
A New Dataset for Facial Motion Analysis in Individuals with 
Neurological Disorders

Andrea Bandini [Member, IEEE], Sia Rezaei, Diego Guarín
KITE – Toronto Rehab – University Health Network (UHN), Toronto, ON, Canada.

Madhura Kulkarni,
Hurvitz Brain Sciences Program, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.

Derrick Lim,
Department of Speech Language Pathology, Rehabilitation Sciences Institute, University of 
Toronto, Toronto, ON, Canada.

Mark I. Boulos,
Sunnybrook Health Sciences Centre and the Department of Medicine, Division of Neurology, 
University of Toronto, Toronto, ON, Canada.

Lorne Zinman,
Hurvitz Brain Sciences Program, SRI; the L.C. Campbell Cognitive Neurology Research Unit, 
SRI; and Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, 
Canada.

Yana Yunusova#,
Rehabilitation Sciences Institute - Department of Speech Language Pathology, University of 
Toronto; Hurvitz Brain Sciences Program, SRI; and KITE – Toronto Rehab – UHN, Toronto, ON, 
Canada.

Babak Taati#

KITE – Toronto Rehab – UHN; the Institute of Biomedical Engineering, University of Toronto; the 
Department of Computer Science, University of Toronto; and the Vector Institute for Artificial 
Intelligence, Toronto, ON, Canada.

# These authors contributed equally to this work.

Abstract

We present the first public dataset with videos of oro-facial gestures performed by individuals with 

oro-facial impairment due to neurological disorders, such as amyotrophic lateral sclerosis (ALS) 

and stroke. Perceptual clinical scores from trained clinicians are provided as metadata. Manual 

annotation of facial landmarks is also provided for a subset of over 3300 frames. Through 

extensive experiments with multiple facial landmark detection algorithms, including state-of-the-

art convolutional neural network (CNN) models, we demonstrated the presence of bias in the 
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landmark localization accuracy of pre-trained face alignment approaches in our participant groups. 

The pre-trained models produced higher errors in the two clinical groups compared to age-

matched healthy control subjects. We also investigated how this bias changes when the existing 

models are fine-tuned using data from the target population. The release of this dataset aims to 

propel the development of face alignment algorithms robust to the presence of oro-facial 

impairment, support the automatic analysis and recognition of oro-facial gestures, enhance the 

automatic identification of neurological diseases, as well as the estimation of disease severity from 

videos and images.

Index Terms—

Algorithmic bias; dataset; face alignment; oro-facial impairment; amyotrophic lateral sclerosis; 
stroke

I. Introduction

Many neurological diseases – e.g., stroke, amyotrophic lateral sclerosis (ALS), Parkinson’s 

disease (PD), etc. – affect the oro-facial musculature with major impairments to speech, 

swallowing, and oro-motor abilities, as well as expression of emotions [1]–[3]. A timely and 

accurate assessment of oro-facial impairments can contribute to the overall disease diagnosis 

and lead to early interventions and improved quality of life. The objective analysis of facial 

kinematics can support the oro-facial structural and functional assessment as well as provide 

outcome measures to track treatment progress in neurological disorders [4], [5].

Currently, oro-facial assessment relies either on clinical evaluations performed by experts 

(i.e., cranial nerve examination) or on the use of sensor-based techniques (e.g., opto-

electronic tracking methods, electromagnetic articulography). However, subjective 

assessments show reduced reliability [6] and sensor-based techniques require expensive 

instrumentation, prohibiting the translation of such technology into everyday clinical 

practice [7]. These drawbacks limit effective disease progression and treatment recovery 

monitoring.

Computer vision research can help improve clinical assessment. The study of the human 

face through computer vision techniques for clinical purposes has thrived over the past few 

years, with many applications in neurology, speech-language pathology, and psychiatry [8]–

[16]. The availability of efficient and accurate face alignment approaches constitutes an 

important step towards the development of marker-less and intelligent tools for healthcare 

applications. Recent studies reported that simple and clinically interpretable measures (e.g., 

velocity, acceleration, range of motion) extracted from lip and jaw movements allow 

detecting the bulbar symptoms of ALS and oro-facial impairment in individuals with PD and 

post-stroke (PS) [10], [11], [17], [18]. However, since most of the available datasets used to 

train these algorithms do not include images of individuals with neurological disorders and 

oro-facial impairments, there might be a degradation of the landmark localization 

performance when impaired and non-standard facial movements are presented. The presence 

of an algorithmic bias was recently demonstrated in a number of works [19]–[21]. 

Specifically, state-of-the-art landmark localization performance was shown to perform worse 
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in older adults with dementia [19], [21] as compared to cognitively intact older adults. A 

similar bias was reported in face alignment accuracy for individuals with facial palsy [15], 

[20]. Retraining or fine-tuning of the models with data from the clinical group of interest can 

help reduce this bias [15], [20], [21].

Since the major obstacle for obtaining good landmark localization performance in clinical 

populations is the limited availability of annotated training data, we released the first dataset 

of facial videos of individuals with ALS and PS accompanied by the clinical scores and the 

ground truth location of 68 facial landmarks on more than 3300 representative image frames. 

The availability of this data aims to foster the development of novel and robust approaches 

for face alignment and oro-facial assessments that can be used to track and analyze facial 

movements in these clinical populations. This dataset is expected to facilitate further 

development of state-of-the-art automatic assessments of neurological disorders. Moreover, 

another aim of this study was to estimate the extent of face alignment bias in individuals 

with neurological diseases affecting the oro-facial function, such as ALS and stroke. To 

detect the presence of bias, we evaluated multiple pre-trained face alignment models across 

the range of disease severity. Further experiments were also conducted by fine-tuning the 

best pre-trained model on subsets of patients’ data to evaluate how the use of frames from 

target populations might help alleviate this issue. To summarize, the main contributions of 

this paper included:

• We release Toronto NeuroFace1, the first dataset of 261 videos, clinical scores 

per video, and more than 3300 annotated frames of faces from individuals with 

ALS and PS as well as age-matched healthy control (HC) subjects, while 

performing oro-facial tasks typical of the clinical assessment.

• For the first time, we analyzed the problem of face alignment bias in 

neurological disorders affecting the oro-facial functions, such as stroke and ALS.

• Finally, we reported results of experiments linking the face alignment error and 

clinical disease metrics using pre-trained and fine-tuned face alignment 

algorithms. These experiments allowed us to quantitatively demonstrate the 

benefits of using data from target populations when developing specific face 

alignment applications.

The remainder of the paper is organized as follows: Section II summarizes the existing 

datasets for face alignment and the application of face alignment algorithms in clinical 

conditions; Section III describes in detail the data collection and pre-processing steps 

involved in building the Toronto NeuroFace dataset; Section IV provides a review of the face 

alignment algorithms approaches for our experiments; Sections V and VI describe the 

experiments and results performed with the pre-trained and fine-tuned face alignment 

models, respectively; and, finally, Sections VII and VIII conclude with a discussion of the 

results.

1Access to the Toronto NeuroFace dataset can be requested at slp.utoronto.ca/faculty/yana-yunusova/speech-production-lab/datasets/
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II. Related work

In this section, we summarize some of the recent advancements on video-based analysis of 

facial movements and expressions for clinical applications, with an overview of the existing 

datasets.

A. Automatic face analysis for clinical applications

The analysis of facial movements and expressions for healthcare applications is a fast-

growing area of research, which has seen important advancements over the recent years [22]. 

Some of the applications are: the recognition of pain from facial images and videos [8], [9], 

[23]; the automatic analysis of the oro-facial dynamics in patients with neurological 

disorders (e.g., PD, stroke, ALS, Alzheimer’s disease – AD, etc.) [10]–[12], [17], [18], [24]; 

and the automatic detection of symptoms related to psychiatric conditions, such as 

depression and schizophrenia [13], [16], [25]. Regardless of the specific condition, the 

overall aim is to provide accurate, objective, and standardized information to clinicians 

associated with facial kinematics and dynamics, in order to improve the current assessment 

practices and evaluate treatment effects.

In many cases, facial landmark detection is used as the basis of the processing pipeline, in 

order to extract robust spatiotemporal features of gestures and expressions that, in turn, can 

be used to infer the clinical condition of interest [8], [9], [11], [12], [25]. Among the face 

alignment approaches, the most widely used in this field are: active appearance models 

(AAM) [26], [27], supervised descent method (SDM) [28], and ensemble of regression trees 

(ERT) [29]. Recently, state-of-the-art deep-learning-based approaches, such as the face 

alignment network (FAN) [30], have been applied in patients with dementia and facial 

paralysis [14], [15], [19], [21], demonstrating higher localization accuracy than traditional 

face alignment approaches.

Other authors [13], [24] did not use facial landmark representations, but relied on deep-

learned features to study the facial dynamics. Wang et al. [24] implemented different deep-

learning architectures (3DCNN and multi-stream CNN) to extract spatio-temporal features 

from the whole face region, in order to classify different facial activities in patients with AD. 

Another approach [13] implemented a VGG16 [31] to detect facial action units (AUs) from 

specific face areas and used the AUs as low level representation for estimating schizophrenia 

severity. However, when the goal is the analysis of facial kinematics in neurological 

conditions that affect gestures and movements (i.e., stroke, PD, ALS, etc.), the facial 

representation via landmark detection would be preferred, since it allows the extraction of 

clinically interpretable outcome measures that can be related to the presence and severity of 

symptoms [11].

B. Existing datasets

To further improve the performance of automatic assessment systems and promote their 

translation into clinical practice, large public datasets with facial videos, images, and clinical 

metadata (e.g., diagnosis, clinical scores, etc.) are needed. Not only will the availability of 

this data promote the development of accurate approaches, but it will also unify the efforts 
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made by different researchers towards solving problems in the clinical domain. Although 

many face alignment datasets have been published in the past 10 years [32]–[36], only a few 

were developed and published for healthcare applications (e.g. pain [37], [38] and facial 

paralysis [20], [39]).

To the best of our knowledge, none of the existing datasets include facial images and videos 

of individuals with oro-facial impairment due to disorders of the nervous system (such as 

stroke and ALS) accompanied by the ground truth facial landmarks and clinical metadata at 

the same time. The lack of training data from specific clinical conditions might cause a bias 

in the face alignment performance [14], [19], [21], similar to what happens with race and sex 

biases in face recognition models [40]–[42].

III. Dataset description

In this section we provide details about participants, data collection procedures, clinical 

assessment of the recorded videos, and manual annotation of facial landmarks conducted on 

a subset of frames.

A. Participants

Thirty-six participants were recruited for this study: 11 patients with ALS (4 male, 7 

female), 14 patients PS (10 male, 4 female), and 11 HC subjects (7 male, 4 female). All 

participants were cognitively unimpaired (Montreal Cognitive Assessment score ≥ 26) [43] 

and passed a hearing screening. Patients with ALS were diagnosed according to the El 

Escorial Criteria for the World Federation of Neurology [44], Nine participants had spinal 

symptoms at onset, whereas two participants presented bulbar onset ALS. The ALS severity 

with respect to the effect on daily function was evaluated using the ALS Functional Rating 

Scale – Revised (ALSFRS-R) [45]. The demographic and clinical summary for the 

participants is reported in Table I. The study was approved by the Research Ethics Boards at 

the Sunnybrook Research Institute and UHN: Toronto Rehabilitation Institute. All 

participants signed informed consent according to the requirements of the Declaration of 

Helsinki, allowing inclusion into a shareable database.

B. Tasks and experimental setup

Each subject was asked to perform a set of speech and non-speech tasks commonly used 

during a clinical oro-facial examination [46], [47]. They included: 10 repetitions of the 

sentence “Buy Bobby a Puppy” at a comfortable speaking rate and loudness (BBP); 

repetitions of the syllable /pa/ as fast as possible in a single breath (PA); repetitions of the 

syllables /pataka/ as fast as possible in a single breath (PATAKA); puckering of the lips (e.g., 

pretend to blow a candle 5 times and pretend to kiss a baby 5 times - BLOW and KISS); 

maximum opening of the jaw 5 times (OPEN); pretending to smile with tight lips 5 times 

(SPREAD); making a big smile 5 times (BIGSMILE); and raising the eyebrows 5 times 

(BROW).

Participants’ faces were video-recorded using the Intel® RealSense™ SR300 camera. During 

the tasks, participants were seated in front of the camera, with a face-camera distance 

between 30 and 60 cm. A continuous light source was placed behind the SR300 to 
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illuminate the face uniformly. For each task we collected a separate video recording 

composed of a pair of color (RGB) and depth videos. Experiments and results reported in 

this paper only consider the color videos, but both video modalities are released in the 

dataset. Both streams were stored at approximately 50 frames per second and 640 × 480 

pixels of image resolution. A total of 261 video recordings were included in the dataset: 80 

from HC subjects, 76 from patients with ALS, and 105 from patients PS.

C. Clinical oro-motor examination

Two trained speech-language pathologists watched the video recordings and rated the above 

tasks based on: symmetry, range of motion (ROM), speed, variability, and fatigue of facial 

movements. They judged each of the above aspects on a 5-point Likert scale with 1 

indicating normal function and 5 indicating severe dysfunction. For each video a total score 

was also computed as sum of the 5 sub-scores. The average scores between the two raters 

are reported in Table II. The inter-rater agreement was found to be fair to moderate 

according to the weighted Cohen’s kappa statistic (κ). This is in line with results previously 

reported in the literature [48]. Fair to moderate inter-rater agreement reflects the subjective 

nature of the clinical scores and is one of the motivating factors towards developing vision-

based objective assessment systems. The average scores between the two raters were used in 

all the experiments reported in this paper. Kruskal-Wallis test showed statistically significant 

differences in the clinical measures among the 3 groups. A post-hoc Wilcoxon rank-sum test 

showed a small yet statistically significant increase of the scores in both ALS and PS as 

compared to HC subjects (see Table II). These results indicate that impairments were present 

in the two clinical groups when compared to HC subjects. In the majority of participants, 

these impairments were mild to moderate in their severity.

D. Manual annotation of face landmarks

A set of 3306 frames (1015 HC, 920 ALS, and 1371 PS) were extracted from the above 

videos and considered for the experiments. On these frames, the ground truth positions of 68 

facial landmarks were annotated following the Multi-PIE 2D configuration [33]. For each 

non-speech task, we considered 3 frames per repetition: 1) beginning of the gesture (i.e., rest 

position); 2) peak of the gesture (e.g., maximum jaw opening, maximum lip puckering or 

spread, etc.); and the midpoint between 1 and 2. For the speech tasks, the selection of frames 

was carried out based on the visemes: 5 frames for each BBP repetition (/b/ of Buy, /o/ of 

Bobby, /a/ between Bobby and puppy, /p/ and /y/ of puppy); 3 frames for PA (maximum lip 

compression of /p/, maximum lip opening of /a/ and midpoint between /p/ and /a/); and 3 

frames for PATAKA (maximum lip compression of /p/, maximum opening after /p/, and 

midpoint between /pa/ and /ta/). These criteria were adopted to cover a wide range of facial 

gestures and movements required to perform the above tasks. Figure 1 shows the distribution 

of frames for each task and group.

A second rater, blinded to the first rater’s annotation, marked the 68 facial landmarks on a 

subset of 515 frames (15.6 % of the annotated frames). To measure the inter-rater agreement, 

the point-to-point Euclidean distance normalized by the diagonal of the face bounding box 

was computed (nRMSE). The face bounding box was obtained using the maximum and 

minimum coordinates of the annotated landmarks. For all the frames annotated by the two 
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raters, the nRMSE was lower than 5% (90.1% was below 2%), with an average nRMSE of 

1.36 ± 0.46%.

IV. Methods

In this section we describe the face alignment algorithms tested on the Toronto NeuroFace 
dataset. We also provide details about the pre-training of these algorithms as well as metrics 

to evaluate the localization performance on the 3 groups of interest.

A. Face alignment

The detection of facial landmarks is composed of two steps: 1) face detection – to find a 

region of interest (ROI) within the image where a face might be located; and 2) face 

alignment – to locate the facial landmarks within the ROI. Since our aim was to estimate the 

extent of face alignment bias in individuals with neurological disorders, we used the ground 

truth bounding box – obtained using the ground truth landmarks – in all the experiments.

Five face alignment approaches were implemented: AAM [26], [27], constrained local 

model (CLM) [49], ERT [29], SDM [28], and FAN [30].

1) Generative methods – AAM: AAM is a linear statistical model of the shape and 

appearance of the face. It can generate several instances of shape and appearance models by 

varying a small number of parameters. To fit an AAM, the shape and appearance parameters 

are estimated to generate a model instance that best fits the test face [27]. AAM is a well-

known early generative method used for face alignment [50].

2) Discriminative methods – CLM, ERT, and SDM: Unlike AAM, discriminative 

methods learn a set of discriminative functions to directly infer the landmark position from 

the facial appearance. CLM is a part-based approach and learns an independent local 

appearance model for each face point [49]. Geometrical constraints are then imposed using a 

shape model over the local appearance models. CLM is considered more robust to partial 

occlusions and lighting changes than AAM [50]. ERT and SDM are part of a family of 

discriminative approaches called cascaded regression methods. These algorithms learn a 

regression function to estimate the shape of the face step-by-step. Starting from an initial 

shape (e.g., average shape), they sequentially refine it through trained regressors. The shape 

increment is regressed using shape-indexed features (i.e., features extracted in the current 

shape estimate). The main difference between ERT and SDM is in the nature of the 

regression function used: SDM uses a linear regression to estimate the shape updates starting 

from scale-invariant feature transform (SIFT) features, whereas ERT employs tree-based 

regression [28], [29], [50]. Speed and accuracy made the cascaded regression methods state-

of-the-art in face alignment before the advent of deep learning.

3) Deep learning methods – FAN: The FAN is a deep-learning approach for face 

alignment based on a stack of four hourglass networks [51]. This network architecture, 

originally proposed for human-pose estimation, was re-adapted for solving face alignment 

problems, by replacing the bottleneck block of each hourglass with the hierarchical, parallel 

and multi-scale block proposed in [52]. The FAN estimates 68 facial landmarks via heatmap 
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regression from the RGB input images, and it showed state-of-the-art performance on most 

available face alignment datasets [30]. This architecture has also been generalized to solve 

3D face alignment problems (i.e., 3D-FAN). However, considering that our dataset was 

collected using frontal face positions, we implemented only the 2D version (i.e., 2D-FAN).

B. Pre-training and error metrics

The Menpo implementations of AAM, CLM, ERT, and SDM were used [53]. These four 

algorithms were trained on the 300-W training set (~4000 images) [35], [54], [55], a widely-

used dataset for 2D face alignment. For the FAN, we used the pre-trained 2D-FAN model2 

trained on the 300W-LP-2D dataset (~60k images), which was obtained by extending the 

300W with synthetically generated images [30], [56].

Landmark localization performance between HC subjects and ALS/ PS patients was 

compared in terms nRMSE between the estimated landmarks and the ground truth 

annotations. For each frame, the nRMSE was calculated as the point-to-point Euclidean 

distance normalized by the diagonal of the bounding box [30]. Comparison among the 

models and groups was also performed by computing the percentage of frames with an error 

lower than a pre-defined threshold.

V. Experiments with pre-trained models

In this section, we analyze landmark localization errors to investigate: 1) the existence of 

bias in performance across the different groups, and 2) the relationship between the 

localization error and disease severity.

A. Overall error performance

The mean and standard deviation of the nRMSE values are reported in Table III. These 

values were obtained by running the pre-trained models on the whole set of 3306 annotated 

frames. A non-parametric Friedman test was conducted to test for differences between the 

errors obtained with the five models. This test was preferred to a one-way ANOVA with 

repeated measures, since the data was not normally distributed. Friedman’s test showed a 

significant difference among the five groups (p <0.001). A Tukey’s honestly significant 

difference test for multiple comparisons indicated significant differences among all pairs. 

Thus, the lowest landmark localization error was the one produced by FAN, followed by 

ERT. The higher localization accuracy of FAN can also be seen from the convergence curves 

of Figure 2, where the nRMSE for FAN was lower than 3% in 99.97% of the frames, versus 

95.74% of ERT, 92.98% of SDM, 87.39% of AAM, and 68.51% of CLM.

B. Error analysis across groups

To analyze the presence of a bias in the landmark localization performance, for each model 

we computed the nRMSE obtained on ALS and PS patients and compared it with the 

nRMSE obtained in HC subjects. Mean values and standard deviations of the nRMSE 

obtained on HC subjects (1015 frames), patients with ALS (920 frames), and patients PS 

2The 2D-FAN model used for these tests was downloaded from https://github.com/1adrianb/2D-and-3D-face-alignment
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(1371 frames) are reported in Table IV. Kruskall-Wallis test showed significant differences 

among the three groups for all the approaches. Post-hoc Wilcoxon rank-sum tests showed 

that the nRMSE in the two clinical groups of interest (ALS and PS) was significantly higher 

than in the HC group. Thus, although FAN showed excellent overall results, there was a bias 

in its face alignment performance.

C. Error analysis with respect to disease severity

To investigate the relationship between nRMSE and disease severity, we computed the 

Spearman’s correlation coefficients between the average nRMSE obtained on each video 

and the corresponding clinical scores, averaged between the two clinician raters. Table V 

shows the results for the Symmetry and ROM scores; no significant correlations were found 

for the other aspects of the perceptual assessment. A weak, yet significant, positive 

correlation was found with the symmetry score in the PS videos for FAN, ERT, and SDM 

(see Table V), suggesting that the nRMSE can increase with the severity of the facial 

asymmetry. Moreover, significant correlations (weak negative) were found between the 

nRMSE and the ROM score in both ALS and PS participants. In this case, the negative 

correlation denotes lower errors in individuals with higher impairment severity, namely 

reduced oro-facial movements.

VI. Experiments with fine-tuned FAN

In this section, we report on how face alignment accuracy and clinical bias changed when 

data from the Toronto NeuroFace dataset were used for fine-tuning a face alignment 

algorithm. We investigated the case of FAN, since the results from Section V showed its 

higher localization accuracy for this dataset. Specifically, we conducted two experiments: 1) 

fine-tuning the FAN separately within each group (HC, ALS, and PS) using a leave-one-

subject-out cross-validation (LOSO); and 2) fine-tuning the FAN with data from one group 

and testing it on the other two groups (leave-two-groups-out cross-validation – LTGO). 

These tests were conducted to investigate how different combinations of data for fine-tuning 

affect the clinical bias detected of the pre-trained model.

For all tests, the final hourglass model of the pre-trained FAN was fine-tuned for 50 epochs 

using RMSProp optimizer. The learning rate was initialized to 1e-5 and was decayed by a 

factor of 0.5 every 10 epochs. Similar to the previous section, we used the nRMSE to 

compare the landmark localization error among the three groups and its correlation with the 

clinical perceptual evaluation.

A. Fine-tuned error across groups

The nRMSE values for the fine-tuned FAN are shown in Tables VI and VII.

1) LOSO results: Fine-tuning the FAN with data from the target group lowered the 

nRMSE in patients with ALS and PS (see Figure 3) and the nRMSE obtained for these two 

groups was lower than the error obtained in HC subjects with the pre-trained model (see 

Table IV). However, fine-tuning the FAN made the nRMSE decrease in HC subjects too, 
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with values always significantly lower than the fine-tuned nRMSE of ALS and PS patients. 

Thus, despite the improved landmark localization accuracy, a clinical bias still remains.

To gain more insight into the effect of fine-tuning the FAN, we quantified the reduction of 

error as the difference between the pre-trained and fine-tuned nRMSE (ΔE). In the LOSO 

test, this reduction was slightly larger in patients with ALS and PS than HC subjects (see 

Table VI).

2) LTGO results: Even when the FAN was fine-tuned with data from one group and 

tested on the other two groups, the error in HC subjects remained lower than patients with 

ALS and PS. Moreover, looking at the average ΔE values reported in Table VII, we can 

observe the following trends:

• Fine-tuning using HC data caused a decrease of nRMSE in ALS and PS groups 

similar to ΔE obtained in HC subjects in the LOSO test.

• Fine-tuning using ALS data caused a decrease of nRMSE in HC and PS groups 

lower than ΔE obtained in patients with ALS in the LOSO test.

• Fine-tuning using PS data caused a decrease of nRMSE in HC and ALS groups 

lower than ΔE obtained in patients PS in the LOSO test.

These results suggested that, at least in the two clinical groups, data from the same 

population were needed when fine-tuning the network.

B. Fine-tuned error vs. disease severity

To further explore how the algorithmic bias changed after fine-tuning the FAN, we 

computed the Spearman’s correlation coefficient between the fine-tuned nRMSE (average 

value for each video) and the corresponding clinical score (average between the two raters). 

Previously, the nRMSE obtained with pre-trained FAN showed a positive correlation with 

the symmetry score in individuals in the PS group (ρ = 0.23, p = 0.017, Table V). After fine-

tuning the FAN on the PS data (LOSO test), this correlation decreased and was no longer 

statistically significant (ρ = 0.10, p = 0.30). A smaller decrease of correlation was obtained 

when the FAN was fine-tuned using data from patients with ALS (ρ = 0.19, p = 0.06) and 

from HC subjects (ρ = 0.17, p = 0.08). This result further confirmed that fine-tuning the 

FAN with data from the population of interests may have important benefits in reducing the 

clinical bias due to the presence of neurological diseases and oro-facial impairment.

VII. Discussion

In this paper, we proposed and described a novel dataset and baseline results for facial 

landmark localization with state-of-the-art face alignment models in patients with ALS and 

PS. To the best of our knowledge, this is the first dataset that includes videos and images of 

facial gestures captured from individuals with these conditions alongside relevant clinical 

scores. The dataset is intended to be made available to the research community to foster 

future release of similar datasets and the development of novel face alignment approaches 

robust to the presence of oro-facial impairments. This dataset will facilitate the development 

of novel and intelligent systems for the automatic assessment of motor speech disorders and 
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oro-facial impairments. In addition to landmark localization, the availability of rich metadata 

such as the diagnosis, clinical perceptual assessment, and type of oro-facial gesture will 

allow researchers to use this dataset for multiple purposes, including automatic classification 

of neurological diseases, estimation of clinical scores, and analysis of facial gestures in 

clinical populations.

In this work, we also demonstrated that even the presence of mild to moderate oro-facial 

impairment can cause a bias in the face alignment accuracy when the algorithms are not 

trained with data from the target populations. This bias translated to higher landmark 

localization errors in individuals with ALS and PS, and there was a statistically significant 

positive correlation between the nRMSE and the severity of facial asymmetry in patients PS. 

These results added further evidence to the presence of a bias in the face alignment accuracy 

in clinical groups, as recently demonstrated in [15], [19]–[21].

A comparison of our results with those in [21] reveals much smaller nRMSE values obtained 

with our data. This difference can be explained by two main factors. First, we used the 

ground truth bounding boxes as the face detector (i.e., ideal case), since our aim was to 

investigate the performance of the face alignment step exclusively. Secondly, our recording 

setting was highly controlled and standardized, with uniform face illumination, short and 

consistent camera-face distance, and frontal face recordings. This standardization helped 

improve the quality of the video recording, which facilitated the performance of the face 

alignment algorithms (see Figure 3). Nevertheless, the pre-trained models were not robust 

enough to the presence of the oro-facial impairments. Future studies will be devoted to 

investigate the face alignment bias in uncontrolled situations, such as video-recordings 

collected in home environments, since one of the end goals of developing intelligent systems 

for oro-facial assessment is to design automated tools for monitoring patients remotely.

As expected, fine-tuning the FAN on data from the Toronto NeuroFace dataset improved the 

landmark localization accuracy. However, despite the improved accuracy, a clinical bias still 

existed after fine-tuning, with errors significantly lower in HC subjects as compared to ALS 

and PS participants. This is consistent with recent findings from Asgarian et al. [19], where 

fine-tuning could not reduce the gap in face alignment error between older adults with and 

without dementia. This result can be explained by the presence of two main types of domain 

shifts in this problem: the first one is the difference between the original training data and 

our dataset; the second one is the presence of oro-facial impairment. Although it is difficult 

to delineate how much of this error reduction depended on each of these two types of 

domain shifts, our results suggested that the former was prevalent. In fact, the error 

reduction in HC subjects was in most cases comparable to the one obtained in the two 

clinical groups, and it can be explained by the composition of our dataset, which included 

older adults who are generally not well represented in the dataset used for pre-training. 

Moreover, recent work [15] suggested that the number of patients needed to remove clinical 

bias in individuals with facial palsy had to be at least 40 or higher. Although our dataset 

included different populations and tasks and thus a direct comparison cannot be made, the 

sizes of our two clinical groups were 3 to 4 times smaller than the proposed sample size. 

Thus, future work will focus on expanding this dataset.
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Despite the small sample sizes, however, some evidence from our experiments also 

suggested that fine-tuning might have some effect – although small – on decreasing the bias. 

In fact, correlation with facial asymmetry decreased and error decrease in clinical groups can 

be slightly higher as compared to HC subjects. Thus, future research will also focus on 

understanding if an optimal composition of dataset for fine-tuning exists and if different 

clinical conditions require different types of data – in addition to larger datasets – for 

removing the algorithmic bias.

VIII. Conclusion

In this work, we developed the first dataset with facial images and videos from individuals 

with oro-facial impairment due to stroke and ALS, as well as videos from age-matched 

healthy control subjects. Our experiments demonstrated that, even in case of standardized 

experimental setup (e.g., frontal face, uniform illumination, short distance from the camera) 

and mild to moderate oro-facial impairment due to neurological diseases, a bias in the face 

alignment accuracy occurred. We also demonstrated that fine-tuning the face-alignment 

algorithm on the target dataset improved the landmark localization accuracy, but only had a 

mild effect on removing the algorithmic bias. Thus, more efforts should be made by the 

research community to publish new datasets with images and videos from clinical 

populations, in this particular case neurological diseases affecting the oro-facial functions.

In addition to new investigations on algorithmic bias in face alignment, future work will 

focus on using this dataset to improve the automatic identification of neurological disorders 

and the estimation of disease severity from videos and images of oro-facial gestures.

The paucity of available datasets with facial images from clinical populations remains the 

main issue that hinders the development of robust face alignment algorithms able to deal 

with the large inter- and intra-group variability present in clinical conditions affecting the 

oro-facial musculature. The availability of novel datasets in the field can foster the 

development of accurate approaches for the automatic assessment of neurological diseases 

and oro-facial impairments.
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Fig. 1. 
Distribution of frames per task.
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Fig. 2. 
Convergence curves for the pre-trained face alignment models, showing the nRMSE (%) vs. 

the percentage of frames with landmark localization error lower than the corresponding 

nRMSE threshold.
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Fig. 3. 
Comparison between pre-trained FAN (top row) and fine-tuned FAN (middle row). Bar plots 

(bottom row) show the nRMSE values corresponding to the above sample frames. In these 

examples, we show how the fine-tuning can improve the landmark localization accuracy of 

facial contour and mouth regions. White: ground truth landmarks; Red: facial landmarks 

obtained with pre-trained FAN; Green; landmarks obtained with fine-tuned FAN.
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TABLE I

Demographic and clinical information for the three participant groups.

Age (years) Duration (months) ALSFRS-R

HC 63.2 ± 14.3 - -

ALS 61.5 ± 8.0 49.6 ± 31.6 34.8 ± 5.0

PS 64.7 ± 14.7 19.4 ± 34.2 -

Duration: months from the date of symptom onset (ALS) or from stroke (PS). (ALS: Amyotrophic Lateral Sclerosis; PS: Post-Stroke; HC: Healthy 
Control; ALSFRS-R: ALS Functional Rating Scale - Revised)
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TABLE III

Overall nRMSE for each pre-trained model. The lowest nRMSE is highlighted in bold.

Method Overall nRMSE (%)

AAM 2.29 ± 0.99

CLM 2.97 ± 1.37

ERT 2.02 ± 0.56

FAN 1.80 ± 0.34

SDM 2.20 ± 0.62
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TABLE V

Correlation between error and oro-facial impairment severity (Symmetry and ROM). Significant correlations 

are reported in bold.

ALS PS

Symm. ROM Symm. ROM

AAM
ρ 0.038 −0.23 0.10 −0.21

p val 0.74 0.04 0.30 0.03

CLM
ρ −0.12 −0.02 0.15 −0.22

p val 0.30 0.89 0.11 0.03

ERT
ρ −0.09 −0.31 0.23 −0.29

p val 0.44 0.007 0.02 0.003

FAN
ρ −0.12 0.12 0.23 0.01

p val 0.31 0.32 0.02 0.91

SDM
ρ −0.17 −0.12 0.27 −0.19

p val 0.14 0.29 0.006 0.05
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