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Abstract

Nanoparticles are small particles sized 1–100 nm, which have
a large surface-to-volume ratio, allowing efficient adsorption of
drugs, proteins, and other chemical compounds. Conse-
quently, functionalized nanoparticles have potential diagnostic
and therapeutic applications. A variety of nanoparticles have
been studied, including those constructed from inorganic ma-
terials, biopolymers, and lipids. In this review, we focus on
recent work targeting the severe acute respiratory syndrome
coronavirus 2 virus that causes coronavirus disease (COVID-
19). Understanding the interactions between coronavirus-
specific proteins (such as the spike protein and its host cell
receptor angiotensin-converting enzyme 2) with different
nanoparticles paves the way to the development of new ther-
apeutics and diagnostics that are urgently needed for the fight
against COVID-19, and indeed for related future viral threats
that may emerge.

Addresses
1Department of Chemical and Process Engineering, University of
Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
2Department of Physics/Archie-West HPC, University of Strathclyde,
107 Rottenrow East, Glasgow, G4 0NG, UK
3Strathclyde Institute of Pharmacy and Biomedical Sciences, Univer-
sity of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK

Corresponding author: Farouq, M.A.H. (haider.farouq@strath.ac.uk)
Current Opinion in Colloid & Interface Science 2021, 54:101461

This review comes from a themed issue on Hot Topic: COVID-19

Edited by Reinhard Miller and Libero Liggieri

For complete overview about the section, refer Hot Topic: COVID-19

https://doi.org/10.1016/j.cocis.2021.101461

1359-0294/© 2021 Elsevier Ltd. All rights reserved.

Keywords
Nanoparticles, COVID-19, SARS-CoV-2, Proteins, Therapeutics,
Diagnostics.
Introduction
Nanoparticles (NPs) are very small materials with a
dimension between 1 and 100 nm. Their key physico-
chemical properties include a high surface area-to-
volume ratio, solubility, surface topology/morphology,
www.sciencedirect.com
and controllable aggregation, making them suitable for

application in a variety of commercial and domestic
sectors, including electronics, catalysis, environment,
imaging, energy, automotive, and health care [1]. There
are various types of NPs, from inorganic materials, such
as gold, silica, graphene, and iron oxide, to organic ma-
terials where the main groups include liposomes, mi-
celles, protein/peptides, and dendrimers. They are
particularly useful in health care applications, mainly
because of their high capacity for adsorbing bio-
molecules [2].

Pharmaceutical nanotechnology is the development of
therapeutic materials and devices at a nanometer scale,
and there are several advantages to exploiting NPs in
drug delivery. These include but are not limited to (1)
improvement in the solubility of certain drugs; (2)
controlled, sustained release of drugs for a long-term
effect; (3) reduction of the side effects of some drugs;
(4) targeting of specific cells; (5) administration routes;
and (6) delivery of drugs in a secure manner, so that they
are protected from degradation in the body and can
effectively reach the target cells intact [3]. NPs can

display efficient adsorption of proteins, drug molecules,
and a variety of other chemical compounds. Therefore,
NPs can carry a varied cargo load [4], making them
efficient not only for drug delivery but also diagnostic
and therapeutic applications.

In this review, we explore how NPs have been used to
develop approaches to tackling COVID-19, focusing on
the interactions between NPs and the adsorption of
molecules such as proteins and drugs. We start with a
brief overview of properties of the NP and their poten-

tial antiviral applications. We then review the SARS
coronavirus (SARS-CoV-2) that causes COVID-19 and
its proteins that are the targets for new
technologies before turning to the various types of NPs
that can be used as the basis for these technologies.
Alternative approaches to treating COVID-19, for
example, by repurposing drugs that were previously
successful against other viruses, is discussed, followed
by an overview of developments in diagnostics. We
conclude the review with a summary and forward look as
to how understanding the interactions between the
Current Opinion in Colloid & Interface Science 2021, 54:101461
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2 Hot Topic: COVID-19
different molecules and NPs could be used to rationally
design new technologies to help tackle this pandemic
and future coronavirus disease.
NP-biomolecule interactions and
applications
Physicochemical properties
Selective and targeted delivery of modified NPs could
enable specific detection and even destruction of vi-
ruses. To ensure this happens efficiently, it is important
that the NPs are correctly optimized to ensure
maximum efficacy and correct bioavailability, as well as
negating any toxic effects, particularly those related to

the formation of reactive oxygen species (ROS) [5].
Furthermore, the rate of cellular uptake of the NPs
depends on their physicochemical properties and the
membrane characteristics at the site of interaction [6].

The key properties of NPs (Figure 1) make them ideal
for a variety of effective systems. They can be porous or
even hollow and are often amenable to surface chemistry
modification. Proteins adsorbed on NPs normally form a
dynamic corona, and protein conformational changes
associated with the adsorption influence the overall

in vivo bioreactivity [7]. The nature of NPs can influence
the folding and unfolding properties of the protein, and
by tuning the properties of the NPs, it can open new
Figure 1

A schematic diagram showing drug loadin
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prospects in producing biologically active molecules.
Thus, understanding the properties of the corona is
essential [8]. The interactions between NPs and a
particular protein can use a noncovalent route, with the
solvent having a critical role to facilitate the interaction
[8]. Consequently, it is vital to use a solvent in vitro that
mediates the same interactions in vivo [9].

The biodegradation of NPs also requires attention, as
uniform biodistribution kinetics and sustained drug
release are key elements in the drug design process.
Absorption, distribution, metabolism, and excretion are
pharmacokinetic features linking directly to the nature
and profile of these systems, and it is therefore crucial to
account for all these factors when designing a nano-
particulate therapy [10].

Antiviral applications
Several inorganic NPs have been explored previously for
their applications in drug delivery for viral infections.
GoldNPs have a particular advantage in nanovaccines, as
they can function as adjuvants (compounds to boost an

immune response) in immunization. For example, their
use was investigated against influenza A virus to combat
mutations, which made the virus resistant to existing
antiviral drugs [11]. Silica NPs were investigated as a
vaccine platform against human immunodeficiency virus [12],
g options in NP targeted drug delivery.
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Figure 2

Diagram showing the structural proteins of the SARS-CoV-2 virus.
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and quantum dots, which have excellent sensing proper-
ties, can be used for antiviral therapeutics as well as for
detection and diagnosis [13].

Silver NPs have also been investigated for their antiviral
activity [14,15]. Antiviral activity against Peste des petits
ruminants virus depends on the NP interaction with
virion surface, and this interaction impairs viral entry

into target cells [14]. These NPs may lead to better
antiviral activity when used in conjunction with bron-
chodilators in the lungs, and this technology could have
promising applications in treating COVID-19 patients
[15].

Several organic NPs have also been used in pharma-
ceutical applications, for example, Cyclodextrin NPs,
which are cyclic oligosaccharides with a hydrophilic
outer surface and a lipophilic central cavity. Garrido
et al. [16] suggested the use of cyclodextrins against

COVID-19. These NPs maybe particularly helpful
because of their physical properties with polar hydroxy
groups oriented specifically, allowing increased solubil-
ity and decreased toxicity of the associated drug.
Furthermore, they are highly biocompatible, meaning
they do not generate an immune response. Lipid NPs
(LNPs), often used in novel pharmaceutical formula-
tions, are readily integrated into medicines. This is
because of their high biocompatibility, low toxicity,
ability to cross membranes, and seamless integration
with hydrophobic/hydrophilic drugs.

NPs can be readily made with a similar size to the
virus and may interact with proteins associated with the
SARS-CoV-2 virus, disrupting viral replication and dis-
ease prognosis [17]. The use of NPs against SARS-CoV-2
has tremendous potential because of their specific
properties, including (1) precise targeting of cellular
entry pathways, (2) targeted binding to the viral
genome, (3) modulation of viral transcription, (4) trig-
gering the production of ROS, and (5) activation of
signaling pathways at a mitochondrial level [18].

Tabish [18] explored the multivalent nature of nano-
medicines and how this may be particularly useful in the
fight against COVID-19. Multivalent NPs have several
advantages over standard monovalent drugs, including a
high density of binding sites on each NP, the ability to
form multivalent ligand receptor pairs, multifold RNA
hybridization, and the transformation of inactive NPs
intomultivalent conjugates [18].Multivalencymay work
against SARS-CoV-2 effectively with cell entry through
receptor-mediated endocytosis [19]. Hassanzadeh [20]
also suggested the use of multivalent NPs against

COVID-19. Given the similarities in the shape of syn-
thetic NPs and SARS-CoV-2, they could be particularly
useful for investigationwith drug repurposing, enhancing
properties of existing drugs and compounds against
COVID-19.However, caution is required becauseSARS-
www.sciencedirect.com
CoV-2 may induce a hyperinflammatory response, driven
by a dysregulated macrophage response [21]. Therefore,
it is important to look at the properties of any material to
ensure that it does not interact negatively in vivo.
SARS-CoV-2
Description of the virus and its function
SARS-CoV-2 is spread predominantly from person to
person by droplets generated when an infected person
coughs, sneezes, or talks. Infection may also occur by
touching contaminated surfaces and then the face
without first washing hands, and the fecal-oral route may
also be a source of transmission for the virus [22]. The

base symptoms include fever, cough, shortness of
breath, fatigue, and loss of taste and/or smell. Depend-
ing on other factors such as infection level, age, and
ethnicity, the symptoms may be extended to include
headache, hemoptysis, or diarrhea. This highlights the
severity of the virus, which can be fatal [23]. Therefore,
the development of a new treatment for this virus is a
priority for researchers globally.

Analysis of the genomic sequence of SARS-CoV-2 [24]
shows there are at least six open reading frames (ORFs),

which are segments of an RNA molecule that can be
translated, allowing the production of four main struc-
tural proteins: a spike protein (S), an envelope protein
(E), a membrane protein (M), and a nucleocapsid pro-
tein (N). There is also the viral hemagglutinin-acety-
lesterase (HE) glycoprotein receptor, as illustrated in
Figure 2. The M and E proteins are involved in virus
morphogenesis and assembly [25]. The N protein
guards the RNA inside the M and E proteins, and the S
protein is on the outside and the focal point of infection.

Potential biomolecular targets
The S protein is an important therapeutic and diag-
nostic target, as it is responsible for entry into and

infiltration of the host cell. It is a homotrimer with two
domains, S1 and S2, on each monomer. Analysis of these
Current Opinion in Colloid & Interface Science 2021, 54:101461
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4 Hot Topic: COVID-19
monomers shows that they are highly glycosylated [26],
protecting the protein from the biological environment
and allowing evasion from the host immune system. The
S1 subunit contains the receptor-binding domain
(RBD) that binds to the peptidase domain of
angiotensin-converting enzyme 2 (ACE2; Figure 3), a
cellular receptor expressed on several cell types in
human tissues, and this allows entry of SARS-CoV-2 into
the cell [27].

On cell entry, two ORFs, 1a and 1b, translate to two
polypeptides (1a and 1ab), and this further encodes two
proteases, the main protease (Mpro), also known as the
chymotrypsin-like cysteine protease (3CLpro), and
papain-like protease (PLpro) [28]. These represent sig-
nificant drug targets because inhibition of these will
stop the production of proteins that are critical to viral
transcription and replication [29e31].

The S1 subunit allows entry of the virus into the host
cell, and inhibition of this will block the protein from
interacting with the ACE2 receptor [32]. For example,
immunoadhesins have been investigated for their in-
teractions with the S protein through MD simulations
[33]. Another potential target for therapeutics devel-
opment is the transmembrane protease serine 2
(TMPRSS2) found on host cells [34]. It cleaves
(primes) the S protein into its subunits to enable cell
entry, and inhibition of this process may prevent the
initial entry of the virus.

High-density lipoproteins (HDLs) are particles consist-
ing of several proteins, which transport all fat molecules
around the body. HDL-scavenger receptor B type 1 (SR-
B1) is a cell surface HDL receptor, which has been shown
to facilitate ACE2-dependent entry of SARS-CoV-2 and
Figure 3

Interaction between the ACE2 receptor (blue) and the S protein RBD (red). Ins
structure was obtained from the Protein Databank (PDB entry 6M0J [38]). The
Dynamics 1.9.1).
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further enhance uptake and increase the rate of virus
entry [35]. Wei et al. [35] suggested that blockage of the
cholesterol-binding site on the S1 subunit or treatment
with SR-B1 antagonists inhibits HDL-enhanced SARS-
CoV-2 infection. Therefore, SR-B1 could also potentially
be a target for therapeutic designs. Patel et al. have also
suggested HE as a target [36] to inhibit the virus invasion
mechanism.

The residues responsible for the interaction between
the S protein and the ACE2 receptor have been inves-
tigated by Veeramachaneni et al. [37]. This information
is important for designing any medicine because the
residues required for interaction with the target should
remain free to bind to the therapeutic molecule to allow
effective inhibition. Their analysis has identified the
key residues that interact with the ACE2 receptor (see
Figure 3).
NP-biomolecular systems for COVID-19
Inorganic NPs
The potential of NPs for the treatment of COVID-19 is
promising because of their various properties. Iron oxide
NPs, which have previously been investigated for their

antiviral activity, were simulated for their interaction
with the RBD of the S1 subunit [39]. It was found that a
model Fe3O4 NP forms a stable complex with the pro-
tein, interacting through several hydrophobic in-
teractions primarily with residues Leu455, Ser494, and
Phe497. Therefore, these NPs, which are currently an
approved treatment for anemia, could be repurposed to
treat COVID-19 [39].

Carbon nanotubes (CNTs) have a large load capacity and
good bioavailability, allowing for easy interaction with
et shows key interacting residues between the ACE2 receptor. The crystal
crystal structure was viewed and analyzed using VMD (Visual Molecular

www.sciencedirect.com
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biological barriers in the body [40]. The electrical and
thermal properties of these materials could be used to
develop a CNT functionalized complex, raising the local
cellular temperature using a photodynamic thermal
effect and treating COVID-19 by inhibiting viral repli-
cation [41]. The binding of the S protein to bio-
medically relevant surfaces has been examined
computationally, and it was found that the RBD of the S

protein interacts with negatively charged silica surfaces
so that the epitope (part of the antigen molecule, RBD
in this instance, to which an antibody binds) is exposed.
A model gold surface has also shown good interaction
with the protein [42]. The use of charged or hydro-
phobic surfaces in developing therapies may therefore
be significant as they show good adsorption [42].

Organic NPs
As researchers globally are working to develop an im-
mediate treatment for this new virus, the development of
effective vaccines is also vital. One approach for
messenger mRNA (mRNA) vaccines comprises mRNA
(encoding a specific protein) encapsulated in organic
NPs,most commonly LNPs.OnceLNP conjugates reach

the host cell, the cell machinery follows the encapsulated
mRNA instructions and produces the target protein,
which is then displayed on the cell surface and can
eventually trigger an immune response [43].

The obvious target for the SARS-CoV-2 virus is the S
protein, and an example of mRNA-based vaccine has
been developed by BioNTech in collaboration with
Pfizer. It has been approved by the US Food and Drug
Administration (FDA), the United Kingdom Medicines
and Healthcare products Regulatory Agency (MHRA),

and the European Medicines Agency (EMA), demon-
strating an estimated efficacy of 95% [44,45]. Another
mRNA-based vaccine was developed by Moderna, a US-
based biotech firm [46]. Phase 3 clinical trial demon-
strated that the vaccine has 94.1% efficacy in preventing
COVID-19 [47]. At the time of writing, this has been
approved by the FDA for emergency use and by the
MHRA and EMA.

Self-amplifying RNA (saRNA) is a newer type of RNA
vaccine, which contains a viral replication enzyme
(replicase), allowing it to amplify [48]. The saRNA

enters the host cell, translates the replicase, making a
negative copy of the mRNA. The mRNA strand is used
by the replicase to synthesize more saRNA while
simultaneously binding to a subgenomic promoter in the
negative strand. This synthesizes subgenomic mRNA at
a 10-fold greater concentration than genomic RNA,
encoding the viral antigen more effectively and making a
more efficient vaccine.

McKay et al. investigated the vaccine potential of an
saRNA molecule encoding the S protein, encapsulated

within LNPs [49]. A high concentration of SARS-CoV-2-
www.sciencedirect.com
specific antibody titers in mice was observed. When
compared with the results from a natural immune
response in recovered COVID-19 human patients, the
vaccine resulted in much higher antibody titers, which
were able to neutralize both a pseudo-type and wild-
type SARS-CoV-2 virus. Furthermore, there was no
observation of antibody-dependent enhancement [49],
which could result in enhanced respiratory disease and

acute lung injury after respiratory virus infection. This is
a common concern when developing antibody-depen-
dent vaccines, which could reverse amplify the infection
[50].

Administration routes
NPs can open up a variety of administration routes
beyond injection. For example, liposomes can be
designed for ingestion, protecting the drug from the
acidic environment of the digestive tract to release it
into the tissue of the gut wall [51]. In addition, lipo-
somes have been used to protect sensitive materials
such as mRNA encoding SARS-CoV-2 spike protein, and
this technology was adapted in SARS-CoV-2 vaccines

developed by Pfizer and Moderna [44e47].

For COVID-19, nasal administration would seem to be an
attractive proposition. As the virus primarily enters by
breathing in particles, providing protection at the site of
infection would appear beneficial. One existing flu vac-
cine, FluMist (https://www.flumistquadrivalent.com/),
is sprayed into the patient’s nose where the weakened
virus induces mucosal immunity represented by IgA
antibodies, as well as systemic immunity of the IgG an-
tibodies [52]. This means that the immunized patient

has two layers of defense against the virus and reduced
likelihood of being able to carry and transmit the virus.
Nanoparticulate systems could similarly be administered
through inhalation or nasal spray, providing an attractive
administration routewith potential for greater protection
for the patient and more feasible storage conditions for
health care providers.
Potential new approaches
Repurposing of existing drugs
Drug repurposing represents the concept of imple-
menting an investigational drug for new uses beyond the
original intention [53]. Repurposing drugs for COVID-
19 is an attractive approach, given the need to explore
all the available options to immediately reduce mortality
rates. This approach allows avoidance of the financial,
resource, and time implications associated with the
novel drug discovery process, and researchers and
pharmaceutical companies are increasingly relying on

drug repurposing.

Repurposing brings several other advantages because it
can lower the risk of failure as the drug has already been
evaluated for its toxicity profile. In addition, it can save
Current Opinion in Colloid & Interface Science 2021, 54:101461
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6 Hot Topic: COVID-19
additional time, as many of the drugs have already un-
dergone preclinical and safety assessments. Moreover,
the drugs have already undergone trials, so they may be
able to accelerate Phases 1 and 2 and progress to large-
scale Phase 3 trials. Furthermore, drug repurposing ex-
periments do not always need major laboratory work, and
any required work can often be performed in silico. The
identification of suitable effective drugs is an exciting

prospect, and further combination with NPs may
enhance their biocompatibility and physicochemical
properties. Despite the aforementioned advantages,
repurposing a drug must be approached with caution, as
some drugs can cause polypharmacological side effects,
and intellectual property issues may arise [53].

As discussed earlier, the ACE2 receptor, expressed on
many cell types, is key to the initial cellular entry by
SARS-CoV-2. Therefore, Khelfaoui [54] used molecular
docking combined with MD simulations to study drugs

similar in structure to chloroquine and hydroxy-
chloroquine, which are both approved medicines, aiming
to block the ACE2 receptor. The studies were
performed using two structures, the ACE2 receptor and
SARS-CoV-2 bound to the ACE2 receptor, and the re-
sults showed that ramipril, lisinopril, and delapril, ACE2
receptor inhibitors currently used to treat hypertension,
could bind with the ACE2 receptor better than
hydroxychloroquine. Drugs that have been investigated
for repurposing against key proteins associated with the
SARS-CoV-2 virus are summarized in Table 1. These

could then be used in isolation or conjugated to NPs to
enhance their properties.

Application of natural compounds
Natural compounds have long been studied for their
application in treating disease and have a wide range of
Table 1

A summary of FDA-approved and other antiviral drugs that have been
replication of SARS-CoV-2.

Drug(s) Existing use

Paritaprevir/simeprevir [55] Hepatitis C virus
Remdesivir [56] Ebola virus
Hydroxychloroquine [57,58] Malaria, rheumatoid arthritis, and
Pyronaridine [59] Antimalarial agent
Epirubicin, saquinavir [60–62] Chemotherapy, HIV/AIDS
Mitoxantrone, leucovorin,

birinapant, dynasore [63]
Chemotherapy, rectal cancer,

breast cancer, perturbs endocy
Noscapine ligand 23B [64] Chemotherapeutic agent

Lopinavir-ritonavir, tipranavir,
raltegravir [65,66]

HIV/AIDS, HIV, HIV/AIDS

TMB607, TMC310911 [67] HIV-1 protease inhibitor, HIV/AID
Atazanavir, darunavir [62] HIV/AIDS

Current Opinion in Colloid & Interface Science 2021, 54:101461
diversity in their chemical structures. Their use with
drug delivery systems and other technologies might
accelerate their exploitation [68]. Han [69] studied
peptide inhibitors against the SARS-CoV-2 RBD. The
inhibitors were based on the protease domain of ACE2
receptor, and it was shown through MD simulation that
the peptides are stable when bound to the RBD,
blocking the virus from attaching to the actual ACE2

receptor expressed in human cells, thereby having the
potential to stop infection. Of the four inhibitors stud-
ied, the work identified high stability with 3, which
retained their secondary structures and therefore their
fits to the RBD.

In a separate study, Chen et al. [70] looked at the
prospect of using polysaccharides in developing treat-
ments for COVID-19. These compounds have several
advantages, including low toxicity and good biocom-
patibility, and they are potential targets for the devel-

opment of antiviral treatments. This is because they
may interfere with the viral pathways by blocking the
positive charge on the host cell surface to prevent viral
entry [71]. For example, chitosan NPs were investigated
against the hepatitis C virus [72]. The applications of
natural compounds against COVID-19 are summarized
in Table 2. The versatility of natural compounds may
allow for easier interaction with NPs compared with pre-
existing drugs.
Promising synthetic chemicals
The drug repurposing approach can also be used to
analyze synthetic chemical compounds that might prove
to be effective antivirals. This can be achieved by
screening a database of small molecules against viral
drug targets to identify molecules with possible antiviral
activity or by developing chemical compounds inhouse.
investigated for repurposing against key proteins involved in the

SARS-CoV-2 target protein Binding residues

Mpro His41/Cys145
RdRp Ser759, Asp760, Asp761

lupus Mpro His41/Cys145
Mpro His41/Cys145
Mpro His41/Cys145

tosis
Mpro His41/Cys145, Glu166

Mpro Arg40, Tyr54, Cys85,
Phe181, Arg188,
Glu55, Met82 and Asn84

Mpro His41/Cys145

S Mpro His41/Cys145
Mpro His41/Cys145

www.sciencedirect.com
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Table 2

A summary of natural compounds that have been studied against COVID-19.

Natural Compound(s) Origin Target Key residues

Oridonin [36] Compound from the Naturally
Occurring Plant-Based Anti-
cancer Compound-Activity-
Target (NPACT) Database

HE The114, Thr159, Leu161,
Ala176, Arg177, Tyr184,
Phe211, Leu212, Ser213,
Asn214, Leu267

Epigallocatechin gallate, epicatechin
gallate, gallocatechin-3-gallate [73]

Green tea polyphenols Mpro His41/Cys145

Peonidin 3-O-glucoside, kaempferol 3-
Ob–rutinoside, 4-(3,4-
dihydroxyphenyl)-7-methoxy-5-[(6-O-b-
D-xylopyranosyl-b-D-glucopyranosyl)
oxy]-2H-1-benzopyran-2-one,
quercetin-3-D-xyloside, and quercetin 3-
O-a-L-arabinopyranoside [74]

Plant-based compounds from the
Sigma–Aldrich chemical library

Mpro His41/Cys145, Leu141,
Asn142, Ser144, His163,
Glu166

Procyanidin-a [75] Flavonoid from plants ACE2, Mpro Ser44, Ser47, Asp350,
Asp382, Tyr385, Arg393,
Asn394, His401, Phe40,
Phe390

Melatonin [76] Natural hormone Mpro His41/Cys145
C1 and C2 [77] Natural compounds from Curcuma

Ionga L.
Mpro His41/Cys145, Thr190,

Thr25, Glu166, Thr45,
Cys44, Ser46, Cys145,
Pro168, Met165

Hesperidin, sesamin [78] Natural herbal medicines Mpro His41/Cys145
Theaflavin di-gallate [62,66] Plant-derived natural drug Mpro His41/cys145
Azurin, peptides p18 and p28 [79] Blue copper bacterial protein

produced by Pseudomonas
aeruginosa

S protein, Mpro, and PLpro N-terminal region

Human intestinal defensin 5 [80] Innate defense mechanism ACE2 Asp30 and Lys31
NPRL-334 [81] Natural compound from the Natural

Products Research Laboratories
(NPRL) library

Mpro His41/Cys145, His3304,
Met3428, Pro3431,
Gln3452, Glu3429

TCM 57025, TCM 3495, TCM 20111, TCM
31007 and TCM 5376 [30]

Traditional Chinese medicine
database

N7-MTase Asn306, Arg310, Trp385,
Asn388

Luteolin [82] Flavonoid in honeysuckle Mpro His41/Cys145, Gln189,
Leu4, Asn142, Thr26.
Met49, Val3
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Promising synthetic chemicals that have been investi-
gated against COVID-19 are summarized in Table 3.
Other material applications
Nanobiosensor technology has a potential to enhance
testing, giving rapid and accurate detection of viruses.
This technology works on the premise that the
biomolecule of interest selectively binds to the target
conjugated to a detector, producing a sensing signal that
can be digitally interpreted [90]. Although limited

studies have been reported so far, this technology has
the potential to offer a better and alternative approach
to existing polymerase chain reaction (PCR) testing that
is used to diagnose COVID-19.

A dual-functional plasmonic photothermal (PPT) bio
sensor, combining localized surface plasmon resonance
(LSPR) with a PPTeffect, can detect viral proteins. Qiu
et al. [91] integrated the technologies on a two-
www.sciencedirect.com
dimensional gold nano-island chip, finding that the
sensitivity and reliability of the sensor were enhanced
when the angle of incidence of the illuminating light was
changed. This is because the plasmonic resonances of the

two technologies are excited at different wavelengths,
giving a real-time and label-free detection of viral se-
quences from SARS-CoV-2, including RdRp, ORF1ab, and
E genes. Furthermore, the in situPPTenhancement on the
chip improved the specificity of genomic detection,
meaning similar sequences of RdRp genes from SARS-
CoV (previous pandemic between 2002 and 2004) and
SARS-CoV-2 can be accurately distinguished. This dual-
functional LSPR sensor represents a simple and rapid
diagnostic tool, which could improve the accuracy of
SARS-CoV-2 testing in clinical diagnosis settings. In

addition, it can help or even replace existing PCR tests,
which often need several days to obtain results,may return
false results, and need professional staff to perform the
assay and interpret the results [92].
Current Opinion in Colloid & Interface Science 2021, 54:101461
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Table 3

Summary of promising synthetic chemical compounds.

Chemical(s) Origin Target Key residues

IH-009 and IH-027 [83] Inhouse chemicals PLpro Pro247, Pro248
Neohesperidin [84] Selleckchem database TMPRSS2 Arg55, Gly97, Asn51
Ligand F2679-0163,

Ligand F6355-0442, Ligand 8250 [85]
Life Chemicals Library,

Asinex database
Mpro Leu141, Glu166, Thr190, Gln192, Gly143,

Ser144, His41/Cys145
ZINC20601870, ZINC00793735 [86] ZINC database Mpro His41/Cys145, Hie163, Hie41, Met49, Hie164,

Glu166, Met165, Thr26, Gly143, Asn142, Leu141, Gln189
a-ketoamide 13b ligand [87–89] Inhouse molecule Mpro His41/Cys145
ZINC64606047, ZINC05296775 ZINC database TMPRSS2 His296, Asp345, Ser441, Asp435, Ser460, Gly462
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Lanthanides, a series of rare earth elements, possess
unique physical and electronic features, giving rise to
properties, such as long luminescence lifetimes and
other optical characteristics. Chen et al. [93] investi-
gated lanthanide-doped NPs with a lateral flow immu-
noassay (LFIA) as a biosensor to detect anti-SARS-CoV-
2 IgG antibodies in human sera. The LFIA also included
mouse antihuman IgG and rabbit IgG. A nitrocellulose
membrane was used as the template to mount a re-

combinant phosphoprotein of SARS-CoV-2 to confine
the IgG. Nineteen samples tested previously with
reverse transcription PCR were then retested with the
LFIA, which was found to detect anti-SARS-CoV-2 IgG
in w10 min. Therefore, the LFIA can allow positive
identification of SARS-CoV-2 in potential cases and be
effectively used to monitor COVID-19 progression and
patient responses to treatment.

Biosensor technology is generally promising; however,
there are many challenges to overcome, emphasizing
why the technology still needs comprehensive research

to develop a high-quality sensor for point-of-care di-
agnostics. These challenges include reproducibility,
surface preparation and immobilization conditions, in-
cubation time and temperature, type of biological fluid
used, and sample loading. Furthermore, insufficient
selectivity and specificity of many of these tests means
they are currently unreliable. These factors may restrict
the effective use of this technology for overall SARS-
CoV-2 detection [94].
Conclusions
This review has primarily focused on the applications of
NPs and their interactions with relevant SARS-CoV-2
proteins, as well as suggestions on how NPs may be used
to combat COVID-19. Furthermore, existing drugs that
may be repurposed against COVID-19 and natural and
synthetic compounds that might be enhanced in
conjunction with NPs have also been included. Little is
currently known about NP-based drug delivery systems

for SARS-CoV-2, and a thorough understanding of the
Current Opinion in Colloid & Interface Science 2021, 54:101461
pathogenesis of this novel coronavirus is required to aid
the development of effective agents. A collaborative
global effort is required to find treatments, and the over-
arching aim should be to develop antivirals based on
previous work, as not only will this save time, but it is
likely to work. Further enhancement of these through
combination with NPs may well allow effective appli-
cation of the drug.

As SARS-CoV-2 is a recently identified virus, any at-
tempts to tackle this should be complemented with in
silico studies to optimize the NPedrug interaction.
Computer simulations have allowed effective interpre-
tation of experimental data [95], for example, the widely
used carrier protein bovine serum albumin adsorbing to
a silica surface. Simulation has also previously facilitated
the development of a new model NP-based vaccine
using gonadotrophin-releasing hormone 1 with silica
NPs [96]. Computer simulation is currently being used
widely to aid efforts against the COVID-19 pandemic,
be that in exploring the repurposing of existing drugs

[56,58,63,66,67], or the development of new systems
with natural compounds [66,79,87]. In our view, this
approach will help design and deliver new therapies and
diagnostics not only to fight COVID-19 but future viral
threats that may emerge.
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