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Introduction

Delinquent behaviour is a major psychiatric and public safety 
issue with severe consequences for individuals and for soci­
ety.1 Several longitudinal studies have advanced our etio­
logical understanding of delinquent behaviour and helped to 
identify various relevant risk factors for these behaviours, in­
cluding age, sex, criminal history, drug use and behavioural 
problems.2 However, despite advances in knowledge about 
the involvement of neurobiological mechanisms in the etiol­
ogy of delinquency, only a few studies have integrated 
neurobiological measures with longitudinal prediction.

One of these advances is our knowledge of the relation­
ship between the autonomic nervous system and delin­
quency. Resting heart rate is arguably the best-replicated 
physiologic correlate of antisocial behaviour.3,4 Several 
decades ago, Wadsworth and colleagues5 demonstrated 
that lower childhood heart rate predicted delinquency. Sim­
ilarly, Raine and colleagues6 related lower heart rate to anti­

social behaviour in the general population and high-risk 
samples. A seminal study in Swedish conscripts provided 
strong evidence that heart rate at age 18 is longitudinally 
related to violent and nonviolent delinquency.7 Heart rate 
variability, as measured by respiratory sinus arrhythmia, is 
a related neurobiological measure associated with antisocial 
behaviour, albeit less consistently (e.g., Beauchaine and col­
leagues8 and Dietrich and colleagues9). More recently, func­
tional imaging research has been used in cross-sectional 
studies to compare brain activity between antisocial cases 
and controls. These studies have shown that prefrontal 
brain functioning seems to be impaired in antisocial behav­
iour, specifically in the orbitofrontal, dorsolateral frontal 
and anterior cingulate cortex (ACC; see Yang and col­
leagues10). Finally, a series of electrophysiological studies 
compared evoked potential in studies of delinquent popu­
lations and found aberrant brain responses to errors in 
delinquent individuals.11,12 However, it is unclear whether 
these neurobiological variables independently predict 
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Background: Neurobiological measures have been associated with delinquent behaviour, but little is known about the predictive power 
of these measures for criminal recidivism and whether they have incremental value over and above demographic and behavioural meas­
ures. This study examined whether selected measures of autonomic functioning, functional neuroimaging and electroencephalography 
predict overall and serious recidivism in a sample of 127 delinquent young adults. Methods: We assessed demographics; education and 
intelligence; previous delinquency and drug use; behavioural traits, including aggression and psychopathy; and neurobiological meas­
ures, including heart rate, heart rate variability, functional brain activity during an inhibition task and 2 electroencephalographic measures 
of error-processing. We tested longitudinal associations with recidivism using Cox proportional hazard models and predictive power 
using C-indexes. Results: Past offences, long-term cannabis use and reactive aggression were strongly associated with recidivism, as 
were resting heart rate and error-processing. In the predictive model, demographics, past delinquency, drug use and behavioural traits 
had moderate predictive power for overall and for serious recidivism (C-index over 30 months [fraction of pairs in the data, where the 
higher observed survival time was correctly predicted]: C30 = 0.68 and 0.75, respectively). Neurobiological measures significantly 
improved predictive power (C30 = 0.72 for overall recidivism and C30 = 0.80 for serious recidivism). Limitations: Findings cannot be 
generalized to females, and follow-up was limited to 4 years. Conclusion: Demographic and behavioural characteristics longitudinally 
predicted recidivism in delinquent male young adults, and neurobiological measures improved the models. This led to good predictive 
function, particularly for serious recidivism. Importantly, the most feasible measures (autonomic functioning and electroencephalography) 
proved to be useful neurobiological predictors.
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delinquency. This knowledge is important for optimizing risk 
assessment and tailoring treatment for at-risk populations.

Although some studies have associated neurobiological 
measures with delinquent behaviour, few have employed 
such measures in formal prediction models to make adequate 
and reliable prognoses. In recent years, a few epidemiological 
studies have assessed the validity and utility of prediction 
models for delinquent behaviour using a formal approach. 
Aharoni and colleagues13 employed functional MRI (fMRI) in 
criminal offenders (n = 96) to investigate whether a neurobio­
logical measure of inhibition (i.e., functional brain activity dur­
ing a go/no-go task) added to the prediction of recidivism. 
They found that decreased activity in the ACC was predictive 
of rearrest. Thus far, the only study to include several neuro­
biological measures has been performed in a small subsample 
(n = 45) of the same cohort, in which 2 electroencephalography 
(EEG) measures of error-processing were also investigated. 
Error-related negativity (ERN; a measure of early error-
processing) was not predictive of rearrest, but greater error 
positivity (Pe; a measure of late error-processing) did predict 
rearrest.14 When the EEG and fMRI measures were included in 
the same model, ACC activity no longer predicted rearrest, 
possibly because the various factors measured the same pro­
cess. Because well-powered studies are lacking of the joint and 
individual contributions of several neurobiological parameters 
tested simultaneously, to date it is unknown whether different 
neurobiological parameters independently predict delinquency. 
The current study aimed to address this gap in knowledge.

We conducted this study in a large sample of young adults 
who were followed for up to 4 years to evaluate the incidence 
of delinquency. We assessed an extensive battery of demo­
graphic and self-report measures — including age, ethnicity, 
education, intelligence, internalizing and externalizing psy­
chopathology, and aggressive and psychopathic behaviour 
— and evaluated their predictive power. This is important, 
because assessment of these variables is feasible in most in­
stances and practitioners would certainly not include costly 
neurobiological measures in prediction models if they did 
not outperform interview or questionnaire measures. Our 
choice of neurobiological predictors was guided by 2 theor­
etical considerations. First, we included baseline heart rate 
and baseline respiratory sinus arrhythmia as physiologic 
measures of arousal. Following low arousal and fearlessness 
theory,15 low arousal is thought to be related to increased de­
linquency, a concept that is supported by empirical research 
(e.g., Latvala and colleagues7). Second, we included EEG 
measures of error-processing (ERN and Pe) and fMRI activity 
of the ACC during response inhibition. These measures have 
been studied as key indicators of impulsivity,13,14 persistent 
lack of restraint and consideration of consequences. Self-report 
questionnaires and observational tests of impulsivity are 
good predictors of delinquency, and neural measures of im­
pulsivity capture variance independent of the former meas­
ures. The first aim of this study was to test the prospective 
association of demographic, behavioural and neurobiological 
measures with criminal recidivism. The second aim was to 
formally test the predictive power of different domains of 
variables. The main goal was to examine which neurobiological 

parameters meaningfully added to the prediction of overall 
and serious recidivism, over and above demographic and 
behavioural measures.

Methods

Participants

Participants were 127 male young adults aged 18–27 years 
(mean ± standard deviation [SD] = 21.92 ± 2.40), recruited when 
they started a day-treatment program at De Nieuwe Kans 
(translated as “New Opportunities”) in Rotterdam, the Nether­
lands. De Nieuwe Kans provides a multimodal day-treatment 
program for “multi-problem” young adults who present with a 
plethora of issues, including a history of delinquency (81% had 
a criminal record), low or no income, poor job skills and drug 
use (53% have used cannabis regularly for at least 5 years). The 
program employs cognitive behavioural techniques and 
rehabilitation components, such as cognitive skills training, 
drug treatment and education (see Luijks and colleagues16). 
This study was part of a larger cohort study that included 
696 young adults followed for 14 months and interviewed on 
4 separate occasions.16 Data presented here are from the base­
line measurements and from judicial documentation from the 
Ministry of Security and Justice of the Netherlands. Because 
most participants had a criminal record (81%), our research was 
mainly a study of recidivism in particular, rather than of any 
delinquency. To ensure results were generalizable, we per­
formed analyses on the total sample (n = 127) and supplemental 
analyses on only participants with a criminal record (n = 103).

All procedures were in accordance with the ethical standards 
of the institutional or national research committee, and with the 
1964 Helsinki declaration and its later amendments or com­
parable ethical standards. The study was approved by the 
Medical Ethical Committee of the Vrije Universiteit (VU) Med­
ical Center (registration number 2013.422–NL46906.029.13), and 
all participants provided written informed consent. Participants 
received a reimbursement of 30 euros for their participation in 
the fMRI, autonomic nervous system and EEG protocols.

Predictors

We organized baseline variables into 5 groups: demographics, 
education and intelligence, delinquency and drug use, 
behavioural traits, and neurobiological variables.

The demographics category included age and ethnicity 
(Western, Caribbean, Moroccan, Cape Verdean and other 
non-Western). The categorization of ethnicity was specific to 
the Netherlands; it was based on the definition from the 
Centraal Bureau voor de Statistiek (Statistics Netherlands) of 
the Dutch government.

We categorized education as primary only, junior second­
ary school and senior secondary school. We measured intelli­
gence quotient using 4 subscales of the Wechsler Adult 
Intelligence Scale, third version (digit symbol coding, infor­
mation, block design and arithmetic).17

We assessed history of delinquency as the number of past 
offences registered in the Research and Policy database from 
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the Judicial Documentation of the Ministry of Security and Jus­
tice in the Netherlands. We assessed years of regular (i.e., 
weekly) cannabis use and years of regular alcohol use with the 
Measurements in the Addictions for Triage and Evaluation 
Questionnaire.18 Because the data on alcohol use were heavily 
skewed, we presented them in categories (0, 1–5 and 6+ years).

Behavioural predictors consisted of reactive aggression 
and proactive aggression as assessed using the Reactive Pro­
active Aggression Questionnaire.19,20 It is a 23-item self-report 
measure of aggression scored on a 3-point Likert scale and 
yields reactive and proactive aggression scores. We assessed 
interpersonal, affective and behavioural psychopathic traits 
with the Youth Psychopathy Inventory–Short Version,21 an 
18-item self-report measure scored on a 4-point Likert scale. 
We assessed internalizing and externalizing problems using 
the Adult Self-Report,22 which consists of 123 items scored on 
a 3-point Likert scale. Finally, we investigated the accuracies 
of both the Flanker-task (total accuracy) and the go/no-go 
task (accuracy on no-go trials) as predictors.

Autonomic nervous system

Neurobiological predictors including heart rate and respiratory 
sinus arrhythmia at rest were collected at the Erasmus Behav­
ioural Laboratory of the Institute for Psychology at the Erasmus 
University Rotterdam, using the VU Ambulatory Monitoring 
System (VU-AMS).23 We recorded both an electrocardiogram 
and an impedance cardiogram while participants watched a 
5-minute excerpt from the video Coral Sea Dreaming (Small 
World Music Inc.).24 Participants were seated in a comfortable 
chair in a sound-attenuated room with dimmed lights. We 
used a sampling rate of 1000 Hz and processed the data using 
VU-AMS Data, Analysis and Management Software (VU-
DAMS).25 We derived the R-peak time series via an automated 
detection algorithm within VU-DAMS. We manually checked 
for missing or incorrect R-wave peaks and abnormalities. Heart 
rate was assessed by automated counting of R peaks (beats per 
minute). We defined respiratory sinus arrhythmia as the 
longest period between heart beats during expiration minus the 
shortest period between heart beats during inspiration.

Electrophysiological measures of error-processing

We acquired ERN and Pe measures of error-processing dur­
ing the same sessions as the measurements of heart rate and 
respiratory sinus arrhythmia. In the same room, participants 
performed an Eriksen–Flanker task previously used by 
Marhe and colleagues.26 In short, participants responded to 
letter strings (HHHHH, SSSSS, HHSHH, SSHSS) by pressing 
a button with their left or right index finger, depending on 
the middle letter of the string. Each string was presented for 
50 ms, the maximum response time was 650 ms, and a stimu­
lus was shown once every 1450 ms. In total, 400 trials were 
presented to each participant. We defined ERN as the differ­
ence wave (difference in mean amplitude between correct 
and incorrect trials) in a post-response window of 25 ms to 
100 ms on the FCz electrode. We defined Pe as the difference 
wave in a post-response window of 250 ms to 400 ms on the 

Pz electrode. We used the pre-response period (−100 ms to 
0 ms) as a baseline. We used a Biosemi ActiveTwo System 
amplifier to measure EEG. We placed silver chloride (Ag/
AgCl) electrodes on the scalp using the international 10–20 
system, with 2 electrodes on the left and right mastoids as a ref­
erence. We assessed vertical and horizontal electro-oculograms 
to control for ocular artifacts. Signals were digitized with a 
sampling rate of 512 Hz and 24-bit analogue-to-digital con­
version, and digitally filtered offline using a low cut-off of 
0.15 Hz and a high cut-off of 30 Hz (24 dB per octave slope) with 
BrainVision Analyzer 2. Additional artifact rejection (± 100 µV) 
was performed automatically. We used the EEG data if at 
least 6 error trials were available for analysis.27 The mean (± SD) 
number of trials used after inclusion was 62.05 ± 43.00.

fMRI measures of inhibition

We assessed ACC activity during inhibition using fMRI. Par­
ticipants performed a go/no-go task previously used by 
Luijten and colleagues.28 In short, participants responded to 
letters (go trials) presented at 1 Hz, but had to refrain from 
responding when the letter was the same as the previous one 
(no-go trials). In total, 817 go and 110 no-go trials were pre­
sented. We defined ACC activity during inhibition as the 
brain activity in an region of interest defined a priori (14 mm 
radius-sphere at x, y, z = 3, 24, 33)13 during the contrast of 
commission errors versus correct hits, which captures ACC 
recruitment by either error feedback (or by simple processing 
or awareness of an oddball stimulus) while holding constant 
motor behaviour. In a previous study, this contrast predicted 
rearrest in male offenders.13 We also investigated the additive 
predictive power of the contrast of correct rejections versus 
correct hits, as a possible indicator of brain recruitment by 
successful inhibition (or by simple oddball detection). We col­
lected data on a 3 T GE Healthcare MRI scanner at the Eras­
mus Medical Center, Rotterdam, on a different day from the 
autonomic and EEG measurements. We acquired structural 
T1-weighted images with a fast-spoiled gradient pulse 
sequence in 180 sequential sagittal (superior/inferior) slices, 
with a thickness of 1.0 mm. The repetition time was 6.4 ms, 
the echo time was 2.8 ms, the flip angle was 12 degrees, the 
field of view was 240 mm and the matrix size 240 × 240 mm. 
We acquired blood-oxygen-level-dependent T2*-weighted im­
ages axially (right/left) with an echo planar imaging gradient 
echo pulse sequence in 42 slices of 3.5 mm with a slice spacing 
of 0.5 mm. The repetition time was 2000 ms, the echo time 
was 30 ms, the flip angle was 80°, the field of view was 
220 mm and the matrix size 64 × 64 mm. We analyzed func­
tional imaging data using SPM12 (www.fil.ion.ucl.ac.uk/
spm/). As preprocessing steps for each participant, functional 
images were realigned and unwarped, and the structural scan 
was segmented and coregistered to the mean T2*-weighted 
image. Images were then normalized to the Montreal Neuro­
logical Institute template and smoothed with a Gaussian filter 
(8 mm full width at half maximum). We modelled 4 condi­
tions and added 6 movement parameters as covariates of no 
interest. We extracted region-of-interest data using the 
MarsBaR toolbox for SPM (http://marsbar.sourceforge.net/). 
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We used fMRI data if at least 8 error trials were available for 
analysis.29 No participants had fewer than 8 error trials, and 
the mean (± SD) number of used trials was 56.25 ± 56.00. We 
tested the contrast of commission errors versus correct hits 
and the contrast of correct rejections versus correct hits.

Outcomes

We assessed information on 2 outcome measures during 
follow-up. The first outcome measure was time to arrest for any 
criminal offence. This included (as defined by the Research and 
Documentation Centre of the Ministry of Security and Justice of 
the Netherlands) relatively minor offences (e.g., resistance, 
drunk driving, possession of a weapon) and serious offences 
(those with a minimum 4-year sentence; e.g., assault, aggra­
vated theft, rape).30 The second outcome measure was time to 
arrest for serious offences. We obtained data from the Research 
and Policy database Judicial Documentation of the Ministry of 
Security and Justice of the Netherlands, and included arrests 
from the baseline measurement until January 2018. The median 
follow-up time was 31 months (range = 14–47 months).

Data analysis

We imputed to 40 complete data sets31 using SPSS 21 (IBM) for 
variables with a maximum missingness of 30%; no outcomes 
were imputed. First, we performed Cox proportional hazard 
models to assess potential predictors, adjusting for age for 
each of the 2 outcomes. We selected all variables that were sig­
nificant at p < 0.10 in the model for any offence or serious 
offences and included them in the fully adjusted Cox models; 
we used a liberal value of p < 0.10 because use of a more tradi­
tional level of p < 0.05 often failed to identify important vari­
ables.32 We tested the proportional hazard assumption by test­
ing the associations between Schoenfeld residuals33 and time. 

We standardized all effect sizes except for age. Second, using 
the risksetROC package34 in R 3.5.1, we calculated (areas 
under) time-dependent receiver operating characteristic (ROC) 
curves to compare the predictive performance of the different 
variable groups over time and to assess whether adding vari­
able groups increased predictive performance above sim­
pler models that included fewer variables. We used time-
dependent ROC curves to represent the relationship of 
time-dependent sensitivity and specificity, and areas under 
the ROC curves (AUCs) to measure the probability that the 
predictive value for a randomly selected offender exceeded the 
predictive value for a randomly selected nonoffender. Finally, 
we computed C-indexes for prediction at 6, 12, 18, 24 and 
30 months, which was the concordance statistic over a time-
period based on the weighted averages of the AUCs. The 
concordance statistic is best conceptualized as an AUC. It is 
commonly used to evaluate risk models in survival analysis, 
where data may be censored. Technically, it is a measure of 
goodness of fit for binary outcomes in a regression model. It is 
the fraction of pairs in the data, where the observation with the 
higher survival time also has the higher probability of survival 
as predicted by our model. It represents the predictive ability 
of determinant blocks: a C-index above 0.70 indicates a good 
model, and a C-index above 0.80 indicates a strong model.32

Results

In the follow-up period, 61 (48.0%) of the 127 participants 
were arrested for any offence, of which 36 (28.3% of total) 
were arrested for a serious offence. In the age-adjusted 
models, the following variables predicted any offences and 
serious offences: past offences, cannabis use, reactive ag­
gression, proactive aggression, heart rate and ERN (EEG 
and fMRI findings are shown in Figure 1). In contrast, ethni­
city (Moroccan versus Western, and Cape Verdean versus 

Fig. 1:  (A) Electroencephalographic waveforms in response to correct and incorrect trials. (B) Whole-brain (pFWE < 0.05) hemodynamic activity 
during the contrast of commission errors versus correct hits (x, y, z = 49, 64, 38). ACC = anterior cingulate cortex; ERN = error-related negativity; 
FWE = family-wise error corrected; Pe = error positivity. 
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Western) predicted only any offences, whereas behavioural 
psychopathic traits and the Pe predicted only serious of­
fences. See Table 1 for full results with effect estimates. We 
included these 9 predictors in the mutually adjusted mod­
els, retaining age as a covariate. 

In the final model, 3 predictors were significantly related to 
any offence: ethnicity Moroccan versus Western (p < 0.05, RR 
3.07, 95% CI 1.04–9.10), past offences (p < 0.001, RR 1.45, 95% 
CI 1.17–1.79), and a smaller ERN (p < 0.05, RR 1.61, 95% CI 
1.13–2.28; Table 2). Likewise, 3 predictors were significantly 
related to serious offences: past offences (p < 0.001, RR 1.71, 
95% CI 1.33–2.23), behavioural psychopathic traits (p < 0.05, 

RR 1.54, 95% CI 1.00–2.36) and low heart rate (p < 0.05, 
RR 0.62, 95% CI 0.38–0.99; Table 2). 

In the supplemental analysis of the subgroup with a criminal 
record (n = 103), results were similar, although ethnicity failed to 
reach significance and ERN did reach significance (p = 0.046 in 
the subgroup analysis, compared with p = 0.08 in the main analy­
sis); see Appendix 1, Table S1, available at jpn.ca/200103-a1).

Any offence

For each of the 4 variable groups, we calculated AUCs for 
different time points as a measure of predictive power over 

Table 1: Descriptive statistics and univariate Cox regressions

Characteristic Baseline*

General offences Serious offences

RR (95% CI) p value RR (95% CI) p value†

Demographics

Age 21.98 ± 2.4 1.01 (0.91–1.13) 0.85 0.94 (0.81–1.08) 0.37

Ethnicity

Western 22 (17.3) ref ref

Caribbean 55 (43.3) 1.98 (0.82–4.78) 0.13 1.70 (0.57–5.05) 0.34

Moroccan 21 (16.5) 2.70 (1.02–7.13) 0.045 2.07 (0.62–6.87) 0.24

Cape Verdean 8 (6.3) 2.78 (0.89–8.69) 0.078 1.30 (0.24–7.15) 0.76

Other non-Western 21 (16.5) 1.29 (0.44–3.72) 0.64 1.19 (0.32–4.44) 0.80

Education

Senior secondary education 23 (18.1) ref ref

Junior secondary education 48 (37.8) 1.15 (0.54–2.45) 0.72 0.62 (0.23–1.67) 0.35

Primary education 56 (44.1) 1.45 (0.69–3.04) 0.33 1.09 (0.44–2.71) 0.85

Intelligence quotient 82.07 ± 10.2 0.82 (0.64–1.07) 0.14 0.86 (0.61–1.22) 0.40

Delinquency and drug use

Past offences, n 5.06 ± 5.70 1.51 (1.27–1.79) < 0.001 1.72 (1.40–2.10) < 0.001

Cannabis use, yr 4.28 ± 3.83 1.27 (0.98–1.65) 0.069 1.43 (0.93–2.05) 0.051

Alcohol use, yr

0 73 (57.5) ref ref

1–5 31 (24.4) 0.88 (0.45–1.71) 0.97 0.93 (0.40–2.15) 0.86

6+ 23 (18.1) 0.81 (0.40–1.65) 0.57 0.90 (0.34–2.37) 0.84

Behaviour

Reactive aggression 11.28 ± 4.65 1.53 (1.17–2.00) 0.002 1.57 (1.11–2.22) 0.011

Proactive aggression 5.28 ± 4.28 1.38 (1.10–1.72) 0.005 1.47 (1.12–1.93) 0.005

Psychopathy, interpersonal 11.27 ± 3.86 0.90 (0.70–1.15) 0.38 1.07 (0.79–1.46) 0.66

Psychopathy, affective 10.83 ± 3.51 1.04 (0.82–1.31) 0.78 1.13 (0.83–1.53) 0.44

Psychopathy, behavioural 12.21 ± 3.14 1.07 (0.83–1.38) 0.60 1.38 (1.00–1.89) 0.047

Internalizing problems 72.52 ± 24.19 0.99 (0.77–1.27) 0.92 0.91 (0.66–1.26) 0.57

Externalizing problems 69.22 ± 23.83 1.07 (0.82–1.40) 0.63 1.17 (0.82–1.69) 0.39

Accuracy, Flanker 0.82 ± 0.16 0.82 (0.63–1.06) 0.13 0.74 (0.54–1.03) 0.11

Accuracy, go/no-go 0.50 ± 0.16 1.05 (0.77–1.43) 0.77 1.12 (0.75–1.68) 0.58

Neurobiology

Heart rate 65.78 ± 9.11 0.70 (0.52–0.93) 0.014 0.53 (0.35–0.79) 0.002

Respiratory sinus arrhythmia 95.70 ± 42.48 1.17 (0.94–1.46) 0.17 1.22 (0.91–1.64) 0.18

Error-related negativity −5.17 ± 4.72 1.47 (1.10–1.96) 0.008 1.53 (1.05–2.25) 0.029

Positivity error 6.13 ± 5.07 0.83 (0.64–1.08) 0.17 0.70 (0.49–0.99) 0.043

ACC activity (commission errors v. correct hits) 2.87 ± 2.34 1.05 (0.81–1.36) 0.74 1.27 (0.90–1.80) 0.18

ACC activity (correct rejections v. correct hits) 2.56 ± 1.85 0.90 (0.78–1.05) 0.18 0.90 (0.73–1.10) 0.28

ACC = anterior cingulate cortex; CI = confidence interval; RR = risk ratio; SD = standard deviation.
*Values are presented as mean ± SD for continuous variables or n (%) for categorical variables.
†Considered significant at p < 0.10.
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time. Figure 2A shows that the AUCs for all groups of vari­
ables were fairly stable over time. The neurobiological meas­
ures, as well as delinquency and cannabis use, performed 
best (C-index for 30 months [C30] = 0.64), the behaviour 
group performed similarly (C30 = 0.63), and age and ethnicity 
performed worst (C30 = 0.57; Table 3). 

Figure 2B shows the predictive power of models step-wise, 
including more variable groups. The figure demonstrates 
that the neurobiological measures added to the predictive 
power above all other variables, and that the added predic­
tive power decreased slightly over time. The model without 
neurobiological measures performed moderately well (C30 = 
0.68), but adding neurobiological measures increased the pre­
dictive power (C30 = 0.72). 

The results of the supplemental analysis on the subgroup 
with a criminal record were very similar, with identical 
C-indexes for the complete model (Appendix 1, Table S2).

Serious offences

Figure 2C shows the predictive power of the variable 
groups over time, which was again fairly stable for each 
variable group. Table 3 shows that neurobiological meas­
ures (C30 = 0.70) and delinquency and cannabis use (C30 = 
0.68) outperformed demographic (C30 = 0.60) and behav­
ioural measures (C30 = 0.64). Figure 2D demonstrates that 
the neurobiological predictors consistently added predic­
tive power above the other variables. The model without 
neurobiological predictors performed well (C30 = 0.75), but 
adding neurobiological measures also increased its predic­
tive performance (C30 = 0.80). 

The results of the supplemental analysis on the subgroup 
with a criminal record were very similar, with identical C-
indexes for the complete model (see Appendix 1, Table S2).

Discussion

In this study, we showed that in a sample of delinquent 
individuals, models including demographic variables, 
delinquency and drug use, behavioural traits and neuro­
biological variables did a good job of predicting overall 
and serious recidivism. We assessed the combined and in­
dependent predictive value of several multimodal neuro­
biological measures: resting heart rate and respiratory 
sinus arrhythmia, 2 EEG measures of error-processing and 
an fMRI measure of inhibition. Three of these neurobio­
logical measures were associated longitudinally with crimi­
nal recidivism in age-adjusted analyses, and more impor­
tantly, these measures had incremental predictive value 
above traditional risk factors.

A wide array of variables univariately predicted recidi­
vism, but understandably, most predictors failed to reach 
significance in the final, mutually adjusted models. Delin­
quency is a complex multifactorial phenomenon, and no 
single variable reliably predicts recidivism except number 
of past offences. Low resting heart rate predicted serious re­
cidivism, in line with low arousal and fearlessness theory.15 
Another previous study found a similar association that was 
stronger for violent than for nonviolent crimes.7 Self-reported 
behavioural psychopathic traits also independently contrib­
uted to the prediction of serious recidivism. Concerning 
overall recidivism, ethnicity and the ERN were the only 

Table 2: Full Cox models for general and serious offences in the total sample (n = 127)

Characteristic

General offences Serious offences

RR (95% CI) p value RR (95% CI) p value*

Demographics

Age 0.98 (0.86–1.12) 0.79 0.88 (0.74–1.05) 0.15

Ethnicity

Western ref ref

Caribbean 2.25 (0.86–5.93) 0.10 1.71 (0.53–5.57) 0.37

Moroccan 3.07 (1.04–9.10) 0.043 2.07 (0.55–7.81) 0.28

Cape Verdean 2.65 (0.73–9.69) 0.14 0.75 (0.10–5.50) 0.78

Other non-Western 1.62 (0.52–5.08) 0.41 1.27 (0.29–5.54) 0.75

Delinquency and drug use

Past offences, n 1.45 (1.17–1.79) < 0.001 1.71 (1.33–2.23) < 0.001

Cannabis use, yr 1.21 (0.90–1.63) 0.20 1.39 (0.92–2.09) 0.12

Behaviour

Reactive aggression 1.26 (0.87–1.81) 0.22 0.95 (0.60–1.52) 0.84

Proactive aggression 1.01 (0.72–1.42) 0.94 1.07 (0.70–1.62) 0.76

Psychopathy, behavioural 1.08 (0.78–1.50) 0.63 1.54 (1.00–2.36) 0.049

Neurobiology

Heart rate 0.88 (0.65–1.19) 0.39 0.62 (0.38–0.99) 0.023

Error-related negativity 1.61 (1.13–2.28) 0.008 1.52 (0.96–2.40) 0.08

Positivity error 0.93 (0.69–1.26) 0.65 0.75 (0.49–1.16) 0.27

CI = confidence interval; RR = risk ratio.
*Considered significant at p < 0.05.
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additional significant predictors; a smaller ERN (indicating 
diminished early error-processing) was related to increased 
recidivism. Although the ERN measure failed to reach sig­
nificance in the model of serious recidivism, effect sizes in 
both models were very similar (RR 1.61 for overall recidi­

vism and RR 1.52 for serious recidivism). In a study by 
Steele and colleagues,14 ERN was not predictive of recidi­
vism, but this study was limited by its small sample size 
(n = 45). In line with findings that a smaller ERN is related 
to antisocial behaviour in general,35 our results suggest that 

Fig. 2: Areas under time-dependent receiver-operating-characteristic curves for the prediction of (A) any offence by different variable groups;  
(B) any offence by models that include multiple variable groups; (C) serious offences by different variable groups; (D) serious offences by 
models that include multiple variable groups. The categorization of ethnicity was specific to the Netherlands; it was based on the definition 
from the Centraal Bureau voor de Statistiek (Statistics Netherlands) of the Dutch government (www.cbs.nl/en-gb/onze-diensten/methods/
definitions/person-with-a-migration-background).
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the inability to adequately process adverse consequences 
may underlie the continuation of criminal behaviour 
despite its negative consequences.

In contrast with a previous study,13 we did not find an in­
dependent association between recidivism and either error-
awareness-related or inhibition-related ACC recruitment. Be­
cause we employed a very similar task and found expected 
brain activity, it seems unlikely that we measured a different 
process. The difference may have been due to variation be­
tween investigated samples. Aharoni and colleagues13 stud­
ied incarcerated offenders with a large age range (20–
52 years) who performed the task before being released from 
prison, whereas our sample consisted of young adults (18–
27 years) who were not incarcerated. The relevance of inhibi­
tory processes for delinquent behaviour may increase with 
age, or the setting of the experiment may influence results. 
Another possibility for the incongruent findings is the meth­
odological differences between the present study and that of 
Aharoni and colleagues. We employed a different motion-
correction algorithm, used a different pulse sequence and 
conducted scans on a machine from a different vendor. In 
general, replication of fMRI findings has proven to be diffi­
cult,36 complicating the interpretation of discrepant results.

Although Pe did not reach significance in the mutually ad­
justed models, we did find that a smaller Pe univariately pre­
dicted serious recidivism, and the effect size remained simi­
lar in the full model. This finding was in line with research 
that found associations between a smaller Pe and antisocial 
behaviour in adolescents (16–20 years),37 but at odds with 
findings by Steele and colleagues,14 who found that a larger 

Pe was predictive of rearrest in a sample of 45 incarcerated 
adults. Again, the age differences between participant groups 
may have been a relevant factor in explaining these discrep­
ancies. As well, the 2 studies had sizable methodological dif­
ferences. Whereas we employed a difference wave analysis to 
ascertain EEG variables, Steele and colleagues employed 
principal component analysis to reduce data before predic­
tion. These different analytical choices may have affected 
results, although Maurer and colleagues37 employed the 
same principal component analysis and reported results 
more in line with the current findings.

For both overall and serious recidivism, neurobiological 
measures had greater predictive value than the other groups 
of variables, and importantly, they improved predictive per­
formance when added to the models without neurobiological 
measures. Although our study warrants extension and repli­
cation, our finding related to low heart rate was in accordance 
with theory and previous research in both population-based 
and at-risk samples, bolstering the idea that heart rate can be a 
reliable indicator of future delinquency. Concerning EEG and 
MRI measures, it cannot definitively be concluded which 
measures of executive functioning have greater predictive po­
tential based on the available studies, but using EEG rather 
than fMRI measures has considerable practical advantages: 
the former is relatively cheap, less time-consuming, tech­
nically relatively easy to acquire and less invasive. Measure­
ments of the autonomic nervous system have the same bene­
fits. Overall, our findings suggest that adding neurobiological 
measures to risk assessments may be a viable way of improv­
ing predictive accuracy for recidivism. However, at present 

Table 3: C-indexes for different time intervals in the full sample (n = 127)

Parameter

Follow-up, months

6 12 18 24 30

General offences

Group

Age and ethnicity 0.57 0.57 0.57 0.57 0.57

Delinquency and cannabis use 0.65 0.65 0.64 0.64 0.64

Behaviour 0.63 0.63 0.63 0.63 0.63

Neurobiology 0.65 0.65 0.65 0.65 0.64

Model

Age and ethnicity 0.57 0.57 0.57 0.57 0.57

Age and ethnicity + delinquency and cannabis use 0.68 0.67 0.67 0.67 0.67

Age and ethnicity + delinquency and cannabis use + behaviour 0.69 0.69 0.69 0.68 0.68

Age and ethnicity + delinquency and cannabis use + behaviour + neurobiology 0.74 0.73 0.73 0.72 0.72

Serious offences

Group

Age and ethnicity 0.60 0.60 0.60 0.60 0.60

Delinquency and cannabis use 0.69 0.69 0.69 0.69 0.68

Behaviour 0.64 0.64 0.64 0.64 0.64

Neurobiology 0.70 0.70 0.70 0.70 0.70

Model

Age and ethnicity 0.60 0.60 0.60 0.60 0.60

Age and ethnicity + delinquency and cannabis use 0.74 0.74 0.74 0.74 0.74

Age and ethnicity + delinquency and cannabis use + behaviour 0.76 0.76 0.76 0.75 0.75

Age and ethnicity + delinquency and cannabis use + behaviour + neurobiology 0.82 0.81 0.81 0.81 0.80
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not enough data are available to justify implementing this 
type of risk assessment in judicial practice, and studies in 
more regulated environments such as prisons are warranted 
to assess the practical utility of such risk assessment. Future 
research would benefit from larger sample sizes and longer 
follow-up periods to assess whether prediction is stable across 
time, and whether neurobiological measures are truly viable 
as risk factors (for a discussion, see Poldrack and colleagues38).

Limitations

This study had several limitations. First, we included only 
male participants, and as such our findings cannot be general­
ized to female populations. Second, although predictor choice 
was theoretically informed and our sample size was large for 
this type of study, the number of investigated predictors lim­
ited the power of the analysis. Third, our follow-up time was 
up to 4 years, leaving it an open question whether the predic­
tive models would hold for longer time periods.

Conclusion

A group of 3 multimodal neurobiological measures added to 
the prediction of overall and serious recidivism beyond 
demographic and behavioural measures. As the most feasible 
measures, autonomic functioning and electroencephalog­
raphy are also most predictive; in the future they may be 
viable for including in risk assessment.
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