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Abstract

Pregnancy is a complicated and long procedure during one or more offspring development

inside a woman. A short period of oxygen shortage after birth is quite normal for most babies

and does not threaten their health. However, if babies have to suffer from a long period of

oxygen shortage, then this condition is an indication of pathological fetal intolerance, which

probably causes their death. The identification of the pathological fetal intolerance from the

physical oxygen shortage is one of the important clinical problems in obstetrics for a long

time. The clinical syndromes typically manifest five symptoms that indicate that the baby

may suffer from fetal intolerance. At present, liquid biopsy combined with high-throughput

sequencing or mass spectrum techniques provides a quick approach to detect real-time

alteration in the peripheral blood at multiple levels with the rapid development of molecule

sequencing technologies. Gene methylation is functionally correlated with gene expression;

thus, the combination of gene methylation and expression information would help in screen-

ing out the key regulators for the pathogenesis of fetal intolerance. We combined gene

methylation and expression features together and screened out the optimal features, includ-

ing gene expression or methylation signatures, for fetal intolerance prediction for the first

time. In addition, we applied various computational methods to construct a comprehensive

computational pipeline to identify the potential biomarkers for fetal intolerance dependent on

the liquid biopsy samples. We set up qualitative and quantitative computational models for

the prediction for fetal intolerance during pregnancy. Moreover, we provided a new prospec-

tive for the detailed pathological mechanism of fetal intolerance. This work can provide a

solid foundation for further experimental research and contribute to the application of liquid

biopsy in antenatal care.
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Introduction

Pregnancy is a complicated and long procedure during one or more offspring development

inside a woman [1, 2]. Various pathological syndromes and severe situations may occur during

pregnancy [3–5]. Fetal intolerance, which is also known as fetal distress, is one of the common

but dangerous situations during birth processes [6]. It generally refers to babies suffering from

oxygen shortage during the birth processes [6–8]. A short period of oxygen shortage after birth

is quite normal for most babies and does not threaten their health [7]. However, if babies have

to suffer from a long period of oxygen shortage, then this condition is an indication of patho-

logical fetal intolerance, which probably causes their death.

The identification of the pathological fetal intolerance from the physical oxygen shortage is

one of the important clinical problems in obstetrics for a long time. The following five symp-

toms according to the clinical syndromes indicate that the baby may suffer from fetal intoler-

ance [9–11]:1) high heart rate or tachycardia; 2) low heart rate or bradycardia; 3) irregular

heart rates or arrhythmia; 4) lack of movement in the womb; and 5) stool found in the amni-

otic fluid. For example, the alteration of the heart rate is quite normal for new born babies.

However, the constant abnormal heart rate patterns and alterations strongly indicate patholog-

ical fetal intolerance [11]. Fetal intolerance is actually a quite severe disease and leads to the

death of babies. The medical staff must save the baby after the manifestation of severe symp-

toms and try to find out an accurate and effective way to predict fetal intolerance (e.g., quick

early diagnosis).

With the rapid development of molecule sequencing technologies, liquid biopsy [12–14]

combined with high-throughput sequencing or mass spectrum techniques, provides a quick

approach to detect real-time alteration in the peripheral blood at multiple levels (e.g., genomics

[12], transcriptomics [13], and proteomics [14]). Various genetic variations, such as mutations

in IGF-II and H19, have already been confirmed to participate in the pathogenesis of fetal

intolerance [15]. The genomic methylation status has also been confirmed to be functionally

correlated with fetal intolerance. In 2018, an independent study on the methylation status of

SLC9B1 has confirmed that such methylation pattern can actually predict the clinical outcome

of potential pregnancy related to fetal intolerance [16]. Gene methylation is functionally corre-

lated with gene expression. Thus, the combination of gene methylation and expression infor-

mation would help in screening out the key regulators for the pathogenesis of fetal intolerance.

We combined gene methylation and expression features together and screened out the opti-

mal features, including gene expression or methylation signatures for fetal intolerance predic-

tion, for the first time. Moreover, we have applied various computational methods to construct

a comprehensive computational pipeline to identify the potential biomarkers for fetal intoler-

ance dependent on the liquid biopsy samples. We set up qualitative and quantitative computa-

tional models for the prediction for fetal intolerance during pregnancy. Furthermore, we

provided a new prospective for the detailed pathological mechanism of fetal intolerance. This

work can provide a solid foundation for further experimental research and contribute to the

application of liquid biopsy in the antenatal care.

Method

Data

We downloaded the gene expression and methylation profiles of fetal intolerance from Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE107460) [16]. We extracted 22 fetal intolerance and 96 control samples with gene expres-

sion and methylation profiles from the original dataset. The expression levels of 15,505 genes
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were measured with Illumina HumanHT-12 V4.0 expression beadchip. The methylation data

were measured with Illumina HumanMethylation450 BeadChip. The probes with missing val-

ues in more than 20% of the samples were removed. Thereafter, the remaining missing values

were imputed with function impute.knn (K = 10) by using R package impute (https://

bioconductor.org/packages/impute/). Lastly, 449,094 methylation probes were found. We

would like to investigate the gene expression and methylation difference between fetal intoler-

ance and control samples.

SMOTE

The dataset we analyzed here has unbalanced numbers of positive and negative samples (i.e.,

22 vs. 96). We first applied the synthetic minority oversampling technique (SMOTE) [17] to

obtain a balanced data benefitting the classification model construction. SMOTE aims to itera-

tively produce new samples for the minor sample class (i.e., fetal intolerance samples) to

ensure that the sample numbers of this minor sample class will be equivalent to that of the

major one (i.e., control samples) when SMOTE is finished. In this study, the tool “SMOTE” in

Weka is used to produce equivalent numbers of samples.

Boruta feature filtering

Boruta feature filtering [18] can filter all features relevant to the target outputs on the basis of

random forest (RF) in a wrapper manner. This algorithm recognizes important features by

comparing the importance scores corresponding to the real and shuffled features. The follow-

ing are the three main calculation steps for the Boruta approach: i) production of a new shuf-

fled dataset by copying the training dataset and shuffling the feature values; ii) calculation of

the importance score of each feature by training a RF classifier on the shuffled dataset; and iii)

evaluation of the importance score of each feature in the original training dataset to retain the

real features with remarkably higher importance scores than the shuffled features.

Feature ranking and selection

Minimum redundancy maximum relevance. Minimum redundancy maximum rele-

vance (mRMR) [19–22] holds two key assumptions: one is to select features with minimum

redundancy among themselves; and the other one is to select features with maximum rele-

vance with class labels. The mRMR filters informative features by selecting the features that

simultaneously satisfy the minimum redundancy and maximum relevance measured by

mutual information. These factors are important or informative to ensure that the following

classification model can distinguish class labels (e.g., fetal intolerance or not in this work).

Incremental feature selection. Incremental feature selection (IFS) [23] can iteratively

determine the optimal number of selected features with feature order. First, IFS selects a series

of feature subsets from the mRMR ranked features. For example, the first selected feature sub-

set consists of the top-ranked one feature, and the second one is composed of the top-ranked

two features. In each training data consisting of features from each feature subset, IFS trains

one classification model. The performance is evaluated in the 10-fold cross-validation [24].

Finally, IFS selects the feature subset with optimal performance as the optimum feature subset.

Classification algorithm. RF. RF [25–27] creates an assemble classification model con-

sisting of several tree classifiers. The RF determines the predicted sample class/category by an

aggregating vote from multiple tree classifiers (i.e., decision trees). The RF produces the final

consensus results by averaging all decision trees’ predictions because a subtle difference exists

between each decision tree. Accordingly, overfitting is avoided, and the model performance

robustness is improved.
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Support vector machine. The support vector machine (SVM) [28–31] is a classification

model based on statistical learning theory. This model can map data samples to a given data

class/category. SVM aims to transform the original data from a low-dimensional data space to

a high-dimensional one by using a given kernel function (e.g., Gaussian kernel). Thereafter,

the model can divide the data samples of each class/category by maximizing the data interval

in the high-dimensional data space during training. Subsequently, the model further predicts/

tests a new sample’ category depending on the interval where this new sample belongs. In this

study, we use the sequence minimization optimization algorithm implemented in Weka soft-

ware [32, 33] to create an SVM for a two-class classification model.

Rule learning classifier RIPPER. We used RIPPER [34] generating classification rules to

classify the samples from different classes/categories. RIPPER can predict new data by learning

the interpretable classification model in accordance with the IF–ELSE rules. Moreover, RIP-

PER can learn all rules for each sample class; it learns the rules for one class and then moves to

learn the rules for the next class. Learning starts from the minority sample class and then to

the second minority sample class until the dominant class. In this study, the “JRip” algorithm

implemented in Weka software was used.

Performance evaluation

In this study, a commonly used evaluation method, namely, the Matthew correlation coeffi-

cient [35–37] (MCC), is used to evaluate the prediction performance of each classification

model within a 10-fold cross-validation. MCC has a value ranging between −1 and +1 and

achieves +1 when the classification model has a good performance. In this study, we evaluate

the two-class classification models. Thus, the MCC for binary problem is adopted as follows:

MCC ¼
TP � TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p ; ð1Þ

where TP, TN, FP, and FN are the number of true-positive, true-negative, false-positive, and

false-negative samples, respectively. Furthermore, we also counted sensitivity (SN), specificity

(SP) and accuracy (ACC) for each model to give a full evaluation.

Results and discussion

In this study, we adopted several advanced computational methods to analyze the gene expres-

sion and methylation profiles of fetal intolerance. The whole procedures are illustrated in Fig

1. This section gave the detailed results and performed the discussion on the results.

Results of Boruta and mRMR

The dataset was first analyzed by Boruta to select key features. 15 relevant features were kept,

which are provided in S1 Table. These features were further evaluated by mRMR method, a

feature list was generated, which are also available in S1 Table.

Selected features and classification models for distinguishing pregnant

patients with or without fetal intolerance

Of the obtained feature list, IFS method generated several feature subsets in a way that the top

feature comprised the first feature subset, the top two features constituted the second feature

subset, and so forth. Fifteen feature subsets were accessed. For each feature subset, a classifica-

tion model was built using one of the three classification algorithms (RF, SVM and RIPPER).

Each model was evaluated by 10-fold cross-validation. This procedure employed SMOTE to
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tackle the problem that control samples were much more than fetal intolerance sample.

Obtained SNs, SP, ACCs and MCCs are listed in Tables 1–3. For an easy observation, we plot-

ted a curve for the IFS results with each classification algorithm, as shown in Fig 2, in which

MCC was set as Y-axis and the number of features was set as X-axis. For SVM, the highest

MCC was 0.796, which was obtained by the top 10 features. Thus, we can build an optimum

SVM model with these top 10 features. The other three measurements (SN, SP and ACC) of

such model are listed in Table 2. The highest MCC was 0.832 for RF when top 11 features

were adopted. Accordingly, an optimum RF model was built with these top 11 features. The

Fig 1. Whole procedures for analyzing the gene expression and methylation profiles of fetal intolerance. The

original dataset is retrieved from Gene Expression Omnibus. Some feature selection methods (Boruta feature filtering

and minimum redundancy maximum relevance) follow to analyze the dataset, resulting in a feature list. Incremental

feature selection generates several feature subsets from the feature list, on each of which a model is built using one of

three classification algorithms. Models are tested by 10-fold cross-validation using synthetic minority oversampling

technique to tackle imbalanced problem. Finally, some efficient classifiers, essential genes and decision rules are

obtained.

https://doi.org/10.1371/journal.pone.0250032.g001

Table 1. IFS performance with RF and different top features.

Number of features Sensitivity Specificity Accuracy Matthew correlation coefficient

1 0.677 0.727 0.686 0.322

2 0.813 0.909 0.831 0.601

3 0.854 0.727 0.831 0.520

4 0.906 0.818 0.890 0.672

5 0.906 0.909 0.907 0.738

6 0.917 0.864 0.907 0.723

7 0.927 0.909 0.924 0.775

8 0.917 0.909 0.915 0.756

9 0.938 0.909 0.932 0.796

10 0.958 0.818 0.932 0.777

11 0.969 0.864 0.949 0.832

12 0.938 0.864 0.924 0.764

13 0.938 0.864 0.924 0.764

14 0.938 0.864 0.924 0.764

15 0.948 0.909 0.941 0.817

https://doi.org/10.1371/journal.pone.0250032.t001
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SN, SP and ACC of this model are provided in Table 1. Evidently, the optimum RF model was

superior to the optimum SVM model.

As RF and SVM are black-box algorithms, their classification principle is hard to under-

stand. Thus, few insights can be obtained. In view of this, we further applied RIPPER in a simi-

lar way. The IFS performance is shown in Table 3, from which a curve was plotted, as

illustrated in Fig 2. The best MCC was 0.687 when top 13 features were used. Thus, an opti-

mum RIPPER model was set up with these features. Other three measurements of this model

are listed in Table 3. Clearly, such model was inferior to the optimum RF and SVM models.

However, some rules can be extracted from this model, which clearly displayed the classifica-

tion procedures. Based on top 13 features, we obtained five rules via RIPPER, which are listed

in Table 4.

Table 2. IFS performance with SVM and different top features.

Number of features Sensitivity Specificity Accuracy Matthew correlation coefficient

1 0.938 0.591 0.873 0.560

2 0.875 0.818 0.864 0.620

3 0.885 0.773 0.864 0.603

4 0.885 0.773 0.864 0.603

5 0.885 0.818 0.873 0.636

6 0.865 0.864 0.864 0.638

7 0.917 0.864 0.907 0.723

8 0.927 0.864 0.915 0.743

9 0.927 0.909 0.924 0.775

10 0.938 0.909 0.932 0.796

11 0.948 0.864 0.932 0.785

12 0.927 0.864 0.915 0.743

13 0.927 0.864 0.915 0.743

14 0.927 0.864 0.915 0.743

15 0.927 0.864 0.915 0.743

https://doi.org/10.1371/journal.pone.0250032.t002

Table 3. IFS performance with RIPPER and different top features.

Number of features Sensitivity Specificity Accuracy Matthew correlation coefficient

1 0.802 0.636 0.771 0.380

2 0.750 0.773 0.754 0.428

3 0.823 0.773 0.814 0.512

4 0.833 0.773 0.822 0.526

5 0.760 0.682 0.746 0.369

6 0.865 0.909 0.873 0.671

7 0.854 0.864 0.856 0.623

8 0.865 0.818 0.856 0.604

9 0.875 0.864 0.873 0.654

10 0.875 0.818 0.864 0.620

11 0.875 0.818 0.864 0.620

12 0.896 0.727 0.864 0.586

13 0.896 0.864 0.890 0.687

14 0.875 0.818 0.864 0.620

15 0.885 0.864 0.881 0.670

https://doi.org/10.1371/journal.pone.0250032.t003
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As previously mentioned, we presented various qualitative and quantitative novel computa-

tional approaches to distinguish pregnant patients with fetal intolerance from healthy pregnant

women dependent on their personal blood gene expression and methylation profiles. We not

only identified a group of effective genes with a specific gene expression or methylation pattern

that contributes to the diagnosis of fetal intolerance but also attempted to set up a set of quanti-

tative rules for accurate and interpretable prediction on the basis of our methods. All the pre-

dicted gene expression and methylation patterns and their quantitative rules have been

confirmed by recent publications. The detailed analysis and discussion on the top-ranked

genes and rules can be seen below.

Optimal genes for fetal intolerance diagnosis and monitoring

Our newly presented computational methods identified fifteen methylation sites that are cor-

related with fetal intolerance and involved in five genes: NHEDC1, COMTD1, DLGAP2,

HEG1, and KIAA1875.

The first gene (NHEDC1) with five methylation sites, also known as SLC9B1, has been

widely reported to participate in the intracellular pH regulation in germ cells [38]. Such gene

has been reported to have quite various biological effects with different methylation statuses

[39, 40]. The abnormal methylation of such gene has been confirmed to participate in cell dif-

ferentiation [39]. Such gene has already been reported as a typical biomarker for the clinical

prediction of fetal intolerance [16], thereby validating the efficacy and accuracy of our

prediction.

The second gene is COMTD1, which encodes an effective methyltransferase with O-methyl-

transferase activity [41–43]. No direct evidence confirmed that COMTD1 can independently

predict fetal intolerance; however, COMTD1 in a mother’s blood is correlated with several

congenital disorders, such as psychotic diseases and autism [44]. Given that congenital

Table 4. Decision rules generated by RIPPER on selected features.

Index Condition Result

Rule1 (cg23159165< = 0.4524) and (cg26222765< = 0.8847) Fetal intolerance sample

Rule2 (cg04944931 < = 0.8437) and (cg00510160< = 0.7120) Fetal intolerance sample

Rule3 (cg19672271 > = 0.05775) and (cg00510160 < = 0.7221) Fetal intolerance sample

Rule4 (cg04944931 < = 0.6588) Fetal intolerance sample

Rule5 Others Control sample

https://doi.org/10.1371/journal.pone.0250032.t004

Fig 2. IFS curves based on the ordered features from RF, SVM, and RIPPER. The model with RF and top 11

features is the best, which produces the MCC of 0.832.

https://doi.org/10.1371/journal.pone.0250032.g002
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disorders are among the major inducements for fetal intolerance [45, 46], biomarkers are cor-

related with such gene to monitor this condition. Furthermore, COMTD1 has been confirmed

to be detectable in the blood on the methylation level [43]. This finding confirms the potentials

of such gene as an effective biomarker for fetal intolerance prediction and monitoring.

DLGAP2 is the third gene encoding a specific membrane associated protein and has been

widely reported to participate in the molecular organization of synapses and neuronal cell sig-

naling [47, 48]. In 2019, an independent study confirmed that the methylation status of such

gene in the blood can monitor the blood sugar level of mothers and maternal insulin sensitivity

during pregnancy [49, 50]. Considering that the blood sugar level of mothers is also patholog-

ically correlated with fetal intolerance [51, 52], such gene can be regarded as a potential bio-

marker during fetal intolerance monitoring and diagnosis.

HEG1 is a quite effective regulator for the heart and vessels during the early developmental

stage [53]. In 2019, a report confirmed that the abnormal methylation regulation on such gene

may induce trophoblast invasion at the maternal–fetal interface, thereby inducing a high level

of mothers’ psychological distress [54] and the abnormal development of fetal hearts [54, 55],

even though not validated in human beings. Considering that fetal heart development has also

been predicted to be correlated with fetal intolerance [56–58], HEG1 can be regarded as an

effective biomarker for fetal intolerance prediction. Gene KIAA1875 known as WDR97 has

been reported as a blood biomarker with moderate functional annotations [59]. This gene has

also been confirmed to be detectable at the epigenomic level in the blood [60]. Thus,

KIAA1875 may act as a quality control biomarker to measure the reliability of the samples,

although no direct reports at present has confirmed its specific role in fetal intolerance

prediction.

Optimal rules for fetal intolerance diagnosis and monitoring

We set up a group of quantitative rules for diagnosing the fetal intolerance in clinical applica-

tion in addition to above qualitative analysis. The four rules are used to evaluate the risk of

pregnant mothers suffering from fetal intolerance. Five methylation sites with specific methyl-

ation tendency (hypermethylation or hypomethylation) contribute to the prediction of these

rules. Among these methylation sites, two genes are annotated: COMTD1 and NHEDC1.

These genes have already been confirmed to be functionally correlated with fetal intolerance in

the above analysis.

The hypermethylation of NHEDC1 and the hypomethylation of COMTD1 contribute to the

identification of patients with fetal intolerance, thereby revealing the specific methylation ten-

dency (hypermethylation or hypomethylation) from the rules. Recent studies have shown that

the methylation of NHEDC1 can indicate the onset of fetal intolerance [16], thereby support-

ing this prediction. COMTD1 is functionally correlated with fetal intolerance, and its hypo-

methylation may cause abnormal congenital disorders [41], thereby inducing pathological

fetal intolerance. Therefore, these quantitative rules contribute to the accurate prediction of

fetal intolerance using blood samples.

Conclusion

In summary, the optimal genes and rules we identified in this study have all been supported by

recent publications. The efficacy and accuracy of our prediction have also been validated. The

blood gene methylation profiling of certain effective biomarkers may be accurate and effective

enough for the clinical monitoring of fetal intolerance during pregnancy by using our newly

presented computational approaches. Therefore, this work may not only reveal several
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potential pathological factors for fetal intolerance but also set up a set of potential diagnostic

standards (biomarkers and rules) for the clinical monitoring and diagnosis of fetal intolerance.
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