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Abstract 

Background:  Deep learning algorithms significantly improve the accuracy of pathological image classification, 
but the accuracy of breast cancer classification using only single-mode pathological images still cannot meet the 
needs of clinical practice. Inspired by the real scenario of pathologists reading pathological images for diagnosis, we 
integrate pathological images and structured data extracted from clinical electronic medical record (EMR) to further 
improve the accuracy of breast cancer classification.

Methods:  In this paper, we propose a new richer fusion network for the classification of benign and malignant breast 
cancer based on multimodal data. To make pathological image can be integrated more sufficient with structured EMR 
data, we proposed a method to extract richer multilevel feature representation of the pathological image from multi-
ple convolutional layers. Meanwhile, to minimize the information loss for each modality before data fusion, we use the 
denoising autoencoder as a way to increase the low-dimensional structured EMR data to high-dimensional, instead 
of reducing the high-dimensional image data to low-dimensional before data fusion. In addition, denoising autoen-
coder naturally generalizes our method to make the accurate prediction with partially missing structured EMR data.

Results:  The experimental results show that the proposed method is superior to the most advanced method in 
terms of the average classification accuracy (92.9%). In addition, we have released a dataset containing structured 
data from 185 patients that were extracted from EMR and 3764 paired pathological images of breast cancer, which 
can be publicly downloaded from http://​ear.​ict.​ac.​cn/?​page_​id=​1663.

Conclusions:  We utilized a new richer fusion network to integrate highly heterogeneous data to leverage the struc-
tured EMR data to improve the accuracy of pathological image classification. Therefore, the application of automatic 
breast cancer classification algorithms in clinical practice becomes possible. Due to the generality of the proposed 
fusion method, it can be straightforwardly extended to the fusion of other structured data and unstructured data.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  renfei@ict.ac.cn; zhengch99@126.com; 
liangjun1959@aliyun.com
1 High Performance Computer Research Center, Institute of Computing 
Technology, Chinese Academy of Sciences, Beijing, China
3 Department of Oncology, Peking University International Hospital, 
Beijing, China
7 College of Computer Science and Technology, Anhui University, Hefei, 
China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-3186-3170
http://ear.ict.ac.cn/?page_id=1663
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-020-01340-6&domain=pdf


Page 2 of 14Yan et al. BMC Med Inform Decis Mak          (2021) 21:134 

Background
Cancer is a critical global public health problem. For 
women, the three most common cancers are breast can-
cer, lung cancer, and colorectal cancer, which together 
account for half of the new diagnoses in 2019. Breast can-
cer alone accounts for 30% of all new cancer diagnoses 
[1]. Even with the rapid development of medical science, 
the analysis of pathological images is still the gold stand-
ard for breast cancer diagnosis [2]. However, the com-
plexity of pathological images and the dramatic increase 
in workloads make this task time consuming, and the 
results may be affected by the pathologist’s subjectivity. 
Faced with these challenges, it is urgent to propose an 
accurate and automatic analysis method for breast cancer 
diagnosis.

In recent years, deep learning methods have achieved 
outstanding results in the field of computer vision, which 
has inspired many researchers to transfer this method 
to pathological image analysis. In spite of this, the clas-
sification accuracy of benign and malignant breast cancer 
using only single-mode pathological image data does not 
meet the requirements of clinical practice.

Although pathological images alone do not yield good 
breast cancer classification results, pathological images 
provide a rich environment to integrate electronic 
medical record (EMR) data, making it possible to fully 

integrate multimodal data and discover new informa-
tion after fusion. In particular, the original pathological 
images are high dimensional information. It requires less 
human effort to obtain, but it contains large amounts 
of information that is potentially unrecognizable to 
humans. The clinical information extracted from EMR 
is low dimensional, but this information is usually the 
summary of doctors’ professional knowledge and long-
term experience, which can provide more guidance for 
diagnoses.

Therefore, we integrate the analysis of different data 
modalities to simulate diagnostic tasks in clinical prac-
tice. From the perspective of multimodal data fusion, 
we try to combine pathological images with structured 
EMR data to further improve the diagnostic accuracy for 
breast cancer. This approach is also consistent with the 
actual scenario in which the pathologist reads pathologi-
cal images for diagnosis, as shown in Fig. 1. When read-
ing a pathological image, the pathologist will repeatedly 
refer to the relevant information in the patient’s EMR as a 
priori information and guidance until the final diagnosis.

There is almost no literature on the classification 
of breast cancer using both EMR data and pathologi-
cal images. However, the multimodal fusion approach 
has achieved outstanding results in other medical fields 
(text, images, and genomics). Nevertheless, there are 

Keywords:  Pathological image, Electronic medical record, Multimodal fusion, Breast cancer classification, 
Convolutional neural network

Fig. 1  A simple introduction to pathological diagnosis workflow in the hospital. When patient came to the hospital for treatment, they first register 
with the corresponding department (e.g., breast surgery). The surgeon then determines whether the patient needs a pathological examination 
based on the information obtained by asking about the patient’s condition and the information obtained from the surgical examination, and 
records the information into the EMR system. Finally, the pathologist makes a diagnosis by carefully reading the patient’s pathological images and 
repeatedly combining the information from the EMR
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still some problems, such as the feature representation 
of images not being rich enough and information fusion 
being insufficient. In particular, the loss of high-dimen-
sional information before data fusion and the problem 
of partially missing data are often encountered in real 
scenarios.

In this paper, we proposed a richer fusion network to 
integrate multimodal data for breast cancer classification. 
The main contributions of our work are as follows.

1.	 To the best of our knowledge, this is by far the first 
time that structured EMR data and pathological 
image data have been integrated to classify breast 
cancer, and the proposed richer fusion network sig-
nificantly outperforms methods that use any single 
source of information alone and previous multimodal 
frameworks.

2.	 To make pathological image can be integrated more 
sufficient with structured EMR data, we proposed 
a method to extract richer multilevel feature repre-
sentation of the pathological images from multiple 
convolutional layers. Thus, we can retain the comple-
mentary multilevel image information, such as local 
cell textures and tissue structures.

3.	 To minimize the information loss for each modal-
ity before data fusion, we use denoising autoencoder 
as a way to increase the low-dimensional EMR data 
instead of reducing the high-dimensional image data 
to low-dimensional before data fusion. In this way, 
there is enough information in each modality before 
information fusion, which fulfills a prerequisite for 
more sufficient information fusion. Meanwhile, 
denoising autoencoder naturally generalizes our 
method to make the accurate prediction with absent 
of part structured EMR data.

4.	 We released a new dataset with pathological images 
and pairwise multiple types of features that were 
extracted from EMR for evaluating breast cancer 
classification algorithms.

Related work
Multimodal data fusion
Recently, deep learning has shown excellent perfor-
mance in the field of natural images, and similarly, break-
throughs have been made in the field of medical images 
such as pathological image classification [3–5]. Bayramo-
glu et al. [4] proposed a magnification-independent deep 
learning method for the breast cancer pathological image 
classification with a classification accuracy of approxi-
mately 83%.

However, such classification accuracy is not suffi-
cient for clinical practice. Inspired by the pathologists’ 

diagnostic process in actual scenarios, the multimodal 
data fusion approach offers new opportunities. Mean-
while, a distinguishing feature of medical big data is its 
diversity, which means that large amounts of data are 
collected in a variety of modalities, including structured 
and unstructured data, as well as semi-structured data 
[6]. For example, structured EMR data and unstructured 
pathological images data. This distinct characteristic of 
medical data also presents great opportunities.

Moreover, many studies have shown that the perfor-
mance of multimodal fusion methods is significantly 
better than using only a single mode. Yao et al. [7] pro-
posed a cancer survival prediction model that integrates 
cancer protein expression, pathological image and copy 
number variation using a deep neural network. In addi-
tion, Mobadersany et  al. [8] considered the interac-
tion of multi-omics information and pathological image 
information for cancer survival prediction. Xu et  al. [9] 
use a hybrid deep neural network for the task of cervi-
cal dysplasia classification using multimodal data: Cervi-
gram image and clinical records including age, Potential 
of Hydrogen (PH) values, Papanicolau (Pap) tests, and 
Human Papilloma Virus (HPV) tests. The proposed 
multimodal network can better learn complementary 
features through backpropagation, and its results are sig-
nificantly better than those of methods using any single-
mode data alone.

Multimodal fusion has achieved outstanding results, 
but each modality of multimodal objects has its own 
characteristics, resulting in the complexity of heterogene-
ous data. Therefore, heterogeneous data present another 
challenge to the multimodal fusion method.

High‑dimensional and low‑dimensional data fusion
High dimensional data (such as images) usually have 
high dimensional feature representation. In contrast, 
the dimensions of structured data are inherently low. 
Whether the high-dimensional data and low-dimensional 
data can be effectively integrated will have a great impact 
on the final results.

Information fusion methods can be divided into three 
categories according to the level of integration: data-level 
fusion, feature-level fusion, and decision-level fusion 
[10]. Generally, the smaller the information loss of each 
modality before fusion is, the more sufficient the infor-
mation fusion is, and the better the final fusion result is. 
From existing research, the correctness of this view is 
also proved, especially that feature-level fusion is better 
than decision-level fusion [11]. This finding indicates that 
the information for each modality, especially the high-
dimensional modalities with rich information, should be 
as complete as possible before fusion and then reduced to 
the desired level after the initial fusion of the multimodal 
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data. Therefore, the fusion is sufficient to effectively cap-
ture the complex associations of multimodal heterogene-
ous data.

At present, most data fusion is image and image or 
image and text [12, 13]. However, these data are all of 
high dimensions, and few early studies involve the fusion 
of low-dimensional structured data and high-dimen-
sional unstructured data. Xu et al. [9] first reduced high-
dimensional Cervigram images to low-dimensional and 
then merged them with low-dimensional clinical records 
(i.e., age, PH values, Pap tests, and HPV tests). This 
method has achieved good results. However, this method 
loses substantial image information before fusion, which 
makes the fusion insufficient.

Richer feature representation of image
The precondition for multimode fusion is the feature 
extraction of each single-mode data. Current deep learn-
ing methods enable the learning of very good feature 
representation from unstructured data, such as images. 
This also makes the deep learning methods achieve good 
results in tasks such as image classification, edge detec-
tion, and semantic segmentation.

In the semantic segmentation and edge detection tasks, 
the performance of the algorithm is greatly improved by 
the use of richer multilevel features. Sermanet et al. [14] 
classified digits of real-world house numbers using the 
traditional convolutional neural network architecture 
augmented with multi-stage features. Liu et al. [15] pro-
posed a method to perform image-to-image prediction 
by holistically merging all meaningful convolution fea-
tures and making full use of the multiscale and multilevel 
information of objects. Bertasius et  al. [16] presented a 
multi-scale bifurcated deep neural network for top-down 
contour detection. To capture the representation of hier-
archical information, these networks extract features at 
multilevel convolutional layers. Xie et  al. [17] proposed 
a holistically nested edge detection network to learn 
richer hierarchical representation, which are effective for 
alleviating the ambiguity in edge and object boundary 
detection.

However, different tasks have different characteristics, 
which make it necessary to select the most appropriate 
feature representation that is required for a particular 
task. Unlike the image semantic segmentation and edge 
detection task, which needs to extract richer multilevel 
feature representation, image classification needs to 
extract more abstract low-dimensional feature represen-
tation. Therefore, the image classification task repeated 
down-sampling combinations that were performed in 
successive layers of CNNs. Then, the final feature map is 
flattened, and the dimension is reduced to the required 
classification dimension through the fully connected 

layer [18]. This is a process of information compression, 
but also a process of information loss.

For the task of integrating multimodal data for classifi-
cation, the key factor is whether the fusion between dif-
ferent modalities is sufficient. Therefore, we should not 
extract abstract low-dimensional feature representation 
in the way of classification task, but rather, we should 
extract richer multilevel feature representation in the 
way of image semantic segmentation and edge detection 
tasks. In this way, each modality can learn enough feature 
representation before fusion to provide a fertile environ-
ment for full multimodal fusion.

Denoising autoencoder
Autoencoders [19] are a type of unsupervised machine 
learning algorithm and are widely used for data dimen-
sionality reductions. However, in the existing research, it 
is rare to use autoencoder or its variant to improve the 
dimension of data. The denoising autoencoder [20] is 
based on the autoencoder, adding noise to the training 
data, and the output label is still the original sample with-
out noise. The autoencoder must learn to remove noise to 
obtain raw input characteristics that are not corrupted by 
noise. Thus, this forces the encoder and decoder to learn 
more robust feature representation of the original input 
data. In actual training, the method of adding noise can 
also be artificial to make the original input data incom-
plete. Inspired by denoising autoencoders, Ngiam et  al. 
[21] proposed training the bimodal (audio and video) 
autoencoder using a noisy dataset. Specifically, these 
authors proposed to add examples that have zero values 
for one of the input modalities and original values for the 
other input modality but still train the bimodal autoen-
coder to reconstruct both modalities.

Dataset
It is well known that high-quality annotated datasets 
play an important role in deep learning applications. An 
important reason for the significant progress that is made 
in the field of computer vision is the publicly available 
benchmark datasets, such as ImageNet [22], that can be 
used for large scale visual recognition. Inspired by these 
datasets, pathological image researchers eventually began 
to follow this trend, releasing well-annotated benchmark 
datasets such as BreaKHis [3] for histopathological image 
classification.

However, there is still no publicly available matching 
clinical EMR data and pathological image dataset for 
breast cancer research. In this work, we collaborated with 
Peking University International Hospital to release a new 
benchmark dataset containing pathological images and 
pairwise multiple types of attributes that were extracted 
from clinical EMR for benign and malignant breast 
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cancer classification. We named it PathoEMR dataset 
(Pathological EMR Dataset). The overall description of 
the PathoEMR dataset is shown in Table 1.

Pathological image
We collected the medical records of 185 breast can-
cer patients, and for each patient, we collected sev-
eral whole slide images (WSI) and selectively cropped 
2–10 representative image areas from each WSI. In 
the end, we collected a total of 3764 high resolution 
(2048 × 1536 pixels) pathological images. All pathologi-
cal images were obtained using the same equipment at 
a 100 × or 200 × magnification. Each image is labeled 
as benign or malignant according to the main cancer 
type in each image. The annotation of each pathological 
image was completed by three medical experts, and the 
annotated images with inconsistent opinions were sent 
to the pathologists’ supervisor for final confirmation. 
Figure  2 shows an example of the pathological images 
in the dataset and summarizes the image distribution. 
The institutional review committee of Peking University 
International Hospital approved the study, and all the 
related data are anonymous. All pathological images were 

obtained using a Leica Aperio AT2 slide scanner from 
March 2015 to March 2018.

Structured EMR data
After discussion with the pathologists, we extracted 29 
representative features from the EMR. These features 
are closely related to the medical theory on the diagno-
sis of breast cancer, and these structured data are used 
to describe the patients’ condition. Specifically, these 29 
features include age, gender, disease course type, per-
sonal tumor  history, pectoral muscle adhesion, family 
tumor  history, orange peel appearance, prophase treat-
ment, breast deformation, neoadjuvant chemotherapy, 
dimple sign, redness and swelling of skin, skin ulcers, 
tumor, axillary lymphadenectasis, nipple change, nip-
ple discharge, swelling of lymph nodes, tumor position, 
tenderness, tumor number, tumor size, tumor texture, 
tumor border, smooth surface, tumor morphology, activ-
ity, capsules, skin adhesion and the diagnosis. According 
to the actual situation, the data have been quantified into 
specific values. The simple description and value of each 
feature are shown in Table 2.

Table 1  The overall description of the PathoEMR dataset

Description Value

Number of medical records 185 (82 benign, 103 malignant)

Number of pathological images 3764 (1332 benign, 2432 malignant)

Size of pathological images 2048 × 1536 pixels

Color model of pathological images R(ed)G(reen)B(lue)

Memory space of pathological images 3–20 MB

Number of features extracted from each case 29

Fig. 2  Examples of pathological images in our released dataset
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Methods
In this section, we describe our proposed richer fusion 
network for breast cancer classification in detail. For the 
sake of clarity, we first introduce the overall framework 
of our method, as shown in Fig.  3. Then, we introduce 
our method from four perspectives: data preprocessing, 
pathological image feature representation, structured 
EMR data feature representation and multimodal data 
fusion.

Data preprocessing
We first implemented data enhancement. Except for 
resizing the whole image to 224*224, we randomly extract 
40, 20, 10 and 5 patches that are sized 224*224, 512*512, 
1024*1024 and 1536*1536, respectively, from the original 
image of 2048*1536. In addition, we also applied general 
data enhancement techniques to the image, including 
random flips, rotations, brightness adjustments, contrast 
adjustments and so on. Finally, we obtain 3,105,300 pairs 

Table 2  Description of structured EMR data

Feature Value Feature Value

Age: The incidence of breast cancer is rising 
rapidly after the age of 20

0: Less than 20
1: Between 20 and 40
2: Older than 40

Gender: Male can also get breast cancer 0: Male
1: Female

Disease Course Type: Benign tumors grow slowly, 
but cancers grow much faster

0: Not mentioned
1: Chronic
2: Acute
3: Hidden

Pectoral Muscle Adhesion 0: No
1: Yes

Personal Tumor History 0: No
1: Yes

Family Tumor History 0: No
1: Yes

Prophase Treatment 0: No
1: Yes

Neoadjuvant Chemotherapy 0: No
1: Yes

Dimple Sign: Tumors invade the suspensory liga-
ment of the breast, it may shrink and pull the 
skin to form a depression like dimple

0: No
1: Yes

Orange Peel Appearance: The skin thickens and 
the follicle mouth dilate and sink in

0: No
1: Yes

Redness and Swelling of Skin: Mainly found in 
inflammatory breast carcinoma

0: No
1: Yes

Skin Ulcers: Advanced cancer may directly 
invade the skin

0: No
1: Yes

Tumor: Breast tumor 0: No
1: Yes

Breast deformation 0: No
1: Yes

Nipple Change: Patients with abnormal nipple 
changes, usually manifested as nipple erosion 
or nipple retraction

0: No change
1: Nipple erosion
2: Nipple retraction

Nipple Discharge: such as bloody nipple dis-
charge

0: No
1: Yes

Axillary Lymphadenectasis (AL): axillary lymph 
node is the earliest metastasis site of breast 
carcinoma. The number of metastases can 
guide treatment plans

0: No AL
1: Movable
2: Lymph node fusion
3: Parasternal lymph 

node metastasis

Swelling of Lymph Nodes: Benign neoplasm 
does not metastasize to distant sites

0: No distant metastasize
1: Distant metastasis

Tumor Position: The final detec-
tion of breast tumor relies on segmenta-
tion of tumor region to a great extent

0: Outer
1: Upper
2: Inner lower
3: Outer lower
4: Central zone

Tumor Number: Most of the breast carcinoma 
has single tumor in unilateral breast

0: Single-unilateral
1: Multiple-unilateral
2: Bilateral

Tumor Size: The size of the tumor refers to the 
area of the surrounding tissue infiltrated by the 
lesion. The measurement should be accurate 
to millimeters(mm)

0: Less than 20
1: Between 20 and 50
2: Greater than 50

Tumor Texture: Usually the texture of the carci-
noma is hard

0: Soft
1: Hard
2: Hard tough
3: Tough
4: Moderate

Tumor Border: Most breast carcinoma shows 
infiltrative growth with unclear borders. Some 
can be flat, surface is not smooth

0: Clear
1: Unclear
2: Invasive

Smooth Surface: It’s a sign of a benign tumor 0: No
1: Yes

Tumor Morphology: Benign is round or oval, 
malignant masses exhibit irregularity in shapes

0: Regular
1: Moderate
2: Irregular

Activity: Small tumor has good activity 0: Good
1: Moderate
2: Bad

Capsules: The Benign tumors often have 
capsules, while malignant tumors have no 
capsules or incomplete capsules

0: No envelope
1: Incomplete
2: Enveloped

Tenderness: It is mainly found in inflammatory 
breast carcinoma

0: No
1: Yes
2: Periodicity

Skin Adhesion: A sign of malignancy 0: No; 1: Yes - -
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of training samples. Notice that a medical record usu-
ally corresponds to many pathological images. Therefore, 
in the training phase, we used the index of pathological 
images as the guideline, and pairs of pathological images 
and structured EMR data were sent to the network for 
training. In other words, there are some duplicate struc-
tured EMR data. Aresta et  al. [23] concluded that the 
convolutional neural network (CNN) structure seems 
to be robust to small color variations of pathological 
images, and thus, color normalization was not essential 
to obtaining high performance. Therefore, unlike most 
of the current applications of deep learning methods to 
pathological images, we did not implement image nor-
malization preprocessing.

Pathological image feature representation
Since the cell morphology and tissue structures in patho-
logical images have various scales and high complexity, 
learning rich hierarchical features is critical for the fusion 
of multimodal data. CNNs have proven to be effective 

for feature representation learning. As the convolutional 
layers are stacked, the features extracted from the CNN 
gradually become rough. In other words, different convo-
lutional layers extract features with different degrees of 
abstraction. Inspired by these observations, we are trying 
to apply multilevel convolutional features to these chal-
lenging tasks. The multilevel features we used provide a 
richer features representation than the features that are 
extracted only from the last fully connected layer of the 
CNN. This phenomenon occurs because the multilevel 
convolutional layer retains additional information, such 
as local cell textures and tissue structures.

The VGG [24] is the most commonly used CNN 
which was developed by the visual geometry group 
(VGG) at Oxford university, since its powerful recog-
nition and feature extraction capabilities have been 
proved to be effective on large datasets. Based on a 
total of 3764 annotated pathological images from our 
dataset, we first trained the VGG16 network for breast 
cancer pathological image classification from scratch 

Fig. 3  The overall framework of our proposed richer fusion network. (1) In terms of structured data, we extracted 29 representative features from 
EMR, which are closely related to breast cancer diagnosis in medical theory. We use a denoising autoencoder to increase the 29-dimensional 
vector to 580 dimensions. Different from the general way of adding noise, we randomly discard a certain feature of the input layer as a way to 
add noise. (2) In terms of pathological image, the feature maps of the third, fourth and fifth convolution layers were extracted from the VGG16 
network (1280-dimensional) as richer feature representation; (3) Finally, the vector of 29D*20 dimensions extracted from the structured data was 
concatenated with the vector of 1280D dimensions extracted from the pathological images to form a vector of 1860D. This vector then goes 
through the next three full connection layers to get a classification result between benign and malignant breast cancer. The three full connection 
layers have 500, 100, and 2 nodes, respectively
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and then fixed the parameters of the model for the 
subsequent algorithm. The top of the VGG16 network 
structure that we used is shown in Fig. 4. We also tried 
to fine-tune the pretrained model to train the VGG16. 
When the amount of data is small, the pretraining 
model can indeed converge faster and achieve good 
results. However, the gap between natural images and 
pathological images was too large, and our own data-
set was already very large; therefore, we chose to train 
from scratch.

We extract the feature maps of the third, fourth and 
fifth convolution layers of the VGG16 network, and 
then use average pooling to compress the original 
56*56*256, 28*28*512 and 14*14*512 feature maps into 
1*256, 1*512 and 1*512 vectors. Then, the three vec-
tors are concatenated into a 1280-dimension vector, 
which was used as the richer feature representation 
of the pathological image. The specific fusion process 
is shown in Fig.  4. Note that our method of extract-
ing richer multilevel features can be easily adapted to 
any state-of-the-art CNN. In addition, we have also 
attempted to extract all feature maps of the VGG16 
(detailed in the experimental section), which does not 
provide a significant classification improvement, but it 
greatly increases the computation costs.

Structured EMR data feature representation
To minimize the information loss for each modality 
before data fusion, we need to increase the low-dimen-
sional modality instead of reducing the high-dimensional 
modality before data fusion. By this way, there will be 
enough information in each modality before information 
fusion, which fulfills a prerequisite for more sufficient 
information fusion. Meanwhile, in the practical applica-
tion scenarios of hospitals, missing data are inevitable. 
Therefore, it is necessary to propose new methods to deal 
with this problem in a targeted way.

We use denoising autoencoder as a way to increase 
the data dimension to achieve the goal of improving 
the effectiveness of the data fusion and the robustness 
of the methods. Autoencoder is a kind of unsupervised 
machine learning model whose output data are a recon-
struction of the input data, and it is often used for dimen-
sionality reduction. However, there has been little use of 
autoencoders or their variants to increase the dimension 
of data. Denoising autoencoder shares the same structure 
as autoencoder, but the input data are noisy versions of 
the raw data. To force the encoder and decoder to learn 
more robust feature representation and prevent them 
from simply learning the identity function mapping, the 
autoencoder is trained to reconstruct the raw input data 
from its noisy versions.

Because the features that we extracted from the struc-
tured data are 29 dimensions, there are 29 nodes in the 
input layer of the denoising autoencoder. After many 
experiments, the numbers of network nodes of the 
denoising autoencoder that we finally adopted are 29, 
290, 435, 580, 435, 290 and 29. The specific network 
structure diagram is shown in Fig. 5.

Generally, the number of hidden layer nodes of the 
autoencoder is smaller than that of the input layer. In 

Fig. 4  Schematic overview of the richer multilevel feature 
representation. We use average pooling on the final output of the 
third, fourth and fifth convolution layers of VGG16 network. Then, 
we concatenate the three vectors into a 1280D dimensional vector, 
which is used as the richer multilevel feature representation of the 
pathological image. The convolutional layer parameters are denoted 
as “Conv<number of convolutional layers>-<number of channels>” Fig. 5  Topology structure diagram of denoising autoencoder
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other words, during the training process, the autoen-
coder is forced to learn the internal features of data, and 
it obtains a reduced-dimensional representation of the 
input data. In this case, we can only use mean squared 
error (MSE) as the loss function. However, to increase 
the dimension of data, we set the number of nodes in the 
hidden layer to be larger than the number of nodes in 
the input layer. Furthermore, we also want to obtain the 
representative features in the input data. This approach 
requires us to add additional regularizations to prevent 
the model from only learning the input-to-output iden-
tity function mapping and not knowing any useful infor-
mation about the data distribution.

Therefore, we add the L1 norm as a regular term to 
the loss function. The L1 regularization term makes the 
parameters of the model be zero as much as possible, 
thus increasing the sparsity of the network. Finally, the 
total loss function L(w) of our autoencoder is as follows:

where ‘xi’ represents the original input data, ‘yi’ repre-
sents the reconstructed data of the autoencoder, ‘λ’ rep-
resents the regularization coefficient, and ‘w’ represents 
the parameter to be learned by the model.

In the training process, instead of adding noise to the 
original input data, we partially discard some features of 
the input samples. Specifically, we let the input data Draw 
pass through a dropout layer with a drop rate equal to 0.2, 
and the output data Dnoise after the dropout operation as 
the noise-added data. Then, (Draw, Dnoise) is used as a pair 
of training sample to train the denoising autoencoder 
until the network converges. This strategy generalizes our 
method to make an accurate prediction with absent of 
part structured data. Moreover, the experimental results 
show that the training method for partially missing data 
can not only alleviate the impact of missing data, but also 
reduce the risk of overfitting the entire algorithm model.

Multimodal data fusion
For each pathological image, we extracted a vector of 
1280 dimensions as the feature representation. Mean-
while, in order to ensure that different modalities can be 
fused at the same order of magnitude, 29 dimensions of 
structured EMR data are increased to 580 dimensions as 
the feature representation. After extracting the richer fea-
ture representation of each modality, we can combine the 
data of different modalities. The 580-dimensional feature 
representation of structured EMR data was concatenated 
with the 1280-dimensional feature representation vec-
tor that was extracted from a pathological image to form 
an 1860-dimensional vector. This vector then progresses 

(1)L(w) =
1

N

N
∑

i=1

(

f (xi;w)− yi
)2

+ ��w1�,

through the next three fully connected layers to obtain 
a classification result of benign or malignant breast can-
cer. The three fully connected layers have 500, 100, and 2 
nodes, respectively.

Finally, we introduce the training strategy of the entire 
richer fusion network. The entire network is divided 
into three phases for training. First, we independently 
train the denoising autoencoder. Then, we trained the 
VGG16 for the classification task of benign and malig-
nant pathological images until it converges. Finally, we 
fixed the model parameters of the denoising autoencoder 
and the VGG16 network and trained the fully connected 
neural network of the data fusion part. We searched for 
the corresponding EMR according to the index of each 
pathological image. Then, pairs of pathological images 
and structured EMR data were sent to the network for 
training.

Results and discussion
In this section, we will evaluate the performance of our 
proposed richer fusion network on our released dataset. 
We randomly selected 80% of the dataset to train the 
model, and the remaining 20% was used for testing. We 
mainly use the average accuracy to evaluate the perfor-
mance of our method. Apart from the average accuracy, 
the performance of a classifier can be further evaluated 
using the ROC curve and AUC. Assuming a patient 
belongs to the class, classify it as positive, otherwise clas-
sify it as negative, and the accuracy can be defined as 
follows: Accuracy = (TP + TN)/(TP + TN + FP + FN), 
where: TP (TN) = Number of True Positive (True Nega-
tive) classified patients; FP (FN) = Number of False Posi-
tive (False Negative) classified patients.

Accuracy comparison with previous methods
The performance of our proposed method is shown in 
Table  3. We compared the accuracy with those of the 

Table 3  Comparison of accuracy with previous methods

Methods Accuracy 
(%)

Bayramoglu et al. (two-class) [4] 83

Spanhol et al. (two-class) [25] 85

Araujo et al. (two-class) [26] 83.3

Rakhlin et al. [27] 87.2

Vang et al. [28] 87.5

Golatkar et al. [29] 85

Awan et al. [30] 83

Cao et al. [31] 87.1

Aresta et al. (BACH contest) [23] 87

Our proposed 92.9
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state-of-the-art methods. For the benign and malignant 
breast cancer classifications, our method achieved an 
average accuracy of 92.9%. We only compare our method 
to the methods that use single-mode pathological images. 
Since the structured data in clinical EMR only plays a 
supporting role, pathological images are the gold stand-
ard for final diagnoses in clinical practice. Therefore, few 
existing studies have only used the structured data in 
clinical EMR to diagnose breast cancer. Because some 
of the previously published papers reported 2-class clas-
sification, and others reported 4-class classification, to 
provide a comprehensive comparison, we compared the 
accuracy of our methods with those of all the methods.

Accuracy comparison using different dimensional fusion 
methods
For our proposed method of integrating low-dimensional 
structured data and high-dimensional unstructured data 
using different strategies, we compared their overall per-
formance using the average classification accuracy in 
Table 4. When only structured EMR data were used, the 
classification accuracy was not very high at only 78.5% 
on the test set. This is a reasonable result. Because the 
structured data from clinical EMR only plays a support-
ing role, pathological images are the gold standard for 
final diagnoses in clinical practice. Meanwhile, the use 
of structured EMR data alone is the only case that causes 
overfitting. Since the amount of structured EMR data is 
relatively small, the amount of pathological image data is 
large, especially after the data enhancement of the patho-
logical image.

Due to the rapid growth of deep learning in the field 
of computer vision, the accuracy of breast cancer classifi-
cation using only pathological images has been relatively 
high. Therefore, when we used the VGG16 to classify 
pathological images, we also achieved a relatively high 
accuracy of 83.6%.

Although the classification accuracy when using only 
structured EMR data is not high, we can leverage the 

structured EMR data to improve the accuracy of patho-
logical image classification. When integrating the feature 
representation of 29-dimensional structured EMR data 
and 29-dimensional pathological images, we achieved an 
average accuracy of 87.9%. We added a fully connected 
layer with 29 nodes at the end of the VGG network to 
obtain a 29-dimensional feature representation of the 
pathological images.

Further, we compared two different fusion methods for 
high-dimensional pathological images and low-dimen-
sional structured EMR data. The experimental results 
show that it is better to first reduce the feature repre-
sentation to 29-dimensional vector extracted from the 
last fully connected layer of the VGG16, and then fuse it 
with the 29-dimensional structured EMR data. This strat-
egy is better than directly integrating 29-dimensional 
structured EMR data with the 1280-dimensional feature 
representation of pathological images. This observation 
is because the dimension of the 29-dimensional vectors 
is too low compared to the 1280-dimensional vectors. 
In this fusion, the high-dimensional vectors completely 
overwhelm the low-dimensional ones. It should be noted 
that the feature representation of the 1280-dimensional 
pathological images refers to the vector that is extracted 
from the end of the VGG16 with a fully connected layer 
with 1280 nodes and does not refer to the richer feature 
representation that is obtained by extracting multiple 
convolutional layers of the VGG16. The purpose of this is 
to better control the variables and clarify the comparison 
experiments.

Finally, after attempting to amplify the different scaled 
feature dimensions using the denoising autoencoder, 
20-fold amplification of the structured EMR data yielded 
the best results. When the structured data are amplified 
10 times, the overall accuracy increased, but not to the 
maximum. The reason is that the amplification works, 
but it does not reach saturation. However, if the low-
dimensional structured data is amplified too much, the 
accuracy will decrease. One possible explanation is that 

Table 4  Comparison of accuracy using different dimensional fusion of structured data and pathological image

Method Accuracy (validation) (%) Accuracy 
(test) (%)

Structured data only (29D) 90.3 78.5

Pathological image only (VGG16) 84.5 83.6

Structured data (29D) + Pathological image (FC-29D) 88.2 87.9

Structured data (29D) + Pathological image (FC-1280D) 88.6 85.2

Structured data (29D*10) + Pathological image (FC-1280D) 89.2 88.6

Structured data (29D*20) + Pathological image (FC-1280D) 93.3 91.1

Structured data (29D*30) + Pathological image (FC-1280D) 92.5 89.2

Structured data (29D*40) + Pathological image (FC-1280D) 89.5 88.7



Page 11 of 14Yan et al. BMC Med Inform Decis Mak          (2021) 21:134 	

the most important information still exists in the path-
ological images, and the excessive amplification of the 
influence of structured EMR data will make the fusion 
worse. See Table  4 for a detailed comparison of experi-
mental results with different hyperparameter settings.

ROC comparison using different feature representation 
of pathological image
We can use the richer multilevel features that were 
extracted from the different convolutional layers of the 
VGG16 to further improve the classification accuracy of 
our method. After trying to fuse different levels of convo-
lutional layers, we obtained our best model by integrat-
ing structured EMR data and the third, fourth and fifth 
convolutional layers that were extracted from the VGG16 
network (1860 dimensions). The area under the curves 
(AUCs) [32] using different fusion methods based on the 
receiver operating characteristic (ROC) analysis is shown 
in Fig. 6.

As seen from the experimental results in Fig. 6, when 
only the last convolutional layer is used (i.e., the fifth con-
volutional layer), the final AUC of the entire network is 
0.90. Then, fusing the fourth and fifth convolutional lay-
ers achieved the AUC of 0.92. Finally, when the third, 
fourth, and fifth convolutional layers are integrated, the 
entire network achieves the best results, with an AUC of 
0.94. We also tried to fuse all the five convolutional lay-
ers of VGG16. However, when the first and second con-
volutional layers were also fused, the experimental results 
were unstable and were not significantly improved, 
but they significantly increased the computation costs. 

Therefore, we did not show the comparison results in the 
figure.

Accuracy comparison using different dimension raising 
methods
In this section, we compared different dimension raising 
methods to prove the effectiveness of using the denoising 
sparse autoencoder. Fig. 7 shows the overall classification 
accuracies that were obtained by different methods on 
the same dataset. In the overall model, except for the use 
of different dimension raising methods, the other experi-
mental settings were controlled as follows: Structured 
data (580) + Pathological image (3, 4, 5 convolution layer, 
1280D) + Fully connected layers (500, 100, 2).

In addition to the simple method of copying a certain 
percentage of the original data, the currently popular 
method of increasing the data dimension is to use the 
interactive features and polynomial features. For the 
original 29-dimensional feature in EMR, when the sec-
ond-order interactive and polynomial features are used, 
the feature dimension rises to 465 dimensions. To better 
control the variables, we also copied a certain percentage 
of this 465-dimensional vector, which increased it to 580 
dimensions. It can be seen from the experimental results 
that the interactive and polynomial features are better 
than copying features, and the overall accuracy of the 
model is improved by 0.9%. Because the interactive and 
polynomial features obtain a higher dimension and the 
mutual relationship term of the original feature by adding 

Fig. 6  ROC curves and AUC area were compared integrating 
different convolutional layers of VGG16. Except for the different, 
the other experimental settings were controlled as follows: 
Structured data (denoising autoencoder, 580D, 0.2 missing rate, L1 
regularization) + Fully connected layers (500, 100, 2)

Fig. 7  Comparative analysis using different dimension raising 
methods: Copying features, Interactive and Polynomial features (IP), 
AutoEncoder features (AE), Denoising AutoEncoder features (DAE), 
and Denoising AutoEncoder with L1 regularization features (DAE-L1). 
Except for the different dimension raising methods, the other 
experimental settings were controlled as follows: Structured data 
(580D) + Pathological image (3, 4, 5 convolution layer, 1280D) + Fully 
connected layers (500, 100, 2)
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some nonlinear transformations of the input data, the 
data after the dimension raising are more representative.

The accuracy of the method using the autoencoder fea-
ture is almost the same as that of copying features. Our 
explanation for the appearance of such a result is that the 
autoencoder is generally used for the dimension reduc-
tion task. For this task, because of the need to learn 
the low-dimensional representation of the input data, 
this constraint on the network architecture forces the 
encoder and decoder to not only learn an input to output 
identity function mapping. However, our goal is to use 
the autoencoder to increase the dimensions of the input 
data. Since there are many redundant nodes in the mid-
dle layers, this makes it possible for the autoencoder to 
simply copy the input to the output. That is, only an iden-
tity function mapping is learned.

The denoising autoencoder achieved better results than 
the three methods described earlier. To force the encoder 
and decoder to learn more robust feature representation 
and prevent it from simply learning the identity function 
mapping, the denoising autoencoder is trained to recon-
struct the raw input data from a missing version of it. 
Thus, the denoising autoencoder must learn to recover 
missing data to reconstruct the input information that 
has not been corrupted by the missing data. Further, we 
continue to increase the constraints. When we add the 
L1 regularization to the denoising autoencoder, our over-
all model achieves the best results. This result is because 
the L1 regularization term makes the parameters of the 
model to be zero as much as possible, thus increasing the 
sparsity constraint of the network. The denoising autoen-
coder combined with the L1 regularization is also called 
the denoising sparse autoencoder.

Finally, it should be emphasized that the denoising 
autoencoder is naturally suitable for solving the prob-
lem of partially missing data, which often happens in 
real scenarios. This is a problem that cannot be solved by 
copying features or by using interactive and polynomial 
features or autoencoder features.

Accuracy comparison using different missing rates
We also compared the performance of the denoising 
autoencoder using different missing data rates for the 
original input data. In the training process, instead of 
adding noise to the original input data, we partially dis-
card some features of the input samples. Specifically, we 
let the input data pass through a dropout layer at a certain 
drop rate, and the output data after the dropout opera-
tion as the missing data. The missing data are completely 
random. When the structured data are not missing at 
all, the situation is the same as the experimental setting 
in section  5.4: Structured data (denoising autoencoder, 
580D) + Pathological image (3, 4, 5 convolution layer, 

1280D). It can be seen from the experimental results (as 
shown in Fig. 8) that the average accuracy is the highest 
when the missing rate is 0.2. When the missing rate is too 
high, too much information is lost in the structured data. 
At this time, it is difficult to reconstruct the original input 
data from the noisy input data.

Conclusions
In this paper, we proposed a new richer fusion network 
for breast cancer classification based on pathological 
image and structured EMR data. Or from another per-
spective, we utilized a new method to integrate highly 
heterogeneous data to leverage structured EMR data 
to improve pathological image classification accuracy. 
Through comprehensive evaluation and comparison, 
our proposed method is superior to the state-of-the-
art method. Therefore, the application of breast cancer 
automatic classification algorithm in clinical practice 
becomes possible. Due to the generality of the proposed 
fusion workflow, it can be straightforwardly extended to 
other fusion of structured data and unstructured data.

Meanwhile, we released a new dataset with patho-
logical images and pairwise multiple types of features 
extracted from EMR for breast cancer classification 
research. We hope this dataset can be used as a bench-
mark to promote the wider application of machine learn-
ing methods in the field of breast cancer research.
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