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Abstract

Background: Minorities, including mainland Puerto Ricans, are impacted disproportionally by 

Alzheimer’s disease (AD), dementia, and cognitive decline. Studying blood metabolomics in this 

population has the potential to probe the biological underpinnings of this health disparity.

Objective: We performed a comprehensive analysis of circulating plasma metabolites in relation 

to cognitive function in 736 participants from the Boston Puerto Rican Health Study (BPRHS) 

who underwent untargeted mass-spectrometry based metabolomics analysis and had undergone a 

battery of in-person cognitive testing at baseline.

Methods: After relevant exclusions, 621 metabolites were examined. We used multivariable 

regression, adjusted for age, sex, education, apolipoprotein E genotype, smoking, and 

Mediterranean dietary pattern, to identify metabolites related to global cognitive function in our 

cohort. LASSO machine learning was used in a complementary analysis to identify metabolites 

that could discriminate good from poor extremes of cognition. We also conducted sensitivity 
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analyses: restricted to participants without diabetes, and to participants with good adherence to 

Mediterranean diet.

Results: Of 621 metabolites, FDR corrected (p <0.05) multivariable linear regression identified 3 

metabolites positively, and 10 negatively, associated with cognitive function in the BPRHS. In a 

combination of FDR-corrected linear regression, logistic regression regularized via LASSO, and 

sensitivity analyses restricted to participants without diabetes, and with good adherence to the 

Mediterranean diet, β-cryptoxanthin plasma concentration was consistently associated with better 

cognitive function and N-acetylisoleucine and tyramine O-sulfate concentrations were consistently 

associated with worse cognitive function.

Conclusion: This untargeted metabolomics study identified potential biomarkers for cognitive 

function in a cohort of Puerto Rican older adults.
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INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease in the world, 

affecting more than 5 million Americans and more than 35 million people worldwide [1]. To 

date, no therapy exists to prevent or cure AD [1]. Because individuals can benefit 

significantly from early detection and intervention, biomarkers for cognitive decline, 

potentially predictive of AD, are of intense interest. Studies have shown racial disparities in 

AD, potentially indicating that some of the mechanisms of the disorder may be race-specific 

[2]. US Latinos suffer a disproportionate burden of cognitive decline and are at 

approximately double the risk of AD, compared to non-Hispanic whites [3–6]. Further, 

within populations of Hispanic Americans, Puerto Ricans, the second largest Hispanic group 

in the United States, are particularly vulnerable to cognitive impairment and decline, with 

approximately twice the likelihood of Mexican Americans to suffer from impaired cognition 

[7]. In 2015, an Institute of Medicine report called for expansion of research on risk factors 

for cognitive aging, especially in high risk and underserved populations [8].

The blood metabolome is composed of metabolites including amino acids, fatty acids, lipo-

proteins, and other small molecules. It is influenced by a combination of genetic 

predisposition, diet, environmental and lifestyle exposures, the gut microbiome, and 

medication use, among other factors. Prior studies have linked alterations in the blood 

metabolome to a variety of chronic conditions, including obesity [9], diabetes [10], 

cardiovascular disease [11], Parkinson’s disease [12], amyotrophic lateral sclerosis [13], and 

others [14, 15]. Several studies have investigated the role of blood metabolomics in AD, 

mild cognitive impairment, and cognitive decline [16–19]. While one study has been 

conducted in African Americans [16], we know of no study to date which has examined the 

association of blood metabolites with cognitive function in Puerto Ricans.

Therefore, we performed a comprehensive analysis of circulating plasma metabolites in 

relation to cognitive function in a cohort of Boston area Puerto Rican older adults. 
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Examining the blood metabolome in relation to cognitive function may lead to the 

development of biomarkers for cognitive decline and/or AD. As mainland Puerto Ricans are 

impacted disproportionally by AD and dementia [3–6], studying blood metabolomics in this 

population also has the potential to probe the biological underpinnings of this health 

disparity.

MATERIALS AND METHODS

The Boston Puerto Rican Health Study (BPRHS) is an ongoing longitudinal study of Puerto 

Rican adults, aged 45 to 75 years at baseline, residing in the greater Boston area [20]. 

Participants for the BPRHS were recruited from areas of high Hispanic density in the Boston 

metropolitan area, using year 2000 Census data. Households with at least one Puerto Rican 

adult, aged 45 to 75 years, were identified and one eligible adult per household was 

randomly selected for participation (specifics of the study and recruitment methodology are 

described in detail elsewhere) [20]. Briefly, recruitment occurred through door-to-door 

enumeration (84%), community activities (8%), and referrals from community partners 

and/or through media or flyers placed in the community (8%). Exclusion criteria included 

inability to answer questions due to serious health conditions, plans to move from the 

Greater Boston area within two years and/or a Mini-Mental State Examination (MMSE) 

score < 10. At baseline (2004-2009), 1,499 participants were enrolled, and participated in an 

at-home interview with bilingual interviewers. Study visits took ~4–5h, and were divided 

into two visits, when preferred (≈40%). Questionnaires included demographics, 

socioeconomic status (SES), health and health behaviors, functional limitations, and 

depressive symptomatology. A full battery of cognitive tests, described below, was 

administered. Dietary intake was interviewer administered using an ethnic-specific validated 

food frequency questionnaire (FFQ). All instruments were validated and translated for the 

Hispanic population, and were pretested and adapted before use. Blood pressure and 

anthropometrics (height, weight, waist circumference, and hip circumference) were 

measured. Blood samples were drawn after a 12 h fast, and immediately taken to the Human 

Nutrition Research Center on Aging at Tufts University in coolers with dry ice; cooled to 

4°C and separated within 2 h in a refrigerated centrifuge. Plasma aliquots were saved in 1 

mL cryogenic, screw-cap tubes, and stored at −80°C.

Cognitive assessment

A battery of cognitive tests was administered in Spanish or English (98% Spanish) at 

baseline by trained research assistants [21], including: 1) MMSE (a test of general 

cognition) [22]; a 16-word list learning test [23] that includes 2) word list learning (sum of 

words recalled over 5 attempts), 3) word recognition, and 4) percentage retention (number of 

words recalled after a delay relative to number of correct responses on the fifth word list 

learning trial); 5) digit span forward and backward [23] (a test of working memory); 6) 

Stroop test (executive function) [23]; 7) verbal fluency [23] (naming as many words as 

possible starting with a given letter); 8) clock drawing [24]; and 9) figure copying (visuo-

spatial function and organization) [25]. A global cognitive function score was derived as the 

mean of the z-scores for each of the following cognitive scores: MMSE, world list learning, 

recognition, percentage retention, Stroop, letter fluency, digit span forward and backward, 
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clock drawing, and weighted figure copying. The global cognitive function score was used 

as the primary outcome in the analyses.

Analytic cohort for untargeted metabolomic analysis

Metabolomic profiling was performed on plasma collected at baseline. Of the 1,449 

participants in the baseline BPRHS cohort, 736 had metabolomic profiling performed 

(Supplementary Figure 1). Samples for metabolomic profiling were selected at random, with 

the exception of 240 samples which were selected as part of a diabetes case-control study (n 
= 120 diabetes cases and n = 120 controls), who were also included in this study. The 

missing indicator method [26] was used to account for missing APOE genotype, BMI, 

smoking, and Mediterranean diet in regression analyses. All participants had complete data 

on age, sex, and education.

Metabolomic profiling

Metabolomic profiling was performed by Metabolon (Metabolon, Inc., Morrisville, NC) 

using previously described proprietary procedures [27]. The Metabolon metabolomics 

platform uses liquid chromatography-MS/MS methods with positive ion and negative ion 

modes (Waters ACQUITY ultra-performance liquid chromatography; Thermo Scientific Q-

Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray 

ionization source and Orbitrap mass analyzer operated at 35,000 mass resolution). Four 

sampling modes were used to quantify metabolites: 1) acidic positive ion (optimized for 

hydrophilic molecules); 2) acidic positive ion (optimized for hydrophobic molecules); 3) 

basic negative ion; and 4) negative ionization from eluent of a HILIC column. Raw data 

were extracted and proprietary methods used to identify metabolite peaks using over 3,300 

commercially available purified molecules as reference. For each metabolite, relative 

metabolite concentration is reported as a normalized area under the curve. The median 

relative standard deviation for internal standards was 5%, this reflects a measure of 

instrument variability similar to a coefficient of variation.

In the dataset provided by Metabolon, 1,303 metabolites were identified, of which 943 were 

annotated and 360 were unknown. We restricted our analyses to the annotated metabolites (n 
= 943), then excluded xenobiotics (n = 229), to focus our conclusions on biological function. 

We further restricted our analyses to metabolites that had reported values for ≥80% of the 

participants, and then imputed missing values for individual metabolites as 50% of the 

minimum value of that metabolite across all other participants with non-missing values. 

After imputation, metabolite values were log-transformed and Pareto scaled [28]. 621 

metabolites were included in the final analyses (Supplementary Figure 1).

We analyzed the cross-sectional association between each metabolite and linear global 

cognitive function in independent linear models, adjusting for age in years, sex, education 

(8th grade or below, 9th-12th grade, high school or above), BMI (normal, overweight, 

obese), smoking (never, past, current), APOE 4 (presence or absence of APOE ε4 allele), 

and Mediterranean diet score (1–9) among all 736 BPRHS participants with metabolite data. 

Dietary quality has been shown to be related to cognition in our [29] and other cohorts [30, 

31] and impacts the composition of the metabolome [30]. Mediterranean diet was the dietary 
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pattern most strongly related to cognition in our cohort [29]. We used the Benjamini-

Hochberg false discovery rate (FDR), 5% threshold, to adjust for multiple hypothesis testing 

(type 1 error).

In complementary analyses, we conducted penalized logistic regression analyses to select a 

set of metabolites that could discriminate those with poor (<=1SD below the mean) versus 

good cognition (> = 1SD above the mean) in our cohort. All metabolites were included in 

the same model, penalized by a Least Absolute Shrinkage and Selection Operator (LASSO) 

penalty term. We computed the area under the curve in receiver operating characteristic 

analyses (AUROC) using unconditional logistic regression, including the metabolites that 

were retained in LASSO, performed with 10-fold cross-validation, after a training (50%) and 

validation (50%) test split.

Sensitivity analyses

We conducted additional sensitivity analyses for all main analyses: a) restricted to 

participants without diabetes (n = 453); b) restricted to participants who had higher levels of 

adherence to Mediterranean diet (Mediterranean diet score 4 or above) (n = 329); c) 

participants aged 60 or more years (n = 265) and d. those known to not carry the APOE ε4 

genotype (n = 160, due to high extent of missing data on APOE in our cohort).

We also conducted sensitivity analyses among only participants who had complete data on 

all covariates (N = 578).

RESULTS

736 participants were included in the metabolomics study. The study population was 73.0% 

female, had mean age of 57.9 years, mean MMSE score of 23.3, and 23.0% were current 

smokers (Table 1). Participants were more likely to be carriers of at least one copy of the ε4 

allele of the APOE gene, but were otherwise comparable to those who did not undergo 

profiling (Table 1).

Identification of individual metabolites associated with poor cognition

In linear models adjusted for age, sex, education, BMI, smoking, APOE genotype, and 

Mediterranean diet, 13 metabolites were significantly (p <0.05) associated with cognitive 

function as a continuous variable, after FDR correction for multiple comparisons. The top 

metabolites positively associated with cognition were the carbohydrate 1,5-anhydroglucitol 

(1,5-AG) (Coef: 0.078; 95% CI 0.041, 0.115; FDR adj. p: 0.00587), the carotenoid β-

cryptoxanthin (Coef: 0. 0.079; 95% CI: 0.040, 0.117; FDR adj. p: 0.00859) and the lipid 1-

stearoyl-GPI (18 : 0) (Coef: 0.108; 95% CI: 0.053, 0.164; FDR adj.p: 0.00921).

In sensitivity analyses restricted to participants without diabetes, of the above metabolites, 

only β-cryptoxanthin was significantly associated with cognitive function (Coef: 0.11; 95% 

CI: 0.062, 0.15; FDR adj. p: 0.003). No metabolites were positively associated with 

cognition when analyses were restricted to participants with a Mediterranean diet score of 5 

or above.
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Metabolites inversely associated with cognition in these analyses were primarily 

carbohydrates and amino acids and included the carbohydrates glucose (Coef: −0.159; 95% 

CI: −0.227, −0.091; FDR adj. p: 0.00188), mannose (Coef: −0.140; 95% CI: −0.203, −0.078; 

FDR adj.p: 0.00241), mannitol/sorbitol (Coef: −0.071; 95% CI: −0.111, −0.031; FDR adj.p: 

0.0316), and ribitol (Coef: −0.108; 95% CI: −0.171, −0.046; FDR adj.p: 0.0368), and the 

amino acids and N-acetylisoleucine (Coef: −0.125; 95% CI: −0.178, −0.072; FDR adj.p: 

0.00188), tyramine O-sulfate (Coef: −0.066; 95% CI: −0.099, −0.033; FDR adj.p: 0.00921), 

N-acetylleucine (Coef: −0.112; 95% CI: −0.169, −0.056; FDR adj.p: 0.00921), as well as 

vitamin E metabolite gamma-CEHC-glucuronide (Coef: −0.076; 95% CI: −0.115, −0.036; 

FDR adj.p: 0.0118). Glucose was the metabolite most strongly negatively associated with 

cognition among all participants, followed by N-acetylisoleucine. Supplementary Table 1 

provides the full list of metabolite associations with cognitive function in this study.

Associations between the vitamin E metabolite gamma-CEHC-glucuronide and cognition 

remained significant in both the sensitivity analyses restricted to participants without 

diabetes (Coef: −0.094; 95% CI: −0.140, −0.047; FDR adj.p: 0.024), and in participants with 

high adherence to Mediterranean diet (Coef: −0.099; 95% CI: −0.147, −0.050; FDR adj.p: 

0.020). Associations with N-actylisoleucine remained significant in participants with high 

adherence to Mediterranean diet (Coef: −0.17; 95% CI: −0.24, −0.010; FDR adj.p: 0.002). 

These sensitivity analyses are shown in Table 2.

A heatmap in Fig. 1 shows the inter-correlations between the metabolites associated with 

cognition in FDR adjusted analyses. The strongest positive correlations were observed 

between glucose and mannose (r = 0.75 (p <0.05)) which, as expected, were significantly 

inversely correlated with the top metabolite positively associated with cognition in these 

analyses:1,5-anhydroglucitol (1,5-AG) (r = −0.71 for glucose and −0.61 for mannose; p < 

0.05 for both). The second metabolite, after glucose, mostly strongly negatively associated 

with cognition in these analyses, N-acetylisoleucine, was correlated with other negatively 

associated metabolites, N-acetylleucine (r = 0.54, p < 0.05), and 5-methylthioadenosine 

(MTA) (r = 0.30, p < 0.05).

LASSO penalized conditional logistic regression

In complementary penalized logistic regression analyses, with a LASSO penalty term, 18 

metabolites were positively associated with good (≥1SD above the mean, n = 112) versus 

poor (≤1SD below the mean, n = 104) cognition among all participants with metabolomic 

data (Table 3). The the amino acid 4-methoxyphenol sulfate was most strongly associated 

with cognition (βall: 0.631), followed by the lipids N-stearoylserine (βall: 0.582), and 

eicosapentaenoate (EPA; 20 : 5n3) (βall: 0.494). Of the metabolites identified as significantly 

positively associated with cognition in our FDR-corrected linear models, the carotenoid 

beta-cryptoxanthin, was also identified via LASSO. LASSO retained 33 metabolites 

associated with poor (≤1SD below the mean) cognition. The metabolite most strongly 

associated with poor cognition via LASSO was the amino acid N-acetylisoleucine (βall: 

−0.660). This metabolite had also been identified as associated with worse cognitive 

function in our FDR-corrected linear regression. Other metabolites identified by LASSO and 

also significantly associated with cognitive function in FDR-corrected regression included 
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tyramine O-sulfate (βall: −0.256), N-acetylleucine (βall: −0.080), and glucose (βall: −0.063). 

In the AUROC analysis, including all metabolites as individual variables in the model, with 

a 50% validation/training split, the AUC of the model was 0.754 (95% CI: 0.662, 0.845). 

The ROC curve is shown in Supplementary Figure 2.

Sensitivity analyses

When the LASSO regression was repeated on the subset of participants without diabetes, 

four of the metabolites identified in full-cohort LASSO remained associated with good 

cognition: the amino acid 4-methoxyphenol sulfate (βnodiabetes: 0.073), EPA (20: 5n3) 

(βnodiabetes: 0.051), 12,13-DiHOME (βnodiabetes: 0.088), and β-cryptoxanthin (βnodiabetes: 

0.195). Of the metabolites identified in full sample LASSO as related to poor cognition, 

eight were retained in analyses restricted to those without diabetes: N-acetylisoleucine 

(βnodiabetes: −0.287), glycosyl-N-(2-hydroxynervonoyl)-sphingosine (d18 : 1/24: 1(2OH)) 

(βnodiabetes: −0.051), tyramine O-sulfate (βnodiabetes: −0.053), linoleoyl-arachidonoyl-

glycerol (18:2/20: 4) (βnodiabetes: −0.168), sucrose (βnodiabetes: −0.070), 1-oleoyl-2-

arachidonoyl-GPE (18 : 1/20: 4) (βnodiabetes: −0.092), acisoga (βnodiabetes: −0.372), and N-

acetylleucine (βnodiabetes: −0.122) were also retained in the full analyses. In the AUROC 

analysis among those without diabetes, with a 50% validation/training split, the AUC of the 

model was 0.734 (95% CI: 0.614, 0.854).

Likewise, in analyses restricted to participants who scored 4 or above on the Mediterranean 

diet score, positive associations with 4-methoxyphenol sulfate, N-stearoylserine, EPA (20 : 

5n3), 1-linoleoyl-2-linolenoyl-GPC(18 : 2/18 : 3), tryptophan, and methylmalonate (MMA) 

remained, as did inverse associations with N-acetylisoleucine, sphingomyelin (d18 : 2/16 : 0, 

d18: 1/16:1), (N(1)+N(8))-acetylspermidine, glycosyl-N-(2-hydroxynervonoyl)-sphingosine 

(d18 : 1/24 : 1(2OH)), sucrose, glycerol 3-phosphate, and 1-oleoyl-2-arachidonoyl-GPE 

(18 : 1/20 : 4)

Figure 2 shows the mean standardized levels, in the full sample, of the metabolites 

consistently associated with good or poor cognition, those metabolites were retained in all 

three LASSO analyses: LASSO analysis in the full sample, in those without diabetes, and in 

those with good adherence to Mediterranean diet (also highlighted in bold in Table 3).

In secondary analyses restricted to participants who were not carriers of the APOE ε4 allele, 

only glucose was inversely associated with cognitive function in FDR-corrected 

multivariable linear regression (β = −0.18 (95% CI: −0.267, −0.093); p = 0.036), and no 

metabolites were positively associated with cognitive function. Among participants who 

were not carriers of the APOE ε4 allele, LASSO resulted in 12 positive associations, 

including with 4-methoxyphenol sulfate, EPA (20 : 5n3), 12,13-DiHOME, and β-

cryptoxanthin, and 15 negative associations, including N-acetylisoleucine, glycosyl-N-(2-

hydroxynervonoyl)-sphingosine (d18 : 1/24 : 1(2OH)), tyramine O-sulfate, linoleoyl-

arachidonoyl-glycerol, sucrose, 1-oleoyl-2-arachidonoyl-GPE (18 : 1/20 : 4), and asocoga, 

which were also identified in main-cohort analyses. In sensitivity analyses restricted to 

participants 60 years or older at baseline, in FDR-corrected linear regression analyses, we 

confirmed negative associations with N-acetylisoleucine (β = −0.144 (95% CI: −0.212, 

−0.075); p = 0.028) and mannose (β = −0.167 (95% CI: −0.253, −0.082); p = 0.043).
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In sensitivity analyses restricted to participants with complete data on all model covariates 

(N = 578) only N-acetylisoleucine was significantly associated with cognitive function (β = 

−0.108; 95% CI: −0.183, −0.032); p(FDR) = 0.0338) after FDR correction. All the other 

metabolites significantly associated with cognition in our main analyses, were also 

associated with cognition without FDR correction in these sensitivity analyses. These 

sensitivity analyses are presented in Supplementary Table 2.

DISCUSSION

In this group of Puerto Rican older adults, multivariable linear regression with FDR 

adjustment and LASSO identified metabolites that were significantly associated with 

cognitive function. β-cryptoxanthin was consistently associated with better cognition in our 

cohort across all analyses. β-cryptoxanthin was significantly associated with cognitive 

function in multivariable-models adjusted for covariates, and was retained in LASSO models 

as predictive of good cognition, in the full sample, as well as in analyses restricted to 

participants without diabetes. β-cryptoxanthin is a pre-vitamin A carotenoid and antioxidant 

found in fruits and vegetables, including oranges, tangerines, and persimmons [32, 33]. 

Carotenoid intakes and concentrations have been associated with better cognitive function in 

prior studies [34, 35]. Marginal deficiency of vitamin A has been associated with worse 

cognition in AD patients, and vitamin A supplementation has been shown to improve 

cognitive function [36].

EPA (20 : 5n3) was consistently associated with better cognitive function in LASSO 

analyses of the full sample, and in the sub-samples restricted to 1) participants diabetes, and 

2) those with good adherence to Mediterranean diet. However, it was not significantly 

associated with cognitive function in FDR corrected linear models. EPA dietary supplements 

[37], as well as blood concentration of this metabolite, have been associated with better 

cognitive function [38], increased brain volume, and slower brain aging [39–41]. Fish 

consumption, a major dietary source of omega-3 fatty acids such as EPA, has also been 

linked with better cognitive outcomes [42].

Several of the metabolites we identified as beneficial for cognitive function (β-

cryptoxanthin, EPA) have been previously identified as markers of a healthy dietary pattern 

in US postmenopausal women [30]. This supports an important role for healthy diet in 

cognitive health. The associations reported here were adjusted for Mediterranean diet score, 

and this did not meaningfully alter the associations between most of the metabolites with 

cognitive function. Likewise, analyses restricted to participants who had a Mediterranean 

diet score of 4 or above, confirmed many of the results of our main analyses.

The metabolites identified in our study strongly implicate diabetes, metabolic syndrome, and 

insulin resistance as key factors linked to cognition. Our study cohort is a disadvantaged 

minority population with very high rates of metabolic syndrome [43], diabetes and obesity. 

Metabolic syndrome has been associated with an increased risk of dementia in several 

studies [44, 45]. Type II diabetes and impaired fasting glucose has been linked with 

increased risk of cognitive impairment [46] and dementia, particularly in older women [47], 

who make up the majority of this study.
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Many of the metabolites identified in this study as significantly associated with cognitive 

function reflect the high prevalence of diabetes, poor glycemic control, obesity, and 

metabolic syndrome in our population and underscore the potential role of these factors in 

dementia. Full-sample FDR adjusted linear regression analyses identified the carbohydrate 

1,5-anydroglucitol (1,5-AG), and the lipids 1-stearoyl-GPI, as associated with better 

cognition. 1,5-anydroglucitol (1,5-AG), the metabolite most strongly associated with 

cognitive function, is a short-term marker of glycemic control [48,49]. Circulating 1,5-

anydroglucitol (1,5-AG) has been shown to drop in response to rising glucose concentration 

[49]. Correspondingly, in our study, 1,5-anydroglucitol (1,5-AG) concentration was strongly 

inversely correlated with glucose (Fig. 1), and with other carbohydrates, such as mannose, 

mannitol/sorbitol, and ribitol. 1-stearoyl-GPI is a phospholipid that has been associated with 

measures of insulin resistance and insulin secretion [50]. Of these metabolites, only β-

cryptoxanthin remained significantly associated with cognition among participants without 

diabetes (Table 2).

N-acetylisoleucine was the metabolite most consistently associated with poor cognition in 

our cohort, both in FDR adjusted linear models and in LASSO, as well as in participants 

without diabetes (LASSO only). N-acetylisoleucine is an amino acid derivative of isoleucine 

and is part of the Leucine, Isoleucine, and Valine metabolism (Branched Chain Amino 

Acids/BCAA) pathway. Other metabolites in the BCAA pathway, including N-acetylleucine, 

3-methylglutaconate (an intermediate in the leucine degradation pathway), and beta-

hydroxyisovalerate (a biproduct of the leucine degradation pathway), were also negatively 

associated with cognitive function. BCAA play important roles in muscle metabolism as 

building blocks for proteins, as well as in insulin metabolism. In mice, leucine 

supplementation has been linked with improved glucose homeostasis, insulin metabolism, 

and satiety [51]. Prior studies have reported reduced BCAA in patients with dementia and 

AD [19], and inverse correlation between valine concentration and cognition [52].

Other epidemiological studies have consistently reported that elevated BCAA are associated 

with higher risk of type 2 diabetes [53, 54] and insulin resistance [55], and that they change 

post-treatment [56]. Mice fed a diet enriched in BCAA showed higher tau neuropathology 

and performed worse in cognitive tests [57]. Furthermore, many of the metabolites 

negatively associated with cognition in our main analyses were carbohydrates, including 

glucose, and these associations did not remain in analyses restricted to participants without 

diabetes (ex: lactate, glucose, mannose, ribitol). Our study thus supports a potential role for 

BCAA metabolism in cognitive function. It also implicates diabetes, metabolic syndrome, 

and insulin resistance as key factors linked to cognition and suggests potential metabolites 

that may be responsible for these associations.

Whether the metabolites significantly related to cognitive function in our study, such as 

those in the BCAA pathway, 1,5-anydroglucitol (1,5-AG), and the carbohydrates glucose, 

mannose, ribitol serve as markers of type II diabetes, metabolic syndrome, and obesity or 

whether they are causally involved in pathways between these conditions and poor cognitive 

function/dementia should be explored in further studies.
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Our analysis relied on a subset of BPRHS participants with metabolomic profiling. These 

participants were similar to those who did not have this (Table 1). The study lacked a 

validation cohort and was cross sectional in nature; thus, it will be important to see these 

results validated in other cohorts, as well as in future longitudinal studies. Nevertheless, the 

metabolites identified in this study support prior associations observed in other cohorts, 

lending external validity to our findings.

Due to the cross-sectional nature of this study, factors related to the establishment of 

cognitive reserve may have impacted the results. Our population is socioeconomically 

disadvantaged and has low levels of education, and generally reports occupations with low 

levels of cognitive complexity (personal communication) and thus potentially low 

opportunities for building cognitive reserve. We have attempted to address this concern by 

adjusting our analyses for known covariates such as education, diet, smoking and others, as 

well as conducting stratified analyses by these variables. We also conducted sensitivity 

analyses among participants without diabetes, among older participants (65+) and those 

known to be carriers of the APOE ε4 genotype, to identify metabolites most relevant in 

older age and among participants with a genetic predisposition to AD. Power to detect 

association was limited in these latter analyses, due to the small sample sizes, limiting our 

ability to identify metabolites significantly associated with cognition in these subgroups. 

Because of substantial missing data on some covariates, particularly APOE, and the 

Mediterranean diet score, we used the missing indicator method to address missingness in 

covariates in order to maximize the sample size in our analyses. This method makes 

assumptions about similarity of participants with missing data and their relationships with 

exposure and outcome which may not hold in our study. We thus conducted complete-case 

sensitivity analyses, which had a substantially lower number of participants and thus less 

power to identify metabolite-cognition relationships, but generally agreed with our main 

findings.

In summary, in this study of Boston area Puerto Rican older adults, we identified multiple 

metabolites associated with cognitive function. β-cryptoxanthin was consistently associated 

with better cognition, and mannose with worse cognition in our cohort. Several of the 

metabolites identified in our study implicate BCAA metabolism, insulin and glucose 

regulation, metabolic syndrome, and diabetes in relation to cognitive function. Future 

longitudinal studies in diverse populations are needed to confirm and refine this associations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Correlation matrix of cognition–associated metabolites identified among all BPHRS 

participants (n = 736).
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Fig. 2. 
Mean standardized levels of cognition-associated metabolites identified via LASSO, 

comparing participants with the lowest (≤1SD below the mean) versus the highest (≥1SD 

above the mean) of cognitive function (n = 736).
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