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ABSTRACT
Objectives: Using a sample of pediatric chest radiographs (pCXR) taken to rule out 
pneumonia, we obtained diagnostic interpretations from physicians and used learning 
analytics to determine the radiographic variables and participant review processes 
that predicted for an incorrect diagnostic interpretation.
Methods: This was a prospective cross-sectional study. A convenience sample of 
frontline physicians with a range of experience levels interpreted 200 pCXR pre-
sented using a customized online radiograph presentation platform. Participants were 
asked to determine absence or presence (with respective location) of pneumonia. The 
pCXR were categorized for specific image-based variables potentially associated with 
interpretation difficulty. We also generated heat maps displaying the locations of di-
agnostic error among normal pCXR. Finally, we compared image review processes in 
participants with higher versus lower levels of clinical experience.
Results: We enrolled 83 participants (20 medical students, 40 postgraduate trainees, 
and 23 faculty) and obtained 12,178 case interpretations. Variables that predicted for 
increased pCXR interpretation difficulty were pneumonia versus no pneumonia (β = 8.7, 
95% confidence interval [CI]  = 7.4 to 10.0), low versus higher visibility of pneumonia 
(β = –2.2, 95% CI = –2.7 to –1.7), nonspecific lung pathology (β = 0.9, 95% CI = 0.40 to 1.5), 
localized versus multifocal pneumonia (β = –0.5, 95% CI = –0.8 to –0.1), and one versus 
two views (β = 0.9, 95% CI = 0.01 to 1.9). A review of diagnostic errors identified that bony 
structures, vessels in the perihilar region, peribronchial thickening, and thymus were 
often mistaken for pneumonia. Participants with lower experience were less accurate 
when they reviewed one of two available views (p < 0.0001), and accuracy of those with 
higher experience increased with increased confidence in their response (p < 0.0001).
Conclusions: Using learning analytics, we identified actionable learning opportuni-
ties for pCXR interpretation, which can be used to allow for a customized weighting 
of which cases to practice. Furthermore, experienced–novice comparisons revealed 
image review processes that were associated with greater diagnostic accuracy, pro-
viding additional insight into skill development of image interpretation.
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INTRODUC TION

Diagnostic images play an important role in everyday medical prac-
tice. To safely practice emergency medicine, physicians must accu-
rately interpret diagnostic images.1 As such, medical educators must 
teach front-line physician learners how to interpret diagnostic im-
ages to an expert level before these learners graduate and are faced 
with making independent management decisions. Learning analytics 
is a method of understanding and optimizing learning in context. It 
involves measuring, collecting, analyzing, and reporting data about 
learners and their environments. In this way, learning analytics can 
improve on traditional instructor-based curricular designs by using 
the learner's perspective to inform teaching.2,3

The pediatric chest radiograph (pCXR) is one of the most ordered 
imaging tests in children. In emergency departments (EDs) approx-
imately one CXR is ordered per eight pediatric visits,4 and pCXR 
comprise about 25% of all ordered medical images.5 Nevertheless, 
the pCXR is a difficult skill to learn because it is a two-dimensional 
interpretation of three-dimensional anatomy, and there is a limited 
range of gray scale superimposed on each area of a pCXR making 
it difficult to differentiate findings.6 It is not surprising then that 
diagnostic error rates have been reported as high as 30% among 
frontline physicians.4,5,7,8 Since there is a variable presentation of 
pneumonia on pCXR, diagnostic errors are particularly common for 
this subset of pCXR.4,9,10 Unfortunately, interpretation skill does not 
necessarily improve with an increase in years of bedside practice 
as a frontline physician.11 These diagnostic challenges may lead to 
missed pathology, an overprescribing of antibiotics, and litigation 
from patient harm related to these errors.12,13 Considering that there 
are millions of pCXR done in children worldwide, the burden of these 
errors can be substantial.14 To date, data on image interpretation di-
agnostic errors comes from expert opinion of observed errors in the 
clinical arena,4,9,10 and this may provide an incomplete or biased view 
of sources of diagnostic challenges. This presents the potential for 
improvement with learner-level analytic data.

Using a previously established digital environment,15 the main 
objective of this study was to identify learning analytic-derived vari-
ables that predict for an incorrect pCXR diagnostic interpretation. 
By determining the features associated with diagnostic error, one 
can more effectively teach the skill of pCXR interpretation. We also 
compared image review processes of participants with higher versus 
lower levels of clinical experience to better understand what more 
experienced clinicians do to yield a higher diagnostic accuracy.

METHODS

Study design

This was a prospective cross-sectional study. Overall, after collect-
ing a sample of 200 pCXR, we presented these images to study 
participants using customized software to collect data on their 
interpretation errors. We also categorized the pCXR for specific 

variables (details below) and determined variables and image review 
processes that were associated with diagnostic error. We then used 
regression modeling and heat map analyses to derive the image-
based variables and image review process associated with diagnos-
tic interpretation error (Figure 1). This study was approved by the 
Research Ethics Board at the Hospital for Sick Children. The funder 
of this study, Hospital for Sick Children, had no role in the conduct 
or reporting of the study.

Radiograph-based case selection and development

The research group had amassed a consecutive sample of pCXR, 
representing two years (January 1, 2014, to December 31, 2015) of 
experience, from a pediatric ED’s picture archiving and communica-
tions system (Figure  1). From this set, pCXR were selected based 
on quality, ability to verify a diagnosis from a single set of pCXR (vs. 
those that required prior comparison radiographs to confirm a di-
agnosis), educational priorities, and an overall frequency of pathol-
ogy representative of clinical practice. This resulted in a database of 
434 pCXR with verified diagnoses. Of these, 200 were taken to rule 
out pneumonia and were used as the testing-set of images for this 
research. Case solutions for the absence or presence of pathology, 
with respective location where applicable, were determined from 
the official radiology report and a second interpretation by a blinded 
study pediatric radiologist. If there was a discrepancy between the 
report and second read, this was resolved by a consensus discussion 
between the second-read radiologist and a third pediatric radiolo-
gist. If a consensus could not be reached, these cases were excluded. 
A single standardized brief history (age, sex, and history of cough 
and fever) was created and presented for every case to minimize 
participant bias from historical information.16

Radiograph variables

Variable classification

Based on a literature review and the consensus of the study team, 
we identified variables that may be associated with a difficult pCXR 
interpretation4,9,10,17-19: age in years, number of views (one vs. two), 
pneumonia (present vs. absent), baseline abnormal anatomy (present 
vs. absent), nonspecific pulmonary pathology (present vs. absent), 
location of pneumonia (not applicable, one location, multiple loca-
tions), type of pneumonia (not applicable, single lobar consolidation, 
vs. patchy/diffuse), visibility of pneumonia (not applicable, low, me-
dium vs. high), and effusion (present vs. absent). Categorizing the 
variables in each of the 200 pCXR was done independently by a 
pediatric radiologist and pediatric emergency medicine physician 
and they were resolved by consensus. The inter-rater reliability be-
tween the radiologist and pediatric emergency medicine physician in 
classifying these variables was 0.77 (95% confidence interval [CI] = 
0.74 to 0.80). The properties of the final set are described in Table 1.
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Definitions

The pCXR diagnosis of pneumonia present was based on the stand-
ardized World Health Organization definitions and included several 
radiological patterns, such as endpoint consolidation (presence of a 
dense, fluffy parenchymal opacity that obscures the underlying vas-
culature and occupies a portion or whole of a lobe, that may or not 
contain air bronchograms), and patchy pneumonic infiltrates that are 
of insufficient magnitude to constitute consolidation but are routinely 
diagnosed as pneumonia and treated with antibiotics.20,21 If changes 
on the pCXR were indeterminate for pneumonia versus atelectasis, 
these cases were classified as pneumonia and study participants were 
informed to classify these ambiguous cases as pneumonia. We did not 
exclude these cases because it is a common conundrum and important 
for maintaining ecological validity of our sample. We defined a high-
visibility pneumonia as a conspicuous abnormality that had inherent 
high contrast to the normal aerated lung, medium visibility pneumonia 
as an abnormality more difficult to recognize due to its reduced opac-
ity and contrast with adjacent interphases, and low visibility pneumo-
nia as a subtle finding with very low intrinsic opacity and contrast.21 
Baseline abnormal anatomy was defined as nonpulmonary abnormal 
findings such as scoliosis, cardiomegaly, or surgical wires. Nonspecific 
pulmonary findings were defined as features that are not present on 
a completely normal pCXR but do not imply pneumonia, including iso-
lated peribronchial cuffing or streaky atelectasis.

F I G U R E  1 Study design. Chest radiographs (CXR) were collected from a 2-year experience in a pediatric ED. A sample of 200 of these 
CXR were selected for this study. Each image was classified by specific variables. Images were also integrated into software that displayed 
the images, alongside a brief clinical history, and participants had to select if the pneumonia was present (and specific location) or absent, 
with degree of certainty. Participant image review process and responses were recorded into a database
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Pediatric chest radiograph sample from one year of chest 
radiograph imaging in a pediatric emergency department

200 pediatric chest radiographs taken
to rule out pneumonia

Images Classified by Variables
Patient – age, sex
Imaging – baseline pathology; 
presence/absence of pneumonia; pneumonia
type; pneumonia visibility; presence/absence
effusion.

Software Presentation of Chest Radiographs and Participant Responses

Participant actions (e.g. how many views reviewed, time on case) and participant responses
(e.g. pneumonia/no pneumonia and location of pneumonia if applicable) recorded into a database.

Brief history

AP and lateral views

Response options for pneumonia:
Present – probably/definitely
Absent – probably/definitely

Selected present and participant 
must locate pneumonia on image

Next case

TA B L E  1 Chest radiographs variables

Classification variable

All images N = 200

Median age, years (IQR) 3.1 (1.4, 6.3)

Two radiograph views, no. (%) 186 (93.0)

Baseline abnormal anatomy, no. (%) 20 (10.0)

Non-specific findings, no. (%) 133 (66.5)

Pneumonia, no. (%) 116 (58.0)

Pneumonia images N = 116

Pneumonia Type, no. (%)a 

Consolidation 59 (29.5)

Diffuse/patchy 57 (28.5)

Pneumonia with effusion 11 (5.5)

Location, no. (%)a 

Right upper lobe pneumonia 21 (10.5)

Right lower lobe pneumonia 38 (19.0)

Right middle lobe pneumonia 42 (21.0)

Left upper lobe pneumonia 10 (5.0)

Left lower lobe pneumonia 53 (26.5)

Left lingular pneumonia 15 (7.5)

Multiple locations to pneumonia 47 (23.5)

aTotals equal greater than 116 since there was often more than one of 
these variables present in each CXR. 
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Software presentation of radiograph-based cases

The 200 cases were integrated into a customized online radiograph 
presentation platform that had been previously developed using HTML, 
PHP, and Flash.22 The software enabled participants to view each ra-
diograph and declare whether pneumonia was present or absent and 
their degree of certainty (“definitely present,” “probably present,” “def-
initely absent,” or “probably absent”). The definitely/probably qualifi-
ers acted as a measure of participant certainty of response and can be 
used to measure self-monitoring ability.23 If pneumonia was present, 
participants were asked to select where the pneumonia was located 
by clicking on the respective area on the pCXR. No feedback was pro-
vided about whether the answer was correct or incorrect (Figure 1). 
The software tracked participant progress through the cases and re-
corded responses to a mySQL database.

Participant recruitment

Between April 1 and September 30, 2019, an introductory email and 
recruitment notice was sent to emergency medicine division heads 
and pediatric and emergency medicine postgraduate trainee pro-
gram directors in the United States and Canada. We also contacted 
medical student program leadership at two universities (University 
of Toronto and Western University) and asked that our research so-
licitation be forwarded to third- and fourth-year medical students. 
Interested participants contacted the research team to request par-
ticipation and were enrolled in the study.

Study interventions

Participant interpretation of pCXR and data collection

Secure entry to the cases was ensured via unique participant login 
credentials. Access to the system was available 24 hours per day, 
7 days per week. Upon access, participants reviewed a document that 
detailed the study and provided assurances of confidentiality and 
voluntary participation. We collected demographic information on 
participants with regard to experience level (medical student, post-
graduate trainee, faculty), most recently completed training where 
applicable (pediatrics, emergency medicine, pediatric emergency 
medicine, other), year of postgraduate training where applicable, fac-
ulty/medical student, postgraduate year of training, number of years 
of practice for nontrainees (0–5, 6–10, 11–15, 16–20, >20 years), ra-
diology elective in your training (yes vs. no), and primary practice 
setting (university-affiliated general hospital, university-affiliated 
pediatric hospital, non–university-affiliated general hospital, non–
university-affiliated pediatric hospital). Participant learning analytic 
data collected included case-level participant accuracy, time spent 
reviewing each case, participant degree of certainty (probably ver-
sus definitely for each response),23 and number of pCXR views re-
viewed prior to submission of response. Participants were required 

to complete a minimum of 50 cases and were given 4 weeks to com-
plete the cases. Those who did not complete the cases by 2 weeks 
were provided with one reminder email. As a token of appreciation, 
participants who completed all 200 cases were granted free access 
to an online course on pCXR interpretation.

Descriptive review of heat maps

Heat maps were used to help visualize errors made by participants 
directly on diagnostic images.24 A panel of three of the physicians 
(two pediatric emergency physicians and one pediatric radiologist) 
met to review the heat maps of 10 most difficult “pneumonia-absent” 
images. Their impressions were recorded in field notes, which, cor-
related to the images, described themes relevant to errors in pCXR 
interpretation.

Outcomes

Variables associated with radiograph 
interpretation difficulty

The primary outcome of the study was the association of the afore-
mentioned independent pCXR variables to the dependent variable 
of pCXR item interpretation difficulty. We also descriptively deter-
mined variable-related themes in normal pCXR that demonstrated 
the highest frequency of errors.

Participant process measures

We compared image review processes (performance, time on case, 
certainty, number of views) in participants with higher versus lower 
levels of clinical experience. We also examined the interaction of 
experience level with different process measures (time on case, cer-
tainty, number of views) on case correctness.

Data analyses

Sample size

Sample size was determined in two respects: the number of persons 
rating each case to obtain a target precision of difficulty estimate 
and the number of cases per pediatric CXR variable for linear re-
gression modeling. For the case ratings, we determined the sample 
size based on a target precision for each case difficulty estimate or 
a 95% CI of ±0.5 logits, requiring a minimal sample size of 50 in-
terpretations per CXR, a standard that is commonly cited in other 
IRT applications.25-27 For the linear regression analysis, we needed 
15 cases/variable entered into the multivariate model to minimize 
overfitting the data.28
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Unit of analysis
Each set pCXR completed by a participant was considered one case. 
Pneumonia-absent pCXR were scored dichotomously depending on 
the match between the participant's response and the reference 
standard diagnosis. Pneumonia-present pCXR were scored correct 
if the participant had both classified it as pneumonia present and in-
dicated the correct region of abnormality on at least one of the case 
radiograph views. A “correct case” given a score of 1 and an incorrect 
case was given a score of zero.

Learning analytics to determine variables associated 
with pCXR interpretation difficulty

CXR difficulty score
We used all available data for this analysis. One-parameter item re-
sponse theory was used to derive interpretation difficulty scores 
for each of the CXR; this technique is widely used in education to 
calibrate and evaluate items in tests to score subjects on their abili-
ties, attitudes, or latent traits.25,27 Item response theory models the 
response of each participant  of a given ability to each radiograph 
case,  and  it  is based on the idea that the probability of a correct 
response to an item is a function of the participant's ability and case 
parameters. Under item response theory, item difficulty is expressed 
using the unitless logit metric, the natural logarithm of the odds of 
answering the item correctly, akin to a logistic regression. The con-
tinuous logit scale is centered at zero such that an item of average 
difficulty has a logit value of 0, easier items take on negative val-
ues and more difficult items take on positive values. Item response 
theory is a kind of logistic regression whereby the logit transforma-
tion of a 0 (incorrect)/1 (correct) dependent variable is linearly re-
lated to a predictor variable, which in this case is the accuracy of 
the participant. The item response theory difficulty metric is a con-
tinuous variable that was used as the dependent variable in a step-
wise multivariate linear regression to determine what was the best 
combination of the aforementioned radiograph variables that were 
independently associated with the interpretation difficulty score.29 
We reported beta-coefficients and their respective 95% CIs, which 
measured the strength of the effect of each independent variable 
to the dependent variable. Of note, variables with a negative beta-
coefficient implied that a pCXR is easier to interpret with an increase 
in that variable, while variables with a positive beta-coefficient rep-
resent items that were more difficult to interpret with an increase in 
that variable.

Heat maps
We generated heat maps to visually demonstrate the highest fre-
quency of interpretation errors on pCXR without pneumonia. 
Specifically, heat map software recorded the locations that partici-
pants clicked to indicate where they thought the pneumonia was 
located. The size and color of each hot spot was determined by the 
frequency of click in a respective area. Red color represented a rela-
tively higher frequency and blue represented a lower frequency of 

clicks in that area.24 The unmarked radiographs were then compared 
to the overlaid image showing hot spots to derive image- or patient-
based variables that led to an incorrect diagnosis in pCXR without 
pneumonia.

Learning analytics to examine participant image 
review processes

Participant accuracy was measured as the proportion of cases cor-
rect over the 200 case-set experience. The proportion of cases 
where the participant reviewed all available views was also calcu-
lated. For time on case, we plotted our data and found that only 
1.4% of participants exceeded a 100-second time on case, and these 
participants stayed idle on case for more than 300 seconds (5 min-
utes), suggesting that they left the case to do something else. Thus, 
we capped time on case at 100 seconds. We then reported the me-
dian time on case in seconds. Participant certainty was measured as 
the proportion of cases responded with “definitely.” Since partici-
pant process measures were not normally distributed and included 
nonparametric data, we used the Kruskal-Wallis test to compare for 
differences among the three experience levels for these variables. 
We also used a multilevel logistic regression model to examine the 
effects of process variables (two views reviewed, participant cer-
tainty, and time on case) and experience level (medical student, 
postgraduate trainee, faculty) on the dependent binary outcome of 
case correctness.29 This model allowed us to examine whether the 
probability of case correctness was independently associated with 
each process variable as well the extent to which the relationship 
changed with different levels of experience (i.e., the presence of an 
interaction effect). To visualize the effects, we present marginal ef-
fects plots.30 We used a Bonferroni correction such that significance 
was set at < 0.02 (0.05/3).

Analyses were conducted using SPSS software analysis package 
(version 26), except for the interaction analyses, which were con-
ducted using STATA (version 16) and one-parameter item response 
theory, which were derived using Rasch Modeling in SAS (IBM, 
Version 9.3).31

RESULTS

Study participants

We enrolled 83 participants who completed at least one case. Of 
these, 75 (90.4%) completed at least 50 cases, and 52 (62.7%) com-
pleted all 200 cases. There were no differences between participants 
who completed fewer than 50 cases versus 50 to 199 cases versus 
200 cases with respect to the demographics practice setting or ca-
reer level. Of the 83 participants, there were 20 (24.1%) medical stu-
dents; 40 (48.2%) postgraduate trainees, of whom 23 were PGY-3 to 
-6; and 23 (27.7%) faculty-level participants (14 pediatricians, 12 gen-
eral, and nine pediatric emergency physicians). Furthermore, 78.3% 
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practiced in Canada (Data Supplement S1, Table S1, available as sup-
porting information in the online version of this paper, which is avail-
able at http://onlin​elibr​ary.wiley.com/doi/10.1002/aet2.10592/​full).

CXR interpretation diagnostic errors and 
difficulty scores

We collected 12,178 case interpretations in total, with a median 
of 61 interpretations per pCXR. Of the 2,994 incorrect diagnostic 
interpretations, 2,431 (81.2%) were false negatives (under call of a 
pneumonia), while 563 (18.8%) were false positives (over call of a 
pneumonia; absolute difference = 62.4%, 95% CI = 58.6 to 65.8). On 
the item response theory logit scale, the median difficulty interpre-
tation score of all pCXR images was –2.40 logits (95% CI = –3.87 to 
+0.10), with difficulty scores skewed toward easier interpretations 
(Figure S1). Cases with pneumonia absent (mean = –3.82 logits) were 
significantly easier to interpret than cases with pneumonia present 
(mean = –0.62 logits, mean difference = –3.21 logits, 95% CI = –3.84 
to –2.57).

Variables associated with pCXR interpretation 
difficulty score

Linear regression analysis

The interpretation difficulty score increased with the presence of 
nonspecific pulmonary findings and a pneumonia that was low in 
visibility and in a single location. In contrast, the presence of two 
versus one view of pCXR for the participant to review decreased the 
interpretation difficulty score of a case (Table 2). The adjusted R2 of 
model was 0.65, and there was no evidence of collinearity (VIF < 5 
and tolerance > 0.10 for all variables).

Descriptive review of CXR heat maps

Four themes of diagnostic error emerged from review of the pCXR 
without pneumonia that demonstrated a high frequency of diagnos-
tic error (Figure 2). Bony structures (i.e., ribs and scapula), vessels in 
the perihilar region, peribronchial thickening, and thymus were often 
mistaken for consolidation. Furthermore, nine of the 10 most diffi-
cult normal images were in patients less than 5 years of age.

Participant process measures

Image review process comparisons between 
career levels

There was no significant difference among career stages of partici-
pants with respect to frequency of two views reviewed (Table 3). 
However, in a significant interaction effect, the probability of case 
correctness increased for medical students when they examined 
both views but was significantly decreased in comparison to medi-
cal students when faculty (p = 0.003) examined both views (Figure 
S2A).

We also observed a significant difference among career levels 
with respect to participant certainty (Table 3); in particular, faculty 
responded using “definitely” more frequently than medical students 
(p = 0.002). In addition, the probability of correct case was not dif-
ferent across the groups when they responded with “probably,” but 
differentially increased for faculty (p < 0.0001), compared to medical 
students, when they submitted a response with “definitely” (Figure 
S2B). However, 25.2% of incorrect faculty responses were still sub-
mitted with the “definitely” qualifier. Median time on case did not 
differ among groups (Table  3), but a longer time spent on a case 
was associated with a decreased probability of case correctness 
(p < 0.0001; Figure S2C).

TA B L E  2 Variables associated with 
increased CXR interpretation difficultyVariable Included variables Excluded variables

Age (years) — –0.059 (–0.10 to 0.02)

One vs. two views 0.95 (0.015 to 1.86) —

Baseline abnormal anatomy absent vs. present — –0.05 (–0.83 to 0.73)

Nonspecific pathology–absent vs. present 1.0 (0.48 to 1.54) —

Pneumonia absent vs. present 8.56 (7.41 to 9.71) —

Visibility of pneumonia–low, medium, vs. high –2.31 (–2.75 to –1.89) —

Location of pneumonia–single vs. multiple –0.42 (–0.75 to –0.10) —

Type of pneumonia–lobar vs. diffuse/patchy — –0.28 (–0.97 to 0.41)

Effusion present vs. absent — 0.22 (–0.86 to 1.30)

Note: Data are reported as beta-coefficient (95% CI).
Abbreviation: CXR, chest radiograph.
aA negative beta-coefficient implies a relationship that demonstrates that an increase in that 
variable's quantity results in an image that is easier to diagnose, while a positive beta-coefficient 
demonstrates that an increased in that variable's number results in an image that is more difficult 
to diagnose. The first category of each variable was assigned the lowest numeric category (e.g., 
absent = 0). 

http://onlinelibrary.wiley.com/doi/10.1002/aet2.10592/full
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DISCUSSION

Using learning analytics and a higher–lower experience participant 
comparison study, we prospectively identified actionable learn-
ing opportunities in a complex visual diagnosis domain, the pCXR. 
Specifically, we identified several image-based variables that were 
associated with a difficult pCXR interpretation. Furthermore, the 
comparison across experience levels demonstrated that image re-
view processes may impact resultant accuracy. Overall, these learn-
ing analytic data can be used to identify instructional priorities, 
methods, and assessments for the task of visual diagnosis.

Currently, most case difficulty assignments are derived using 
expert opinion and often on a relatively small sample of items.32,33 
In contrast, this study used a sample of radiographs that is rep-
resentative of broad range of pCXR taken in clinical practice to 

rule out pneumonia. This provided a comprehensive and reliable 
stimulus sample upon which participant responses are measured 
to determine interpretation difficulty scores.33,34 Furthermore, 
expert opinion of assigning difficulty to items has been found 
to correlate poorly with data-driven estimates of item difficulty 
index across a variety of clinical skills.35,36 Prior work has also a 
used an epidemiological approach to identify pCXR features that 
may add to diagnostic difficulty,9,18,37 but this approach may be 
less efficient than the approach used in this research, where we 
were able to acquire over 10,000 pCXR interpretations across a 
range of physician interpretations that work in different settings 
in just a few months. Thus, the methods used in this research 
may provide a more efficient, reliable, and valid mechanism rel-
ative to other study methods for deriving in-depth information 
on diagnostically challenging cases and opportunities for future 
research.33,34,38

F I G U R E  2 Variable-related themes (A–D) identified during descriptive review of the most misdiagnosed normal pediatric CXR. Image 
examples present with respective heat map analyses, which demonstrate the relative frequency of areas that participants thought there was 
a pneumonia. The unmarked radiographs were compared to the overlaid image showing hot spots to derive themes. CXR, chest radiographs

(A) Participants Misdiagnosed Bony Structures and Vessels for Pneumonia

Participants mistook bony structures (rib and scapula) for pneumonia. In the image above 
participants mistook the scapula and normal pulmonary vessels such as the interlobar arteries, 
left upper lobe segmental arteries and inferior pulmonary veins for a consolidation. 

Scapula
(superior angle)

Interlobar arteries
Inferior pulmonary 
veins

Segmental arteries of 
left upper lobe
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Participants made diagnostic errors with regular frequency in 
both pCXR with and without pneumonia, but most of the diagnos-
tic errors were false negatives. Based on our data, the reasons for 
this may be related to diagnostic interpretation competency is-
sues among our participants since the greatest challenges were in 
pCXR with low visibility and pneumonia in a single location. These 
types of errors may have also been represented more in this study 
since 60% of the pCXR demonstrated a pneumonia. Nevertheless, 
diagnostic errors in pCXR without pneumonia also occurred, es-
pecially in younger children, and these errors in clinical practice 
can lead to overuse of antibiotics and parental anxiety.8,12,39,40 
Of note, there is a relative paucity of literature examining the 
optimal case mix of diagnoses that should populate teaching sets 
with respect to base rate and spectrum of pathology. Prior work 
in image interpretation has focused on the proportions of normal 

and abnormal radiographs and how this impacts diagnostic sen-
sitivity and specificity trade-offs. Specifically, higher proportions 
of abnormal cases optimize sensitivity but compromise specificity 
and vice versa.41-43 A high prevalence of abnormal cases can also 
overestimate the ability of observers to identify abnormalities and 
limits the opportunity to identify challenging radiographs without 
pathology.41 Future research could explore the optimal case mix 
that also includes more specific variables found to contribute to 
diagnostic challenges such as those identified in this research (e.g., 
location, visibility, and type of pneumonia), and potentially weigh 
scoring differentially for difficult and/or clinically important er-
rors. Importantly, similar data can be derived for other diagnostic 
image sets using our empirical methods to inform the optimal case 
mix and specific image presentations that should be included in 
teaching sets.

(B) Participants Misdiagnosed Vessels for Pneumonia More Commonly with 
Suboptimal Technical Quality of Images

In all of the images without pneumonia, participants commonly mistook normal vessels for 
consolidation in slightly rotated images, as changes in lung density due to asymmetry of 
overlying soft-tissue may be incorrectly interpreted as lung disease, and normal vessels can 
present more “head on” and appear more conspicuous. Multiple areas on both view CXR 
demonstrating vessels or peribronchial thickening were mistaken for areas of consolidation.

Head on view of 
left upper lobe
segmental vessels

Superior 
pulmonary 

veins

Interlobar arteries
Inferior 

pulmonary 
veins

F I G U R E  2 (Continued)
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Image review processes by experienced versus novice partic-
ipants may provide for a more multidimensional view of compe-
tency. Reviewing both views prior to committing to a diagnosis is 
in keeping with radiologist-level image review patterns to optimize 
diagnostic accuracy15; thus, efforts should be made to standardize 
this practice among more less experienced participants, especially 
since we also found that medical student accuracy increased when 
this was performed. Although there were no differences between 
experience levels with respect to time on case, this metric could 
also be used to assess a participant's competency in ensuring a 
sufficient time searching to identify pathology.44 In contrast, we 
found that case correctness decreased as the review time in-
creased, which may suggest that more difficult cases took longer 
to review, and even with a longer search, accuracy was lower in 
these harder cases. A clinician's ability to accurately self-monitor 
the certainty of his or her response can reflect a clinician's ability to 
accurately question diagnoses at the bedside.23,45,46 While faculty 
had a higher probability of case correctness when they expressed 
certainty of their diagnosis, faculty were also paradoxically certain 

for about one-quarter of their incorrect responses. Thus, even 
faculty should be encouraged to keep an open mind about their 
diagnostic impressions, especially in pCXR without evident pneu-
monia. From an educational standpoint, analyzing image review 
processes across experience levels can identify those processes 
that can then be included alongside the more traditional medical 
education content of anatomy and pathology to enable the path 
to expertise.

LIMITATIONS

Image interpretations for the diagnosis of pneumonia were based 
on the expert opinion of pediatric radiologists; however, even 
these expert opinions may be subject to error.10 Nevertheless, in 
the absence of an objective criterion standard, we adhered to the 
standards of using consensus readings since this is analogous to 
the clinical setting where a radiologist's interpretation is consid-
ered the reference standard for the diagnosis of pneumonia.47 We 

(C) Peribronchial Thickening Misdiagnosed as Pneumonia

In many of the images without pneumonia, peribronchial thickening was present diffusely and 
often mistaken for consolidation, especially in the hilar and central regions where the composite 
silhouette of the vessels and bronchi make the anatomy more challenging. This is demonstrated 
in the above image. 

peribronchial 
thickening

F I G U R E  2 (Continued)
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dichotomized the scoring educational outcome, which results in 
less granularity of participant performance compared with a more 
extensive scale. However, the bedside task for clinicians is also 
dichotomous with respect to decision making, and therefore we 
favored ecological validity in our educational design at the mar-
ginal expense of internal validity. Only about half of our enrolled 
participants completed all 200 cases; thus, some of our secondary 

outcomes may be biased by data from more motivated participants. 
The ratings of the CXR may not have been entirely independent, 
which may have led to underpowered analyses. However, we point 
out that participants did not receive feedback on the correctness 
of their response after each case minimizing opportunity of one 
pCXR influencing future interpretations. Furthermore, we rand-
omized the presentation order of the cases so that any given case 

(D) The Thymus in Infants was Misdiagnosed as Pneumonia

This was a radiograph in a 4-month-old male demonstrating the thymus appears as a smooth, 
well defined, lobulated structure towards the right of the anterior mediastinum, with no mass 
effect. However, as seen by heat map densities, many participants diagnosed this area as a 
pneumonia.

Thymus

Participants often 
mistook thymus 
for pneumonia

F I G U R E  2 (Continued)

TA B L E  3 Image review processes across different experience levels

Variable
Medical students
(n = 12)

Postgraduate trainees
(n = 22)

Faculty
(n = 18) p-value

Median accuracy, % (IQR) 65.0 (53.1–72.5) 70.6 (64.5–75.5) 75.5 (72.7–79.8) 0.001

Frequency of two radiograph views reviewed (where available), 
% (IQR)

84.0 (8.6–95.7) 96.2 (85.7–99.5) 97.8 (68.8–100) 0.09

Frequency of participant “definite” response, % (IQR) 22.0 (15.0–32.0) 35.0 (21.5–45.2) 52.0 (34.8–65.5) 0.004

Median time on case,
seconds (IQR)

22.2 (10.8–36.1) 23.1 (17.4–43.0) 29.8 (20.2–55.8) 0.17
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would be just likely to be seen early as late. Finally, the issue of un-
derpowered analyses would only come into play for Type II errors. 
This study was completed in an electronic platform that does not 
provide the same viewing experience as a radiology workstation in 
the hospital setting, and thus participant performance found that 
this study may not translate to performance in clinical practice. 
This study was conducted using participants located in Canada 
and the United States; thus, these results may not be generaliz-
able to other practice settings.

CONCLUSIONS

Using a digital platform, mixed methods, and experienced–novice 
participant comparisons, we identified actionable learning oppor-
tunities in a common but diagnostically challenging radiograph. 
Specifically, we identified imaging features that increased di-
agnostic difficulty, which can inform a customized weighting of 
which cases to include in an education intervention. Furthermore, 
the experienced-novice participant comparisons permitted for a 
more multidimensional view of competency, which includes skill 
development in image review processes as well as performance 
outcomes.
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