression-based z score using SEpreq.

for each of the HVLT-R subtests. As observed in Table 2, the SE values for the SRB equations from Duff (2014) using both
methods were nearly identical (3.697 vs. 3.719, respectively, for HVLT-R Total Recall, and 1.890 vs. 1.901, respectively, for
HVLT-R Delayed Recall). These values were also similar to the SE.y generated from statistical software. As a result, the z
scores for both the HVLI-R subtests calculated using the SEes and SEpreq were strongly correlated (r = 1.0, p < .001 for both
HVLT-R Total and Delayed Recall; Table 3). When comparing the z scores for the HVLT-R subtests calculated using the SEeg
and the z scores calculated using the SEeq via paired samples ¢ tests, no differences were observed for HVLT-R Total Recall,
1(142) = —0.03, p = .975, d = —0.005, or HVLT-R Delayed Recall, #(142) = —0.05, p = .960, d = —0.008.

SRB group analyses

SRB prediction equations for each of the HVLT-R subtests from Duff (2014) were then applied to the current sample of 143
MCI participants, using both the SEcs and SEpreq. Discrepancy change scores (z = (T'2—T5')/SE) for HVLT-R Total Recall
and Delay Recall subtests were calculated using both SE methods and compared to expectation (z = 0) based on the normal
distribution of z scores using one-sample ¢ tests. Significant differences were observed when conducting these analyses for both
subtests administered twice over 1 week. As a reminder, when z scores were significantly larger than zero, the current validation
sample exceeded expectations based on Duff’s developmental sample and reflected greater-than-expected variance over 1 week.
Conversely, when z scores were significantly smaller than zero, the current validation sample fell below expectations based on
Duft’s developmental sample and subsequently reflected smaller-than-expected variance over 1 week. Specifically, this MCI
sample displayed lower z scores than expected on HVLT-R Total Recall, #(142) = —5.33, p = .001, d = —0.89, and HVLT-R
Delayed Recall, #(142) = —8.42, p = .001, d = —1.41, when using the SE¢ to calculate the z scores, as well as HVLT-R Total
Recall, #(142) = —5.33, p = .001, d = —0.89, and HVLT-R Delayed Recall, #(142) = —8.42, p = .001, d = —1.41, when using
the SEpreq to calculate the z scores.

Individual distribution analyses

When examining the distribution of individual MCI participants that displayed ‘“‘smaller-than-expected variance”
(zscore < —1.645), “expected variance” (z score falling between % 1.645), or “greater-than-expected variance” (z score > 1.645)
between Baseline and One-Week administrations of the HVLT-R, the majority of participants exhibited the expected level of
benefit (81.3% of participants; see Table 4). However, greater proportions of individuals displayed smaller-than-expected
variance over 1 week than expected based on normal distributions for both HVLT-R subtests (14% of participants for HVLT-R
Total Recall, 29% of participants for HVLT-R Delayed Recall), HVLT-R Total Recall, x> (2) = 19.68, p = .001, Phi = 0.37,
HVLT-R Delayed Recall, x> (2) = 124.21, p = .001, Phi = 0.93, using the SE.g, and HVLT-R Total Recall, x> (2) = 19.68,
p =.001, Phi = 0.37, HVLT-R Delayed Recall, x* (2) = 124.21, p = .001, Phi = 0.93, using the SE}eq. In addition, chi-square
analyses between HVLT-R subtests indicated that the distributions for each subtest were identical when using the SE.s and
the SEpreq as the SE variables in the z score calculation, HVLT-R Total Recall, x> (1) =0.00, p = .99, Phi = 0.00, HVLT-R
Delayed Recall, x> (1) = 0.00, p = .99, Phi = 0.00. On neither subtest did greater proportions of individuals with MCI possess
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Table 4. Percentage of MCI sample that displayed smaller-than-expected, expected, or greater-than-expected variance based on standardized
regression-based methodology when using different standard error methods

Variance
Smaller-than expected Expected Greater than expected p value
HVLT-R Total Recall using SEeg 14.0 85.3 0.7 0.99
HVLT-R Total Recall using SEjeq 14.0 85.3 0.7
HVLT-R delayed recall using SEeg 294 70.6 0.0 0.99
HVLT-R delayed recall using SEjeq 29.4 70.6 0.0

Note: MCI = mild cognitive impairment; HVLT-R = Hopkins Verbal Learning Test—Revised; SEest = standard error of the estimate using
McSweeny et al.’s (1993) equation; SEpreq = standard error for prediction of regression using Crawford and Howell’s (1998) equation;
p value = significance of chi square tests comparing observed distributions of smaller-than-expected, expected, and greater-than-expected
variance for HVLT-R subtests when using z scores calculated with the SEest versus SEpreq-

greater-than-expected variance over 1 week than anticipated based on the normal distribution of z scores (greater-than-expected
variance was generally around the expected 5% value for each measure).

Discussion

The current study sought to consider how two different measurements of standard error—the standard error of the estimate
of the regression (SEes; McSweeny et al., 1993) and standard error for prediction of the regression (SEpred; Crawford & Howell,
1998)—affected the calculation of reliable change. Specifically, in this study SEest and SEpreq values were calculated from
previously published SRB-predicted difference equations (Duff, 2014) for the HVLT-R from a developmental sample of both
cognitively intact and amnestic MCI community-dwelling older adults assessed twice over a 1-week period. These resultant
SE values were then incorporated into Duff’s (2014) SRB equations for validation purposes using a separate and independent
sample of participants with MCL.

When calculating the SEeg and SEpreq values from Duff’s (2014) clinical sample over a short re-test interval, it was observed
that little difference was evident between the two calculations. Specifically, the values of SEey and SE}eq Were consistently
within 0.59% of each other, and the Pearson product correlation of 1.0 for the resultant SRB-based z scores suggests that the
difference between these two values represented a linear transformation. The SEpeq was consistently slightly larger than the
SEest, which would be expected given that the SEpeq accounts for multiple sources of error (both from the regression model
and for the individual observation) relative to the SEe (Crawford & Howell, 1998). These results were consistent with Hinton-
Bayre’s previous work (2010) with a smaller sample size of healthy controls, assessed over a 1-year test-retest interval. As
our sample was relatively large in size and reflected independent (non-demented) community-dwelling older adults, our study
possessed favorable conditions (large sample size and non-extreme scores) described by Crawford and Howell (Crawford &
Howell, 1998) for convergence in accuracy between SE calculations. These findings also appear to suggest that although the
characteristics of the SRB developmental sample—including clinical sample, test—retest interval, and degree of expected practice
effect—may have an effect of the overall size on the SE calculation (e.g., SE, of 3.54 for HVLT-R Total Recall for Hinton-Bayre
(2010) vs. SE. of 3.697 for HVLT-R Total Recall currently), they have a negligible effect on the relative difference between
SEes and SEpreq calculations.

Given the near equivalence of the SE calculations, it is therefore not surprising that the resultant discrepancy z scores for
the HVLT-R subtests from Duff’s (2014) SRB prediction equations were comparable when applied to a validation sample
(p = .960-.975). Specifically, our study observed that although the current MCI validation sample performed better at One-
Week versus Baseline for both HVLT-R subtests, Observed One-Week performance fell below expectations relative to Predicted
One-Week performance based on Duff’s developmental sample (Cohen’s d = 10.89-1.411), and subsequently reflected smaller-
than-expected variance over 1 week when using either SE calculation. Additionally, no differences were observed between the
distributions of participants that displayed smaller-than-expected, expected, or greater-than-expected variance in our MCI sample
based on use of the SE¢ versus the SEpreq (p = .99 for both HVLT-R subtests). For example, 14% and 29% of MCI participants
displayed smaller-than-expected variance on HVLT-R Total and Delayed Recall, respectively, consistent with previous literature
reporting an absence or a reduction of practice effects in MCI across a number of cognitive measures and retest intervals (Britt
et al., 2011; Calamia et al., 2012; Cooper, Lacritz, Weiner, Rosenberg, & Cullum, 2004; Darby, Maruff, Collie, & McStephen,
2002; Duff et al., 2018; Duff et al., 2017; Schrijnemackers, de Jager, Hogervorst, & Budge, 2006).

Our results of near mathematical equivalence when using the SEes and SEpreq suggest that it would be understandable for
some researchers (and clinicians) to have uncertainty about the proper SE term to use with SRB prediction equations. As alluded
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to previously, the SEpeq is the theoretically appropriate value for use when applying SRB prediction equations developed from
one sample to an independent validation sample, given its ability to account for more sources of error (error in the regression
model plus error in predicting a specific observation). In particular, this is an issue when the developmental sample is small and
the individual’s score on the predictor variable is extreme (Crawford & Howell, 1998). However, the calculation of the SEpred
is a more laborious than using the SE.y, which can be either calculated by hand using summary statistics or taken directly
from statistical software (or developmental sample publications as in Duff, 2014). Although Crawford should be applauded
for creating statistically sophisticated online calculators for calculating an individual SEpeq value from summary statistics
(Crawford & Garthwaite, 2007)—thus resolving the previous issue that calculation of the SEpreq required the possession of
the developmental sample data—these calculations still need to be conducted for each individual observation in a sample. When
considering research samples of 150+ participants (or when used in clinical settings for many individual patients over a period
of several years), this still represents a time-intensive endeavor. These findings appear to illustrate another context (relatively
large sample sizes and an absence of extreme scores) in which the SEes and SEpeq approaches seem to converge; therefore,
neuropsychologists incorporating reliable change methods into research investigation (or clinical practice) should carefully
balance mathematical accuracy and ease-of-use, among other factors, when determining which SE metric to use.

The current study is not without limitations. First, the only conditions examined were for participants with normal cognition or
MU, assessed by the HVLT-R twice over 1 week. As a result, consideration of other domains assessed, length of retest interval,
diagnostic group, and source of recruitment (e.g., clinic vs. community; Andersen et al., 2010) will be important. Additionally,
these results may not generalize to more heterogeneous participants in regards to premorbid functioning, education, and race.
Despite these limitations, these results appear to have replicated and extended Hinton-Bayre’s (2010) previous work showing that
the calculation of the SEes and SEpreq from a clinical sample of community-dwelling cognitively normal and MCI participants
yields very similar values and can be subsequently incorporated into SRB reliable change statistics with comparable results.
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