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Abstract

Sigma-1 receptor (Sig-1R) is a protein present in several organs such as brain, lung, and heart. 

In a cell, Sig-1R is mainly located across the membranes of the endoplasmic reticulum and 

more specifically at the mitochondria-associated membranes. Despite numerous studies showing 

that Sig-1R could be targeted to rescue several cellular mechanisms in different pathological 

conditions, less is known about its fundamental relevance.

In this review we report results from various studies and focus on the importance of Sig-1R in 

physiological conditions by comparing Sig-1R KO mice to wild-type mice in order to investigate 

the fundamental functions of Sig-1R. We note that the Sig-1R deletion induces cognitive, 

psychiatric, and motor dysfunctions but also alters metabolism of heart. Finally, taken together, 

observations from different experiments demonstrate that those dysfunctions are correlated to poor 

regulation of ER and mitochondria metabolism altered by stress, which could occur with aging.
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Introduction

The discovery of Sig-1R dates back to Martin’s hypothesis of multiple opioid receptors 

(Martin et al. 1976). This hypothesis defined the various effects of morphine and its analogs 

by the numerous subtypes of opioid receptors. The first mention of Sig-1R, was made 

by Su (Su 1982) but as a sigma “opioid’ receptor because of its ability to bind to [3H]N-

allylnormetazocine (SKF-10047). However, the receptor observed by Su did not share other 

characteristics of the opioid receptor family in terms of function, structure, or homology of 

sequence. Later findings proved that Sig-1R, contrary to all other opioid receptor subtypes, 

has a very low affinity with naltrexone, does not have 7 transmembrane spanning regions, 

and shares no clear homology with other mammalian proteins (Ossa et al. 2017). Six years 

after this first publication, the receptor observed by Su et al. was then identified as a sigma 

receptor to be separated from the opioid receptor family (Su et al. 1988). In 1990, this 

receptor was named sigma-1 receptor to be distinguished from sigma-2 receptor, which also 

has an affinity with ditolyguanidine (Hellewell and Bowen 1990). Finally, the first model of 

Sig-1R knock-out mice were generated by Langa et al. in 2003 (Langa et al. 2003).

Successful sequencing of Sig-1R (Hanner et al. 1996; Kekuda et al. 1996; Seth et al. 1997) 

was an asset to numerous studies and improved the understanding of the biological functions 

of the receptor. Sig-1R is now known as 223aa receptor chaperone protein, sensitive to 

calcium variations (Hayashi and Su 2007). One of the main actions of Sig-1R takes place at 

the mitochondrial-associated membranes (MAMs) where it resides primarily. Here, from the 

MAMs, Sig-1R is able to regulate cell stress.

IP3R mitochondria Calcium influx

With a basal ER calcium level, Sig-1R is mainly associated with another chaperon protein, 

Binding Immunoglobulin Protein (BiP, also known as GRP78), at the MAM. Bound 

together, these chaperone proteins have a weaker chaperone activity. After the decrease of 

calcium concentration in the ER, Sig-1R and BiP tend to separate from each other (Hayashi 

and Su 2007). This allows Sig-1R to increase its chaperone activity and to interact with 

inositol triphosphate receptor type3 receptor (IP3R) by disassociating IP3R from ankyrin 

(Hayashi and Su 2001). The interaction of Sig-1R and IP3R allows stabilization of IP3R 

and inhibits its degradation. This enhances in fine ATP production from mitochondria and 

increases cell survival during cellular stress (Eisner et al. 2018). Moreover, it was observed 

that the interaction of Sig-1R with an agonist has the same effect as a Ca2+ ER depletion. 

The use of Sig-1R agonist is also able to dissociate Sig-1R from IP3R (Hayashi and Su 

2007). However, an overload of Ca2+ into mitochondria could lead to cell death (Walter 

and Hajnóczky 2005). Interestingly, this action could be related to the bell shape dose effect 

observed when Sig-1R agonists are used, i.e. too high or too low administration of agonist 

fails to reverse pathologic phenotypes (Maurice and Privat 1997; Meunier et al. 2006).

Unfolded Protein Response

From the MAM, activation of Sig-1R plays another important role for cell homeostasis. 

Indeed, Sig-1R is also involved in the Unfolded Protein Response (UPR). Sig-1R has been 

shown to interact with IRE1 (Mori et al. 2013). In short, the activation of IRE1 by Sig-1R 
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can increase the endonuclease activity of IRE1, which can cut an intron in xbp1 mRNA, 

allowing the correct translation of XBP1. Eventually, XBP1 translocates into the nucleus and 

increases the transcription of genes which code for proteins able to regulate stress in the ER 

such as p58IPK (Lee et al. 2003).

In addition to those functions, Sig-1R, upon activation, can translocate to other subcellular 

compartments and acts as a chaperone with many proteins from Emerin at the nuclear 

membrane, which alters chromatin, to plasma membrane proteins such as ion channels or 

neurotransmitter receptors. All of those actions are well reviewed (Su et al. 2016).

Few Sig-1R endogenous ligands are known. In 1988, Su et al. demonstrated that 

neurosteroids such as progesterone and pregnenolone sulfate have relatively high affinity 

with Sig-1R (Su et al. 1988). However, those molecules are known to be organ-specific 

while Sig-1R is ubiquitous. The questions of what the endogenous ligands of Sig-1R are 

and how do they bind to Sig-1R have been studied since 1994. Glennon et al. examined the 

high affinity between Sig-1R and phenylalkylamine based molecules (Glennon et al. 1994). 

Later findings identified sphingolipid (Ramachandran et al. 2009) and Myristic acid (Tsai 

et al. 2015) as endogenous ligands of Sig-1R. Additionally, Fontanilla et al. (Fontanilla et 

al. 2009) found that DMT (N,N-Dimethyltryptamine), an endogenous molecule in the brain, 

has a relatively high affinity with Sig-1R. However, the question remains: How is Sig-1R 

activated in organs where no endogenous ligands are found? Does this activation only occur 

by calcium depletion?

On the contrary, exogenous ligands are various and several studies observed the modulation 

of Sig-1R through those ligands (Bolshakova et al. 2016; Vavers et al. 2019). As a receptor, 

Sig-1R could be activated or inactivated using exogenous ligands. The importance of Sig-1R 

in critical roles such as regulation of mitochondria and ER functions made Sig-1R a hot 

therapeutic target for several pathological conditions or diseases where those organelles are 

dysfunctional. In the last two years, activation or inactivation of Sig-1R has been reported 

to decrease pathological phenotypes in neurodegenerative disorders such as Alzheimer’s 

disease (AD) (Maurice et al. 2019), Parkinson’s disease (PD) (Francardo et al. 2019), 

Huntington disease (HD) (Jabłońska et al. 2020), and amyotrophic lateral sclerosis (ALS) 

(Ionescu et al. 2019), demonstrating the ongoing interest for Sig-1R therapy in the most 

common neurodegenerative disorders. The mechanisms and importance of Sig-1R in those 

contexts were recently reviewed by Ryskamp et al. (Ryskamp et al. 2019). Furthermore, 

Sig-1R is also involved in other diseases (Su et al. 2016) such as cardiac disorder (Lewis et 

al. 2020), chronic pain (Bravo-Caparrós et al. 2019; Bravo-Caparrós et al. 2020; Xiong et al. 

2020), depression (Yang et al. 2019), addiction (Kourrich et al. 2013), and cancer (Palmer 

et al. 2007). In June 2020, the Food and Drug Administration approved the first Sig-1R 

targeted drug, Fintepla, to treat seizures associated with Dravet syndrome. At least two other 

molecules are in clinical trials. ANAVEXTM 2–73 is being tested for Alzheimer’s disease 

and E-52962 to treat neuropathic pain. Finally, it is interesting to note that those molecules 

are respectively Sig-1R agonist and antagonist. A better understanding of the fundamental 

functions of Sig-1R will help to understand in which conditions the use of an agonist or an 

antagonist is beneficial or detrimental.
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This ability of Sig-1R to be involved in several diseases is explained by its ubiquitous 

expression of its gene SIGMAR1. Several studies using different techniques in different 

models observed the presence of Sig-1R throughout mammal bodies (Fagerberg et al. 

2014; Kitaichi et al. 2000; Novakova et al. 1995). Furthermore, expression of SIGMAR1 

is observed in different cell lines generated from different organs such as ovary (Hayashi 

and Su 2007), liver (Christ et al. 2019), kidney (Johannessen et al. 2009), and brain 

(Su et al. 2014). Positron Emission Tomography (PET) also allows observation of the 

expression of Sig-1R and underlines the fact that Sig-1R expression could change with the 

physiopathological states of tissues (James et al. 2012). As Sig-1R has been shown to be 

critical in the nervous system, several studies focused on the expression of SIGMAR1 in 

the subcompartments of the brain (Alonso et al. 2000; Baum et al. 2017; Kitaichi et al. 

2000; Lan et al. 2019; Seth et al. 2001). At the subcellular level, Sig-1R is present mainly 

at the MAM (Hayashi and Su 2007). However, when activated, Sig-1R could be translocated 

to different subcellular compartments, including the plasma membrane and the nuclear 

membrane (Su et al. 2016). This translocation allows Sig-1R to interact with other proteins 

from ion channels to transcriptional factors, increasing Sig-1R spectrum of functions.

Despite the numerous functions of Sig-1R and its ubiquitous localization, the absence of 

Sig-1R in KO mice has been less studied than the activation or inactivation of Sig-1R with 

exogenous ligands. In this review we will focus on the consequences of the absence of 

Sig-1R on both behaviors and cellular physiology to determine the fundamental functions of 

Sig-1R.

Effect of the absence of Sig-1R on behavior and metabolism

a. Neuronal functions

i. Cognition—The first report of Sig-1R KO mice was made by Langa et al. (Langa 

et al. 2003). In that study, they observed no differences in any of the behavioral tests 

they conducted, suggesting that there were no cognitive deficits. However, other groups 

later tested cognitive functions in Sig-1R KO mice. Chevallier et al. (Chevallier et al. 

2011) reported that female Sig-1R KO mice showed deficits in working memory and 

spatial memory shown by Y-maze test and Morris water-maze test, respectively. Moreover, 

using the step-through passive avoidance test (STPA), the authors demonstrated that stress-

conditioned memory is altered in Sig-1R KO but only in 12-month-old homozygous 

females. Also, female heterozygous KO mice that did not show deficits in memory at 

2 months of age began to show memory deficits at 12 months. Loss of Sig-1R protein-

inducing memory deficit was also suggested in a male/female-mixed behavior test produced 

by Xu et al. (Xu et al. 2017). WT and KO mice did not show any differences in the Morris 

water maze test, except the significantly increased escape time of KO mice during the 

training. However, KO mice showed a significant decrease in long term memory efficiency 

but no defect in short term memory in the object recognition test, respectively, after a 

retention interval of 24h or 1h (Xu et al. 2017). Also, it was found that 17-β-estradiol levels 

were significantly decreased in homozygous KO females compared to WT. Furthermore 

an estradiol treatment in KO female animals significantly alleviated memory dysfunction 

where WT was unaffected by the treatment (Chevallier et al. 2011). Finally, Crouzier et al. 
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(Crouzier et al. 2020), using the Hamlet test, noted that physiological brain plasticity and 

topographic memory are altered in 7 to 9-week-old male Sig-1R KO mice compared to WT 

mice of the same age.

Taken together, these results demonstrate that the absence of Sig-1R alters cognitive 

functions such as long-term memory, working memory, or stress-conditioned memory, 

especially in older mice. Furthermore, the absence of Sig-1R may have different 

consequences related to gender.

ii. Motor activity—In this section we will focus on motor-related behaviors, from 

spontaneous locomotion to motor coordination. The first observations of Sig-1R deletion 

on motor phenotypes were made by Langa et al. after generation of Sig-1R KO mice. 

Sig-1R was identified first as an SKF binding receptor (Su 1982). Firstly, Langa et al. 
confirmed that hyperactivity induced by SKF is blocked when Sig-1R is absent (Langa et 

al. 2003). However, they did not observe any differences between WT and Sig-1R KO in 

spontaneous locomotion in saline injected group. In this report, Langa et al. used males 

between 8–12 weeks old. In another study, Chevallier et al., did not observe differences 

between 8 week-old Sig-1R KO and WT in both males and females in distance travelled, 

locomotion speed, and duration of immobility in an open-field (Chevallier et al. 2011). 

Nevertheless, in the Y-maze test (YMT), an increase in the number of entries in arms was 

observed in both male and female Sig-1R KO compared to WT mice. However, this result 

was not observed by Xu et al. using mixed group of males and females between 11 and 

20 weeks old (Xu et al. 2017). Sabino et al. observed no locomotion differences between 

WT and Sig-1R KO males between 6 and 8 months old in open field (Sabino et al. 2009a). 

Furthermore, the total distance travelled by males aged between 12 weeks and 48 weeks 

in an open field was also observed in Hong et al. study (Hong et al. 2017). No difference 

was noted between WT and Sig-1R KO mice. Hong et al. observed that when using the 

beam straight walking test, Sig-1R male KO mice spent more time to cross the beam than 

WT between 24-week-old and 48-week-old but not at 12-week-old. Finally, Fontanilla et al. 
noted no differences in spontaneous locomotion in open-field between WT and Sig-1R KO 

mice (Fontanilla et al. 2009). These results seem to show that spontaneous locomotion is not 

affected by the absence of Sig-1R.

Many studies also observed motor coordination in Sig-1R KO mice compared to WT 

through the use of the Rotarod. Bernard-Marissa et al. found that Sig-1R KO mice at 10 

weeks and 20 weeks of age had lower scores with Rotarod test compared to age-matched 

WT (Bernard-Marissal et al. 2015). This result is also observable in Mavlyutov’s et al. study. 

In this study, weekly Rotarod scores of mice between 8 weeks old and 14 weeks old were 

observed. The authors noted that Sig-1R KO mice have lower scores than WT (Mavlyutov 

et al. 2010). Furthermore, this group also observed that the differences in the 14-week-old 

mice were larger compared to those of the 8-week-old mice, especially at constant speed. 

However, in the same study, Mavlyuotov et al., observed no differences in the stride pattern 

at the same age they observed motor coordination deficit using footprint analysis. Nieto et 
al. found no differences using female mice with the Rotarod, but the age of the mice in this 

experiment is not mentioned (Nieto et al. 2012). Motor coordination was also examined by 

Hong et al. (Hong et al. 2017). Interestingly, no difference was observed in Rotarod scores 
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between WT and Sig-1R KO 12-week-old male mice. However, after 24 weeks and until the 

last measure at 48 weeks, the Rotarod score of Sig-1R KO males was lower than that of WT 

mice.

Bernard-Marissal et al. also showed that 20-week-old Sig-1R KO mice have lower muscle 

strength compared to WT mice (Bernard-Marissal et al. 2015). This result is confirmed 

by Hong et al., who also observed that muscle strength is lower in 48-week-old Sig-1R 

KO male mice compared to WT mice. However, before 48 weeks Hong et al. did not 

observe difference between the two genotypes. Despite the fact that the Rotarod is not used 

to measure muscle strength, Rotarod performances could be affected by decreased muscle 

strength (Foley et al. 2010; Gill et al. 2018).

Finally, some groups also examined swimming efficacy. In Mavlyuotov’s study, it was 

observed that Sig-1R KO mice aged between 8 weeks and 14 weeks swim faster to reach a 

safe zone in a straight line than age-matched WT mice. This result correlates with a different 

swimming pattern (Mavlyutov et al. 2010). Chevallier et al. did not observe any change in 

swimming speed between Sig-1R KO and WT mice when using the water-maze on either 

males or females at 8 weeks. Hong et al. did not observe swimming speed alterations in 

Sig-1R KO males aged between 12 and 48 weeks old compare to WT mice (Hong et al. 

2017).

In conclusion, it appears that the main motor defects in Sig-1R KO mice are observable with 

the Rotarod, which is known to measure motor coordination. This result is correlated with 

an abnormal swimming pattern in Sig-1R KO mice. However, footprint analysis does not 

show any differences between Sig-1R KO and WT mice. Nevertheless, it should be noted 

that differences in muscle strength are measured and could influence the decrease in Rotarod 

scores.

iii. Psychiatric related behaviors—The association between Sig-1R and depression 

has been suggested by pharmacological studies, as Sig-1R agonists display an 

antidepressant-like action. Some studies have examined depressive-like behaviors in Sig-1R 

KO mice using the forced swimming test (FST) and tail suspension test (TST) (Akunne 

et al. 2001; Matsuno et al. 1996; Ukai 1998; Wang et al. 2007). Several studies reported 

consistent results that male Sig-1R KO mice, compared to WT, exhibited significantly higher 

immobility duration in the first 6 minutes of FST and TST tests, while female KO mice 

did not (Chevallier et al. 2011; Di et al. 2017; Sabino et al. 2009a; Sha et al. 2015). In the 

FST, typically data are obtained between 1 to 6 minutes to evaluate anti-depressant activity. 

However, Chevallier et al. performed an extensive two-session protocol of swimming for 15 

min on the first day and 6 min on the second day. The authors noted that the difference in 

the immobility between male Sig-1R KO and WT mice on the first day was attenuated on 

the second day and female Sig-1R KO mice showed an increase in immobility from 6 to 10 

minutes (Chevallier et al. 2011).

Sha et al. further examined effects of estradiol on the immobility of Sig-1R KO mice in 

the FST and TST (Sha et al. 2015) in order to explain the differences between males and 

females. They showed that there was no difference in corticosterone levels between WT 
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and Sig-1R KO or male and female mice, respectively. Neither estradiol in females nor 

testosterone in males were different in WT and Sig-1R KO mice, although Chevallier et 
al. reported decreased estradiol levels in female Sig-1R KO mice (Chevallier et al. 2011). 

FST and TST were performed upon estradiol administration in male mice or removal 

of bilateral ovaries from female mice. The estradiol treatment abolished the increase of 

immobility in male Sig-1R KO mice while it did not affect those in WT mice. Additionally, 

removing ovaries significantly increased immobility in female Sig-1R KO mice, indicating 

that estradiol eases the depressive-like behaviors in Sig-1R KO mice. The same group 

also indicated that PMA, a NMDA receptor agonist and a PKC activator, has a similar 

effect as estradiol. On the other hand, PP2, a Src inhibitor, attenuated the estradiol-reduced 

immobility in male Sig-1R KO mice and induced immobility in female Sig-1R KO mice in 

the FST and TST (Di et al. 2017; Sha et al. 2015). In order to investigate Sig-1R roles in 

postpartum depression, Zhang et al. applied hormone-simulated pregnancy and subsequent 

estradiol withdrawal to female mice, and found that those treatments caused significantly 

larger increase of immobility in Sig-1R KO mice, suggesting that the deficiency of Sig-1R 

worsens depressive-like behaviors in the postpartum model (Zhang et al. 2017).

A few studies have examined anxiety-like behaviors in Sig-1R KO mice. Sabino et al. used 

the elevated plus maze test and the light-dark transfer test. The apparatus of the elevated plus 

maze test consists of two open arms and two enclosed arms. The apparatus of the light-dark 

transfer test consists of two compartments; a larger compartment is brightly illuminated 

and a smaller one is dark. Rodents prefer enclosed or darker places over open or lighter 

places; therefore, an increase of time spent in the open or lighter spaces or number of entries 

to those areas is considered as a reduction of anxiety. Sabino et al. found no significant 

difference between male WT and Sig-1R KO mice in those two tests (Sabino et al. 2009a). 

In contrast, Chevallier et al. used male and female WT and Sig-1R KO mice in the elevated 

plus maze test and found that compared to WT, male Sig-1R KO mice showed a significant 

decrease in time spent in open arms, while female Sig-1R KO mice did not (Chevallier et al. 

2011). The inconsistent results from those two studies might be due to different conditions, 

e.g. animal ages (respectively 6–8 months old vs. 2 months old) and the recording period 

(5 vs. 10 min). It should be mentioned that Chevallier et al. additionally observed increased 

anxiety states of male Sig-1R KO mice in distinct behavioral tests such as decreased time 

spent in the center in the open-field test and increased latency to enter the dark compartment 

during training in the step-through passive avoidance test (Chevallier et al. 2011). Taken 

together, the absence of Sig-1R seems to trigger anxiety in male mice but not in females; 

however, further studies are needed to clarify a relationship between anxiety and Sig-1R 

functions.

One study has investigated alcohol-related behaviors using male Sig-1R KO mice (Valenza 

et al. 2016). Sig-1R KO mice showed significantly increased intake of ethanol compared 

to WT mice when mice were exposed to an alcohol solution either with ascending 

concentrations for 6 days each or with steady concentration for 14 days. It should be noted 

that Sig-1R KO mice did not show differences in water intake during the ethanol intake 

or taste perception. They also found that ethanol injection failed to stimulate locomotor 

activity in Sig-1R KO mice. The sedative effect of ethanol was evaluated in WT and Sig-1R 

KO mice using the loss of righting reflex experiment. Mice were injected with ethanol and 
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placed on a V-shaped surface in the spine position. They recorded sleeping duration and 

latency to lose righting reflex, the time mice turn themselves back on to four paws from 

the ethanol injection and found that Sig1KO mice did not differ from WT mice. These data 

suggest a possibility that Sig-1R affects stimulant properties of ethanol such as locomotor 

activity rather than depressant properties. It has been shown that ethanol induces conditioned 

taste aversion (CTA) in rodents observed as reduced intake of a pleasant taste food when 

paired with ethanol injection (Green and Grahame 2008). Sig-1R KO mice developed a 

greater ethanol-induced CTA compared to WT mice, suggesting that mice lacking Sig-1R 

are more sensitive to an aversive effect of ethanol. Previous findings with Sig-1R ligands in 

the ethanol intake tests and CTA test apparently are opposed to the data from Sig-1R KO 

mice (Blasio et al. 2015; Maurice et al. 2003; Sabino et al. 2009b; Sabino et al. 2009c). 

Also, to our knowledge, there is no study that has investigated the relationship between 

Sig-1R and ethanol-related behaviors on female animals. These issues still remain to be 

investigated.

iv. Sensorial system and pain—Reports about Sig-1R’s involvement in the 

modulation of opioid analgesia traces to the first observations made by Pasternak and 

Chien where they studied antagonism of morphine analgesia by (+)-pentazocine (Chien and 

Pasternak 1993). Reports from Pasternak’s group prompted other investigators to broaden 

Sig-1R studies in different pain models. Rodent pain models offer a variety of approaches to 

test animal response for acute stimuli of mechanical or altered temperature to mimic chronic 

pain conditions. There are also diverse behavioral tests to evaluate different receptor systems 

and mechanisms that are involved in the sensory abnormalities associated with pain (Deuis 

et al. 2017).

The formalin test is one of the most widely used preclinical screening tests for spontaneous 

pain behavior. After administration of the chemical in the dorsal surface of the paw, 2 

phases of responses are observed in rodents (Fischer et al. 2014). In Sig-1R KO female 

mice compared to WT, the response to formalin was markedly inhibited and duration 

of both phases was reduced in KO mice, leading to the conclusion that Sig-1R is 

necessary for the full expression of formalin-induced pain (Cendán et al. 2005). Capsaicin 

is an agonist of the transient receptor potential cation channel, subfamily V, member 1 

(TRPV1), which is expressed in small-diameter neurons of the dorsal root ganglion (DRG) 

(Caterina et al. 1997) and has been used in inflammatory models of pain (Gregory et al. 

2013). Capsaicin injection results in reflexive behavioral changes that include thermal and 

mechanical hyperalgesia surrounding the site of injury (the site itself becomes analgesic) 

and mechanical hyperalgesia outside the site of injury. Intradermal capsaicin administration 

induces secondary mechanical hypersensitivity through a central mechanism involving an 

activation of NMDA receptors. Capsaicin sensitized Sig-1R KO female mice (CD1) did 

not show hyperalgesia in response to mechanical punctate stimulus (Dynamic Plantar 

Aesthesiometer) (Entrena et al. 2009). Both CD1 and C57BL/6J Sig-1R KO mice were 

resistant to capsaicin, while WT and Sig-KO capsaicin un-injected animals showed similar 

responses to different intensities of mechanical stimuli (Entrena et al. 2009).

Paclitaxel, a chemotherapeutic agent, produces peripheral neuropathy which causes acute 

neuropathy during or immediately after infusion (Boyette-Davis et al. 2013). Microtubule, 
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mitochondrial dysfunction, axon degeneration, altered calcium homeostasis, and changes in 

peripheral nerve excitability have been linked to paclitaxel neuropathy (Zajączkowska et al. 

2019). Treatment of paclitaxel in WT female mice caused cold (acetone test) and mechanical 

(Dynamic Plantar Aesthesiometer) allodynia, whereas the response in Sig-1R KO mice 

changed very little as compared to their baseline values. As presented in the motor-related 

behavior section of this review, comparison of WT and Sig-1R KO mice on Rotarod tests 

did not show differences, which suggested that no motor deficit could have accounted for the 

cold and mechanical allodynia in Sig-1R KO mice (Nieto et al. 2012).

In spinal cord contusion injury (SCI) Sig-1R KO female mice (CD-1) showed reduction 

in mechanical allodynia (Von Frey) and thermal hyperalgesia (radiant heat) as compared 

to WT SCI mice (Castany et al. 2018). In peripheral nerve injury models of neuropathic 

pain, baseline values obtained from female and male WT and Sig-1R KO mice did not 

differ, suggesting that basic mechanisms for transduction, transmission, and perception of 

sensory and nociceptive inputs were intact in mice lacking Sig-1R. In the partial sciatic 

nerve ligation (PSNL) model of pain, mechanical (Von Frey) and thermal (cold) stimuli 

were attenuated or absent in Sig-1R KO animals. Conversely, the development of thermal 

hyperalgesia (plantar test) did not differ in the injured group when the different genotypes 

were compared (Puente et al. 2009). In the spared nerve injury (SNI) model of neuropathic 

pain, behavioral tests reported in other studies were repeated and confirmed. After SNI, 

Sig-1R KO mice developed less pronounced mechanical allodynia and did not develop 

cold allodynia (acetone test). Both KO and WT genotypes developed a similar degree of 

heat hypersensitivity in the Hargreaves test after SNI. It should be noted that during the 

pre-surgery baseline evaluation of acetone test ≈ 5% of the tested mice were discarded due 

to an exaggerated atypical response to the acetone (Bravo-Caparrós et al. 2019).

b. Other dysfunctions

i. Peripheral organs—Sig-1R is also expressed throughout peripheral organs as well as 

CNS (Alonso et al. 2000; Sigma Receptors 2007).

Heart: Sig-1R is widely expressed in the heart, which has even higher levels than in 

the brain (Bhuiyan et al. 2011; Dumont and Lemaire 1991; Novakova et al. 1995). The 

high expression of Sig-1R in the heart suggests that Sig-1R plays an important role in the 

modulation of cardiac function. Currently, most of Sig-1R’s contribution to cardiac function 

is based on pharmacological evidence from pathological cardiac models (Alam et al. 2017; 

Novakova et al. 2007; Novakova et al. 1995; Novakova et al. 1998; Shan et al. 2010). Sig-1R 

regulates cardiac function by modulating diverse ion channels, improving cardiac function, 

and demonstrating cardioprotection after ischemia and cardiac hypertrophy (Benedict et al. 

1999; Bhuiyan and Fukunaga 2011; Huang et al. 2003; Johannessen et al. 2009; Shan et 

al. 2010; Tagashira et al. 2010; Tarabová et al. 2009). In cardiac tissue, modulation of 

contractility by Sig-1R ligands was first reported in rat neonatal cultured cardiomyocytes 

(Ela et al. 1994).

Recently, Abdullah and his colleagues employed a comprehensive analysis of how Sig-1R 

modulates cardiac hemodynamics in Sig-1R KO mice (Abdullah et al. 2018). Sig-1R does 
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not affect baseline cardiac hemodynamic functions except higher systolic pressure seen 

in young KO mice (< 4 months old). With dobutamine, an adrenoceptor agonist and an 

inotropic agent (Ruffolo 1987), myocardial contractility is increased in KO mice. In aged 

mice (> 6 months old), KO mice demonstrate progressive systolic dysfunction, which 

is in line with the idea that Sig-1R agonist DHEA is decreased in aged heart failure 

patients (Moriyama et al. 2000) and Sig-1R ligand increases rat cardiomyocyte contractility 

(Novakova et al. 1998).

Liver: Pal et al. did screening of metabolites related to oxidative stress using nuclear 

magnetic resonance (NMR) in livers of WT and Sig-1R KO mice (Pal et al. 2012). They 

noted an increase of oxidative glutathione and glutamate but also an increase of alanine, 

glutamine, lactic acid, AMP, myo-inositol and betaine, which are signs of oxidative stress 

but also of an increase of oxidative stress defense. They noted also by mass spectrometry 

an increase in Prdx6 and BiP, which are antioxidant proteins. In the same study, the authors 

measured the concentration of reactive oxygen species (ROS) in liver, lung and primary 

culture of hepatocytes from Sig-1R KO and WT mice. They noted an increase in both organs 

of the ROS in Sig-1R KO mice compared to WT.

Bladder: Recently, González-Cano et al. noted that Sig-1R is present in human and mouse 

urinary bladder. Furthermore, they observed the impact of Sig-1R deletion in this organ 

(González-Cano et al. 2020). In this study, the authors noted that the deletion of Sig-1R 

has no consequences on various parameters observed such as Myeloperoxidase activity or 

ERK1/2 and pERK1/2 protein concentrations, which are known to be biomarkers of cystitis. 

However, they observed that pharmacological induction of cystitis is less severe in Sig-1R 

KO compared to what was observed in WT and that the deletion of Sig-1R avoids an 

increase of those previously described parameters in this pathological condition.

ii. General metabolism—In the Langa et al. study, growth curves of WT and Sig-1R 

KO newborn pups, from birth to weaning, were studied (Langa et al. 2003), however no 

differences were noted. Other observations of body weight were done by Chevallier et al. 
and Yongu Ha et al. (Chevallier et al. 2011; Ha et al. 2012). In those studies, there were 

also no differences in the weights of adult and juvenile mice, neither female nor male. As 

previously mentioned, Chevallier et al. have observed the circulating estradiol (estradiol) 

levels. Sig-1R KO, 2 and 14-month-old female mice showed a significant decrease in 

17b-estradiol basal level compared to WT mice (Chevallier et al. 2011). Yongu Ha et al. 
compared blood glucose and insulin levels in Sig-1R KO mice with levels present in WT 

mice. No significant differences between Sig-1R WT and KO mice were found (Ha et al. 

2012). It should be noted also that Marcos and colleagues observed no differences between 

WT and Sig-1R KO in rectal temperature, micronucleated polychromatic erythrocyte or 

micronucleated reticulocytes (Guzmán et al. 2008).

This first part of the review, focused on behavior changes and alterations in various organ 

metabolism induced by the absence of Sig-1R, is summarized in table 1. Despite no drastic 

changes in growth curves, adult weight, or breeding ability in the absence of Sig-1R, several 

behavioral alterations occur. Indeed, motor, cognitive and psychiatric related behaviors 
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are altered. Furthermore, peripheral organs such as the heart or liver, are also affected. 

Interestingly it appears that aging increases deficits in many of those behaviors.

Effect of the absence of Sig-1R at cellular level

a. Neurons

i. Hippocampus—As described earlier in this review, lack of Sig-1R protein displayed 

memory deficits. The most well-studied part of the brain that is responsible for memory 

is the hippocampus. Immunohistochemical staining and Western blot analysis of the 

hippocampus revealed that there were no differences between hippocampus of WT and 

KO mice on the thickness of layers and the morphology of the neurons in CA(Cornu 

Ammonis)1, CA3, and DG (dentate gyrus) (Chevallier et al. 2011), the expression level of 

neuronal marker NeuN, and the morphology of nuclei of hippocampal neurons (Xu et al. 

2017). Since hippocampus is known as one of the brain regions at which adult neurogenesis 

occurs, the rate of the neurogenesis as well as the survival of the newborn neurons were 

compared between hippocampus of WT and KO mice. Sha et al. (Sha et al. 2013) using 

respectively Ki67 and DCX as markers on hippocampus slices from 8-week-old male, found 

that newborn cell proliferation was significantly promoted in DG of KO mice compared to 

DG of WT mice, but that the number of survival newborn neuron was significantly lower 

in KO. They later found that the reduction of the survival of newborn cells was observed 

in only male KO but not female KO mice and the alteration was rescued by estradiol 

administration to male KO mice (Sha et al. 2015). Moreover, even though the length of the 

neurite of the surviving neurons was not altered, density of the neurite was significantly 

reduced. Slightly different results were recently found by Crouzier et al. as they found a 

decrease in both Ki67 and DCX positive cells in hippocampus slices from Sig-1R KO male 

mice aged between 9–11 weeks compared to WT mice (Crouzier et al. 2020). Sha et al. 
noted that all of these alterations except the neurite density were diminished by treatment 

of NMDAr agonist (Sha et al. 2015; Sha et al. 2013). Also, treatment with NMDA receptor 

antagonist, MK-801 to WT mice induced upregulation of proliferation of cells but reduced 

the survival rate of the newly generated cells as observed in KO mice (Sha et al. 2013). 

This implies the possibility of NMDAr alteration due to lack of Sig-1R, which in turn 

affects the hippocampus function. Likewise, knocking down Sig-1R with siRNA transfection 

to hippocampal primary neurons leads to a significantly reduced number of branching and 

dendrites, which resulted in significantly decreased number of functional synapse formation 

via altered Rac-GTP pathway (Tsai et al. 2009). Although Tsai et al. reported contradictory 

results that Sig-1R siRNA transfected neuron showed decreased axon length (Tsai et al. 

2015), it may be due to the difference between the acute knockdown and persistent knockout 

of the Sig-1R. Also, Sha et al. focused on adult neurogenesis (Sha et al. 2015; Sha et al. 

2013) whereas Tsai et al. induced knockdown of Sig-1R by siRNA transfection in neuronal 

primary culture, which may reflect the phenomenon without compensatory mechanism for 

the loss of Sig-1R.

Just as Sig-1R KO male and female mice showed different results in memory behavior 

tests (Chevallier et al. 2011), there were sex-dependent differences in neurogenesis at 

hippocampus of KO mice as well. Sha et al. (Sha et al. 2015) observed the deficits 
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in hippocampus of only male but not female KO mice; they noted a reduction of 

survival of newborn cells, reduction in NMDA-activated current (INMDA), and reduction 

in phosphorylation level of NR2B at hippocampus, and significantly promoted immobility 

in tail suspension test (TST) and forced swim test (FST) compared to WT mice. These 

phenomena were restored by estradiol administration in males and these defects were 

induced by OVX in female mice. This is in accordance with their finding that estradiol 

treatment reverted the depressive-like behavior of male KO mice and only KO OVX female 

mice displayed depressive-like behavior (Sha et al. 2015). These results further confirm the 

hormonal-dependent deficits in hippocampus that were also shown in the spatial memory 

behavior test (Chevallier et al. 2011). Taken together, these lead to the speculation that 

lacking Sig-1R results in defects in neurogenesis and that may contribute to the depressive-

like behavior described above in KO mice (Sabino et al. 2009a).

As mentioned, NMDAr activity through NR2B phosphorylation has been a candidate 

molecular mechanism responsible for the deficits in hippocampus due to loss of Sig-1R. 

Indeed, altitude of INMDA was significantly smaller in KO condition than that of WT 

condition where GABA-activated current (IGABA) was unaltered (Sha et al. 2015; Sha 

et al. 2013). That altered INMDA may be caused by reduction of NR2B phosphorylation 

levels through the loss of Sig-1R protein. In addition, estradiol administration restored the 

survival of newborn neurons in male KO mice through promoting Src activity, which in turn 

upregulate the phosphorylation level of NR2B (Sha et al. 2015). On the contrary, Snyder et 
al. reported that although there was a small but significant reduction in the LTP magnitude, 

there were no differences between WT and KO of pyramidal neuron at CA1 (i.e. resting 

membrane potential and quality of (AP)) (Snyder et al. 2016). They also did not observe 

differences in the activity of AMPA receptor as well as NMDAr, and AMPA/NMDA ratio 

in CA1 area. This contradictory result may owe to the difference in the area where they 

measured the activity; DG vs CA1 area.

Other reports demonstrate that the Sig-1R absence in mice does not change the 

concentration of iNOS (Chao et al. 2017). While multiple reports indicate that knocking 

down (KD) Sig-1R in hippocampal primary neurons results in the decrease in mushroom 

spine density (Fisher et al. 2016; Ryskamp et al. 2019; Tsai et al. 2009), Tsai et al. also 

suggested that it was due to the increase of free radicals in Sig-1R KD neurons. Indeed, 

they observed that reducing the free radicals with the scavenger restores the dendritic spine 

formation in Sig-1R KD neurons. Later, the microarray data further confirmed that Sig-1R is 

involved in synapse formation and oxidative stress (Tsai et al. 2012). These results showed 

that Sig-1R seems to be able to reduce the oxidative stress and that loss of Sig-1R could 

result in the alteration of the hippocampus in case of oxidative stress.

ii. Basal ganglia and motoneurons—Basal ganglia are a group of subcortical nuclei 

which are mainly involved in the regulation of motor activity. This group is composed of the 

striatum, substantia nigra, globus pallidus, ventral pallidum, and subthalamic nucleus. It was 

observed that defects could occur in Sig-1R KO mice in some of these structures. Hong et 
al. observed a progressive neurodegeneration of the substantia nigra dopaminergic neurons 

in Sig-1R KO mice compared to WT mice. Nevertheless, this phenomenon is not observed 

in 3-month-old mice but is found in mice 6-month-old or more. This result is correlated 
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with an increase of αSyn monomers and oligomers phosphorylation and an increase of αSyn 

oligomers and fibril form, which are known to be neurotoxic. However, no alteration of the 

αSyn monomer population is observed. In the same time, it is noted that UPR activity is 

decreased while oxidative stress is increased. Finally, Hong et al. observed that decreasing 

ER stress with salubrinal reversed those pathological phenotypes observed in Sig-1R KO 

mice (Hong et al. 2017).

It is known that Sig-1R is overexpressed in the striatum in neuropathology involving 

striatum (Ryskamp et al. 2017), which could be a response to the stress encountered by 

neurons induced in those pathological conditions. However, to our knowledge and despite 

the important results observed with motor coordination assays, no studies focused on the 

striatum condition in Sig-1R KO mice. Issues on the substantia nigra observed in Sig-1R 

KO mice, described before, which project to the striatum could lead by itself to a defective 

striatum. Results are contrasted in the expression of Sig-1R in the striatum. First, Alonso 

et al. noted from immunohistology studies “only faint if any” immunostaining of Sig-1R in 

the striatum (Alonso et al. 2000) but later, several studies reported through immunohistology 

and Western blot experiments the presence of Sig-1R in the striatum (Francardo et al. 2014; 

Hayashi et al. 2010; Navarro et al. 2013; Ryskamp et al. 2017). Importantly, Ryskamp et al. 
observed that Sig-1R deletion through the use of Crispr-Cas9 decreased the dendritic spines 

concentration on mice medium-spiny neurons.

Impact on motoneurons of the Sig-1R absence was especially studied in Amyotrophic 

Lateral Sclerosis (ALS) context, a neurodegenerative disorder affecting spinal cord 

motoneurons. It was observed that deletion of Sig-1R in a mouse model of ALS 

exacerbated disease pathological phenotypes (Mavlyutov et al. 2013). Furthermore, Ionescu 

et al., observing the contraction of myotubules in co-cultures with motoneurons, noted 

that motoneurons from Sig-1R KO mice induced less contractions of myotubules than 

motoneurons from WT mice (Ionescu et al. 2019). This result is correlated with BDNF 

retrograde transport decrease in motoneurons from Sig-1R KO mice compared to their WT 

counterparts (Ionescu et al. 2019). Moreover Mavlyutov et al. also observed that for the 

same stimulation, motoneurons from Sig-1R KO mice generated less action potential than 

motoneurons from WT mice (Mavlyutov et al. 2013). In addition, Marrissal et al. showed 

that the absence of Sig-1R- induced shorter motoneuron axons and increased cell death. 

Those results were correlated with defects on calcium signaling, ER and mitochondria 

metabolism (Bernard-Marissal et al. 2015). Those experiments may show that the in fine 
consequences of Sig-1R absence is a partial motoneuron degeneration.

iii. Hypothalamic pituitary adrenal (HPA) axis—The HPA axis is a major 

neuroendocrine system composed of three organs-- the hypothalamus, anterior pituitary, and 

adrenal gland-- and their functional interactions. The activity of the HPA axis dynamically 

changes depending on circadian and ultradian rhythms and stress, which controls a variety 

of body functions. The HPA axis plays a central role in neuroendocrine adaptation to 

stress response. Dysregulation of HPA axis activity is strongly correlated with several 

diseases including psychiatric disorders such as depression (Gjerstad et al. 2018; Spencer 

and Deak 2017). The HPA axis has three cellular components; 1- Neurons located in the 

paraventricular nucleus of the hypothalamus (PVN) receive neural input caused by stress and 
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secrete corticotropin-releasing factor (CRF). 2- Upon CRF activation, endocrine cells in the 

anterior pituitary rapidly release the adrenocorticotropic hormone (ACTH) that activates 3- 

secretion of glucocorticoid hormones (cortisol and corticosterone, CORT) from endocrine 

cells located primarily in the zona fasciculata layer of the adrenal cortex.

Di et al. studied the influence of Sig-1R deficiency in the HPA axis activity under basal 

condition or acute mild restraint stress (AMRS) using male WT and Sig-1R KO mice (Di 

et al. 2017). They found that there was no significant difference in the levels of serum 

hormones CORT, ACTH, and CRF, and mRNA of CRF in basal conditions between WT and 

Sig-1R KO mice. After exposure to 15 min of AMRS, serum levels of CORT and ACTH, as 

well as CRF mRNA were significantly higher in Sig-1R KO mice. These results suggest that 

the deficiency of Sig-1R causes hyperactivation of the HPA axis as a response to AMRS, 

indicating abnormal regulation of HPA axis activity.

CORT exhibits its effects through activating the glucocorticoid receptor (GR) and 

mineralocorticoid receptor. While the GR is ubiquitously expressed throughout the body, 

it is expressed particularly high in the PVN of the brain as well as a few other regions. 

The GR in the PVN plays an important role for CORT to inhibit the HPA axis activity 

with a negative feedback loop and reduce its own production through the GR, which is 

thought to be the fundamental mechanism to terminate a stress response (Gjerstad et al. 

2018). Di et al. showed that the protein expression and mRNA of GR in PVN did not 

differ between WT and Sig-1R mice either under basal conditions or AMRS treatment. 

They also examined the phosphorylation of GR since it is considered an activator of GR 

(Kotitschke et al. 2009). The phosphorylated GR (phospho-GR) level was significantly 

lower in Sig-1R KO mice compared to WT mice in basal conditions and this difference 

was maintained after AMRS exposure. Taken together, the Sig-1R deficiency continuously 

represses GR activation in PVN, which could lead to malfunction of the CORT-mediated 

negative feedback and hyperactivation of the HPA axis.

They further investigated if protein kinase C (PKC) and protein kinase A (PKA)/cAMP 

response element binding protein (CREB) are involved in the molecular mechanisms 

on how the Sig-1R deficiency causes suppressed phospho-GR levels. The basal level of 

phosphorylated PKC, an active form of PKC, in the PVN was lower in Sig-1R KO mice than 

that in WT mice similar to the phospho-GR. This is consistent with the fact that injection of 

PMA, a PKC activator, increased the phospho-GR in Sig-1R KO mice. On the other hand, 

the basal levels of phosphorylated PKA and CREB were not different in the PVN between 

WT and Sig-1R KO mice and a PKA inhibitor H89 treatment failed to alter the phospho-GR 

level. AMRS- induced phosphorylation of PKA and CREB both in WT and Sig-1R KO 

mice, whereas AMRS-induced phosphorylation of PKC and GR was observed in WT but 

not in Sig-1R KO mice. Furthermore, PMA treatment rescued the decrease of phospho-GR 

and H89 treatment failed to manipulate the AMRS-induced increase of phospho-GR in 

WT mice. These results suggest that the decreased phospho-PKC likely contributes to the 

suppression of phospho-GR in Sig-1R KO mice, which is supported by the fact that PMA 

injection reduced the AMRS-induced increase of CRF mRNA and serum levels of CORT 

and ACTH.
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iv. Molecular mechanisms of Sig-1R action in somatosensory system—
Sig-1R is expressed in supraspinal, spinal, and peripheral nervous location of somatosensory 

pathway. Notably, Sig-1R bands at their highest intensities were found at DRG (Sánchez-

Fernández et al. 2014).

DRG houses somata of primary sensory neurons. Primary sensory neurons are 

pseudounipolar by nature. Its distal process projects to cutaneous or deep peripheral tissues, 

and the proximal process terminates in the dorsal horn of the spinal cord or sensory nuclei 

of the brain stem. In naïve mouse DRGs, confocal microscopy localized the Sig-1R to the 

cell bodies of neurons. Sig-1R expression was enriched or restricted to the soma of DRG 

neurons, but not in their peripheral sensory endings or in the afferent axons, tested by 

colocalization studies of intrathecally injected adeno-associated virus (AAV) expressing the 

diffusible eGFP and fluorescently conjugated receptor-binding domain of the tetanus toxin 

for neuronal process labeling. In DRG neurons, S1R was detected in the plasma membrane, 

ER and nuclear envelope (Mavlyutov et al. 2016).

Based on the degree of myelination and associated conductance velocity, there are four 

main class types of sensory neurons: Aα, Aβ, Aδ, and unmyelinated C fibers. C fibers 

can be subdivided into peptidergic (express neuropeptides) and non-peptidergic neurons, 

which can be labeled with Isolectin B4 (IB4) (Silverman and Kruger 1990). Based on 

immunohistochemistry studies of Sig-1R expression pattern in DRGs, although Sig-1R were 

located in all DRG neurons, the distribution of these receptors was much higher in IB4 

positive neurons (Montilla-García et al. 2018).

After spared nerve injury (SNI) in DRGs, Sig-1R is translocated to the plasma membrane 

and to the vicinity of the cell nucleus. In Sig-1R KO mice, the levels of CCL2, macrophage/

monocyte infiltration, and IL-6 into the DRG were lower after nerve injury than in WT 

mice. In this particular experimental setting, after SNI, Sig-1R staining in DRG was 

restricted to sensory neurons, thus the authors proposed that the modulation of macrophage/

monocyte infiltration in the DRG after nerve injury was unlikely to be caused by direct 

effect of Sig-1R on immune cells. They explained their results as Sig-1R playing a crucial 

communication role between neurons and macrophages/monocytes (Bravo-Caparrós et al. 

2020).

The ultrastructural characteristics of myelinated and unmyelinated saphenous nerve fibers 

in WT and Sig-1R KO mice were similar. There was no difference in morphometric 

measurements or distribution pattern of the mitochondrial area in naïve animals. Paclitaxel 

treatment caused swelling and vacuolization of mitochondria in myelinated A-fibers. This 

phenomenon was not observed in paclitaxel treated Sig-1R KO animals (Nieto et al. 2014).

Some molecular changes have been reported at spinal cord level after injuries. Interestingly, 

in a number of different pain models, the same target was identified. For example, in 

capsaicin, PSNL (peripheral) and in SCI (central) models of neuropathic pain in the spinal 

cord, increase of phosphorylated extracellular signal-regulated kinases (ERK1/2) was not 

seen in Sig-1R KO animals as compared to WT counterparts. There was no difference in 

ERK1/2 protein level in naïve animals as compared to KO animals (Castany et al. 2018; 
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Nieto et al. 2012; Puente et al. 2009). In SCI, phosphorylation level of NMDA-NR2B as 

well as expression of the pro-inflammatory cytokines TNF-α and IL-1β were decreased in 

Sig-1R KO mice in the T8-T9 segments of the spinal cord. WT animals showed stronger 

wind-up responses than Sig-1R KO animals at stimulus intensities sufficient to activate 

C-fibers, while responses to repetitive A-fiber intensity stimulation didn’t produce spike 

wind-up and were similar in spinal cords of 5–10 day old WT and Sig-1R KO mice (Puente 

et al. 2009).

If we try to put together all the molecular changes seen in chronic or acute pain models 

from WT versus KO animals as described above, the molecular alternations are diverse, and 

this makes it difficult to pinpoint more concrete molecular signaling pathways that could 

be altered by Sig-1R. If we look at the data from more global approaches of reasoning, 

there should be something shared in the pathological mechanisms of all these different pain 

models that could be modified by Sig-1R. The reason for the changes in WT animals that 

are not observed in KO mice could be due to pain developing differently in KO and WT 

mice. As a result, we are not able to observe end point changes that are seen in different pain 

models. It is critical to study pain development mechanisms in WT and KO animals in more 

detail.

v. Retinal ganglion cells—Several studies demonstrated that retinal ganglion cells are 

also affected in Sig-1R KO mice. Mavlyutov et al. observed that Sig-1R is highly expressed 

in those cells (Mavlyutov et al. 2011). Furthermore, they noted that without stress, Sig-1R 

KO and WT mice had the same density of cells in the retinal ganglion cell layer. However, 

7 days after mice were treated by optic nerve crush, the authors observed that the number of 

cells remaining is higher in WT mice compared to Sig-1R KO mice, concluding that Sig-1R 

alleviates retinal degeneration when stress is induced. Furthermore Ha et al. confirms in their 

study that acute but also chronic stress has more drastic consequences in Sig-1R KO mice 

than WT mice (Ha et al. 2012). Nevertheless, Ha et al. also observed differences between 

Sig-1R KO and WT mice without directly inducing stress in the retina but qualified them as 

late onset. Indeed, this group observed first that at 6 months, Sig-1R KO mice present axonal 

degeneration in the optic nerve head. Then at 12 months, Sig-1R KO mice develop a loss 

of cells in the ganglion cell layer which is correlated with an abnormal electroretinogram 

despite no changes in cornea or lens morphology (Ha et al. 2011). Results were confirmed 

in another study observing electroretinogram altered in 12-month-old Sig-1R KO mice (Ha 

et al. 2012). Moreover Mysona et al. observed the impact of Sig-1R absence on BDNF in 

retina cells and noted that this deletion induced a decrease in mature BDNF but no change 

in pro BDNF (Mysona et al. 2018). Altogether those results showed that retina is highly 

dependent on Sig-1R to counteract stress which could occur inside the cell.

b. Non-neuronal cells

Despite the fact that the consequences of Sig-1R activation, inhibition, or deletion are 

mainly studied in neuronal cells, it is important to note that Sig-1R plays an important role 

in other cell types. According to previous studies, Sig-1R is not only expressed in neuronal 

cells but is also expressed in glia cells such as astrocytes and microglias (Chao et al. 2017; 

Francardo et al. 2014; Peviani et al. 2014). Furthermore, the RNA-sequencing transcriptome 
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and splicing database analysis (Zhang et al. 2014) allows us to observe that Sig-1R is more 

expressed in glial cells than neurons (Fig1). However, Hong et al. observed the same amount 

of astrocyte and microglial cells, respectively, marked with GFAP and Iba-1 between WT 

and Sig-1R KO mice in substantia nigra (Hong et al. 2015). Nevertheless, Weng et al. noted 

an increase of astrocyte population in brain primary culture from Sig-1R KO mice compared 

to WT mice. Contradictory results about the impact of the Sig-1R deletion on glial cells are 

present in the literature; further experiments could shed light on this cell population. Despite 

different cardiovascular issues induced by the absence of Sig-1R, the size of cardiomyocytes 

and hypertrophy indicators measured as heart/body weight ratio do not vary between WT 

and KO mice, which may suggest that undesirable cardiac adaptations do not affect their 

mass.

Conclusion

These different studies allow us to observe that the absence of Sig-1R induces various 

behavioral changes which are consequences of numerous cell type alterations. Those 

changes and alterations are summarized in Fig2. However, it seems that all those cell type 

alterations share a common origin: cell stress misregulation. Interestingly, we noted that 

aging in Sig-1R KO mice eventually induces enough cell stress to highlight the absence of 

Sig-1R that is not observable at a younger stage.

Several phenotypes a common dysfunction? Poor regulation of cellular stress.

Activation and inactivation of Sig-1R with exogenous ligands are known to be key players in 

stress regulation, which is a keystone in pathological conditions and especially in the most 

common neurodegenerative disorders such as AD, PD, HD, ALS (Ryskamp et al. 2019; 

Tsai et al. 2014) or even cardiac disorders (Novakova et al. 2007). Studies on retinal cells 

observed that the absence of Sig-1R accelerates cell death following acute or chronic stress 

(Ha et al. 2012; Mavlyutov et al. 2011). However, it is less clear how important Sig-1R 

is in physiological conditions as its absence presents no fatal consequences in KO models 

(Langa et al. 2003). Interestingly, Hong et al. noted that the deletion of Sig-1R by itself 

induced ER stress, which lead to neurotoxicity and eventually pathological phenotypes. 

Even more noteworthy, they observed that neurotoxicity and these pathological phenotypes 

are alleviated using pharmacological ER stress inhibitors (Hong et al. 2017). Also, Pal et 
al. reported an increase of ROS and biomarkers of oxidative stress in liver of Sig-1R KO 

mice compared to WT mice(Pal et al. 2012). Those results allow us to think that the deletion 

of Sig-1R leads to neurotoxicity and pathological phenotypes through a dysregulation of 

cell stress regulation. However, it could be interesting to confirm that the use of ER stress 

inhibitors is equally able to protect all cell types altered by Sig-1R deletion. It should 

be noted that Sig-1R is known to have several other functions besides the regulation of 

oxidative stress (Su et al. 2016). However, studies that showed functions of Sig-1R are 

founded on the activation of Sig-1R through exogenous ligands (Su et al. 2016), mainly 

because of the lack of knowledge on endogenous ligands. Despite the interesting therapeutic 

findings brought by these studies, this does not prove that in physiological conditions, i.e., 

without application of exogenous molecules, such functions of Sig-1R are activated.
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Aging and sexual dimorphism highlight Sig-1R deletion.

Some experiments observing Sig-1R KO vs WT phenotypes demonstrate different results. 

However, when we look closer, we found that depending on the age and gender of the 

mice used, the absence of Sig-1R could have different consequences. Different studies 

observed that non-physiological phenotypes appear as the Sig-1R KO mice get older. Hong 

et al. (Hong et al. 2017) demonstrated that 12-month-old Sig-1R KO mice have deficits 

in motor-related phenotypes compared to age-matched WT mice, without observing any 

differences in 3-month-old mice. Furthermore, Abdullah et al. observed that progressive 

cardiac disorders appear in Sig-1R KO mice as they age. This result is correlated with an 

increase of proton leak across the inner mitochondrial membrane in 6-month-old Sig-1R KO 

mice compared to WT mice, but this difference is not observable between 3-month-old mice 

(Abdullah et al. 2018). Cognitive dysfunction is also noted as age-related in Chevallier et 
al. (Chevallier et al. 2011), as escape latency to STPA is not altered in 8-week-old females 

but is altered in 48-week-old females. Similar results are also noted in retinal ganglion cells, 

where it was observed that late onset neurodegeneration occurs in Sig-1R KO correlated 

with dysfunctional retinal activities (Ha et al. 2011; Ha et al. 2012; Mavlyutov et al. 2011). 

One exception is observed on anxiety tests where younger mice seem to have more defects 

(Chevallier et al. 2011) than older mice (Sabino et al. 2009a), but the difference between 

those results could be explained by the fact that they don’t come from one longitudinal 

study but rather come from two different experiments performed by two different groups. 

Sig-1R is known to regulate stress in cells, especially through regulation of Ca2+ into the 

mitochondria and activation of UPR. In physiological conditions, it is expected that cells 

are functional, and that cell stress occurs moderately compared to a pathological model. 

However, the more mice age, the more cells will encounter stress (Fonken et al. 2018; 

Haigis and Yankner 2010) and the more important Sig-1R becomes. Surprisingly, to our 

knowledge, no survival assay has been done to compare WT and Sig-1R KO mice lifespans. 

On light of those interpretations, it would be interesting to know more about the longevity in 

Sig-1R KO context. It is also interesting to note that in several models of neurodegenerative 

disorders such as ALS and AD where cell stress occurs, the deletion of Sig-1R aggravates 

those conditions (Maurice et al. 2018; Mavlyutov et al. 2013). However, others studies 

demonstrated that the deletion of Sig-1R induces the reduction of pathological phenotypes in 

pharmacological models of PD and AD (Hong et al. 2015; Yin et al. 2015).

As a receptor, Sig-1R is ligand activated. It is known that neurosteroids such as progesterone 

are a Sig-1R ligands. Furthermore, progesterone is known to have neuroprotective effects 

(Si et al. 2014). Circulating progesterone in WT male mice is around 1.96ng/mL and 

in WT female in could vary between 3–15ng/mL and even peaks between 25–50 ng/mL 

(Wagner 2006). This could lead to a sexual dimorphism in Sig-1R activity. This is confirmed 

by Chevallier et al. who observed different results between male and female Sig-1R KO 

and WT mice at the same age (Chevallier et al. 2011). Finally, it should be noted that 

two studies present results with Sig-1R KO heterozygous mice in physiological conditions 

(Chevallier et al. 2011; Yin et al. 2015). Yin et al. observed no deficit in heterozygous mice; 

however, Chevallier et al. observed that those heterozygous mice present some pathological 

phenotypes compared to WT mice but fewer and milder than that observed in Sig-1R KO 

homozygous mice. All these results demonstrate that the more mice age, the more the 
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absence of Sig-1R will lead to abnormal phenotypes. However, the impact of gender on the 

deletion of Sig-1R is still not clear.

Absence, mutation, and polymorphism of Sig-1R in other species.

In humans, several mutations and polymorphisms of Sig-1R are known to be involved 

in pathological disorders. Sig-1R polymorphisms are known to aggravate pathological 

phenotypes or increase the risk of developing AD (Fehér et al. 2012; Huang et al. 2011) but 

also ALS (Ullah et al. 2015), whereas Sig-1R mutations are known to induce frontotemporal 

lobar degeneration and motor neuropathy (Gregianin et al. 2016; Li et al. 2015; Luty et 

al. 2010). Interestingly, Sig-1R E102Q amino acid substitution induces ALS and is known 

as a loss of function as the mutation is recessive (Al-Saif et al. 2011). However, in-vivo 
studies observed that overexpression of this Sig-1R mutant in Drosophila melanogaster is 

able to induce ALS pathological phenotypes, underlining also a potential toxic gain of 

function (Couly et al. 2019). These results are correlated with previous in-vitro observations 

(Dreser et al. 2017). It should be noted that despite no known homologues of Sig-1R 

are observed in Drosophila, fundamental interactors of Sig-1R in mammals such as BiP 

and IP3R have known homologues in Drosophila (Ham et al. 2014; Venkatesh and Hasan 

1997). Furthermore, it seems that overexpressing Sig-1R in Drosophila is able to enhance 

resistance of Drosophila to oxidative stress (Couly et al. 2019). Moreover, in this review we 

previously noted that the deletion of Sig-1R seems to be necessary to optimal cell stress 

response; in Drosophila, we observed that expression of Sig-1R in a model which contains 

Sig-1R partners but not Sig-1R is able to enhance cell stress defenses at least against 

oxidative stress. These results are also correlated with studies that note that activation or 

overexpression of Sig-1R is able to enhance oxidative stress response (Goguadze et al. 2019; 

Pal et al. 2012; Wang et al. 2015). Combined, these results lead us to think that Sig-1R 

seems to be necessary to better regulate stress in cells as it is summarized in Fig3.

To conclude, altogether these results show that deletion of Sig-1R have numerous 

and various consequences at both behavioral and cellular levels. In the light of those 

observations and with the knowledge acquired from other studies observing the activation 

and inactivation of Sig-1R, we hypothesized a common origin of those defects induced by 

the absence of Sig-1R : the misregulation of cell stress occurring with aging.
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Abbreviations

AAV Adeno-asociated virus

ACTH Adrenocorticotropic hormone

AD Alzheimer’s disease
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Ala Alamine

ALS Amyotrophic lateral sclerosis

AMRS Acute mild restraint stress

ATP Adenosine triphosphate

BiP Binding immunoglobulin protein

CA1 Cornu Ammonis 1

cAMP Cyclic adenosine monophosphate

CD1 Capsaicin sensitized

CNS Central nervous system

CPS1 Carbamoyl phosphate synthetase I

CREB cAMP Response Element-binding protein

CRF Corticotropin-releasing factor

DG Dentate gyrus

DMT N,N-Dimethyltryptamine

DRG Dorsal root ganglion

eGFP Enhanced GFP

ERK1/2 Extracellular signal-regulated kinases 1 and 2

FST Forced swim test

GFP Green fluorescent protein

Gln Glutamine

Glu Glutamic acid

GRP78 78-kDa glucose-regulated protein

GSSG Oxidized glutathione

HD Huntington’s disease

HPA Hypothalamic pituitary adrenal

HSP5 Heat shock protein 5

IP3R Inositol trisphosphate receptor

IRE1 Inositol-requiring enzyme 1

KD Knock-down
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KO Knock-out

MAM Mitochondria associated membranes

mRNA Messenger RNA

Mups Major urinary proteins

NMDA N-methyl-D-aspartate

NMDAr NMDA receptor

NR2B NMDA receptor subtype 2B

OVX Ovariectomizing

PD Parkinson’s disease

pERK1/2 Phosphorylated ERK1/2

PET Positron emission tomography

PKA Protein Kinase A

PKC Protein Kinase C

PMA Phorbol 12-myristate 13-acetate

PP2 4-Amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-

d]pyrimidine

Prdx6 Peroxiredoxin-6

PSNL Partial sciatic nerve ligation

PVN Paraventricular nucleus of the hypothalamus

ROS Reactive Oxygen Speices

SCI spinal cord contusion injury

Sig 1R: Sigma-1 receptor

SKF Alazocine

STPA Step-through passive avoidance

Thr Threonine

TRPV1 Transient receptor potential cation channel, subfamily V, member 1

TST Tail suspension test

Val Valine

WT Wild-type
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XBP1 X-box binding protein 1

YMT Y-Maze Test
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Figure 1: Sig-1R expression profile in different brain cell types in mice.
Sigmar1 mRNA level in different brain cell populations in mice. Glial cells have a higher 

expression of Sig-1R than neurons. FPKM : Fragments per kilo base of exon per million 

reads mapped. Result extracted from brainrnaseq database (Zhang et al. 2014).
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Figure 2: Schematic summary of defects induced by the absence of Sig-1R in mice.
AP: Action potential; BDNF: Brain derived neurotrophic factor; ER: Endoplasmic 

reticulum; HPA axis: Hypothalamic-pituitary-adrenal axis.
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Figure 3: Fundamental functions of Sig-1R on ER stress regulation.
1- Misfolded proteins increasing with age induce ER stress and modification in calcium 

homeostasis; 2- Calcium depletion in ER activates Sig-1R, which separates from BiP. 

Pathway a: IP3R and ATP production. 3a- Sig-1R interacts with IP3R and allows ankyrin 

to be detached from IP3R, which stabilize and enhance opening of IP3R. 4a- Calcium 

ions efflux from ER lumen into mitochondria through IP3R, VDAC, and MCU. 5a- 
Calcium ions increase in mitochondria enhances ATP production through TCA cycle and 

oxidative phosphorylation. Pathway b: Unfolded Protein Response. 3b- Sig-1R interacts 

with IRE1. 4b- Activated IRE1 acts as an endonuclease and is able to cut an intron 

from xbp1 to allow its translation. 5b- XBP1 allows the transcription of ER chaperone 

genes and pro-survival genes. ATP : Adenosine triphosphate; BiP : Binding immunoglobulin 
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protein; ER : Endoplasmic reticulum; ERAD : Endoplasmic-reticulum-associated protein 

degradation; IP3R : Inositol trisphosphate receptor; IRE1 : Inositol-requiring enzyme 1; 

MCU : Mitochondrial calcium uniporter; OxPhos : Oxidative phosphorylation; TCA : 

tricarboxylic acid cycle; VDAC: Voltage dependent anion channel; XBP1 : X-box binding 

protein 1; xbp1s : xbp1 mRNA spliced; xbp1u : xbp1 mRNA unspliced.
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Table 1:

Behavior and metabolism changes induced with the deletion of Sig-1R.

Behaviors Test Measured 
parameter

Sig-IR KO 
mice 

compare to 
Wt

Mice

Reference
Age Gender

Cognition Hamlet Topographic memory Decrease 7 to 9 weeks 
old Males Crouzier et al. 2020

Hamlet Exploration Pattern Decrease 7 to 9 weeks 
old Males Crouzier et al. 2020

Object recognition test Recognition index 
after 1h No difference 11 to 20 

weeks old Mix Xu et al. 2017

Object recognition test Recognition index 
after 1h Decrease 11 to 20 

weeks old Mix Xu et al. 2017

STPA Step throught latency No difference 8 and 48 
weels old

Males and 
females Chevallier et al. 2011

STPA Escape latency No difference 8 and 48 
weels old Males Chevallier et al. 2011

STPA Escape latency No difference 8 weeks old Females Chevallier et al. 2011

STPA Escape latency Increase 48 weeks old Females Chevallier et al. 2011

Water-maze Time to reach target 
during training No difference 8 weeks old Males Chevallier et al. 2011

Water-maze Time to reach target 
during training Increase 8 weeks old Females Chevallier et al. 2011

Water-maze
Time spent in Target 

quadrant during prob-
test

No difference 8 weeks old Males Chevallier et al. 2011

Water-maze
Time spent in Target 

quadrant during prob-
test

Decrease 8 weeks old Females Chevallier et al. 2011

Water-maze Time to reach target 
during training Increase 11 to 20 

weeks old Mix Xu et al. 2017

Water-maze
Time spent in Target 

quadrant during prob-
test

No difference 11 to 20 
weeks old Mix Xu et al. 2017

YMT spontaneous 
alternation No difference 8 and 48 

weeks old Males Chevallier et al. 2011

YMT spontaneous 
alternation Decrease 8 and 48 

weels old Females Chevallier et al. 2011

YMT spontaneous 
alternation No difference 11 to 20 

weeks old Mix Xu et al. 2017

Motor activity Beam walked Time to cross No difference 12 weeks-old Males Hong et al. 2017

Beam walked Time to cross Increase 24 to 48 
weeks-old Males Hong et al. 2017

Footprint analysis stride pattern No difference 8 to 14 weeks 
old n/a Mavlyutov et al. 

2010

Grid test ability to lift the grid Decrease 20 weeks-old n/a Bemard-Marissal et 
al. 2015

Grid test ability to lift the grid No difference 12 to 36 
weeks-old Males Hong et al. 2017

Grid test ability to lift the grid Decrease 48 weeks-old Males Hong et al. 2017

Open-field Cumulative mobile 
time No difference 8–12 weeks-

old Males Langa et al. 2003
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Open-field Distance travelled No difference 12 weeks-old Males and 
females Chevallier et al. 2011

Open-field Locomotion speed No difference 12 weeks-old Males and 
females Chevallier et al 2011

Open-field Duration of 
immobility No difference 12 weeks-old Males and 

females Chevallier et al. 2011

Open-field Distance travelled No difference 12 to 48 
weeks-old Males Hong et al. 2017

Open-field Spontaneous 
lomoction No difference adult n/a Fontanilla et al. 2009

Open-field Beams interuption No difference 28 weeks old Males Sabino et al. 2009

Rotarod Score Decrease 10 and 20 
weeks old n/a Bemard-marissal et 

al. 2015

Rotarod Score Decrease 8 to 14 weeks 
old n/a Mavlyutov et al. 

2010

Rotarod Score No difference 12 weeks old Males Hong et al. 2017

Rotarod Score No difference n/a Females Nieto et al. 2012

Rotarod Score Decrease 24 to 48 
weeks old Males Hong et al. 2017

Swimming test Time to reach safe 
zone Decrease 8 to 14 weeks 

old n/a Mavlyutov et al. 
2010

Water-maze Swimming speed No difference 8 weeks old Males and 
females Chevallier et al. 2011

Water-maze Swimming speed No difference 11 to 20 
weeks old Mix Xu et al. 2017

YMT Number of arms 
visited Increase 8 weeks-old Males and 

females Chevallier et al. 2011

YMT Number of arms 
visited No difference 11 to 20 

weeks old Mix Xu et al. 2017

Psychiatric 
related Alcohol intake

Two-bottle choice 
continuous acces 

paradigm
Increase 9–13 weeks 

old Males Valenza et al. 2015

Elevated plus maze Open arm time, 
closed arm entries No difference 28 weeks-old Males Sabino et al. 2009

Elevated plus maze Open arm time Decrease 8 weeks-old Males Chevallier et al. 2011

Elevated plus maze Open arm time No difference 8 weeks-old Females Chevallier et al. 2011

Forced swimming test Immobility duration Increase 20 weeks old Males Di et al. 2017

Forced swimming test Immobility duration Increase n/a Males Chevallier et al. 2011

Forced swimming test Immobility duration No difference n/a Females Chevallier et al. 2011

Forced swimming test Immobility duration Increase 28 weeks-old Males Sabino et al. 2009

Forced swimming test Climbing No difference 28 weeks-old Males Sabino et al. 2009

Forced swimming test Immobility duration Increase 8 weeks-old Males Sha et al. 2015

Forced swimming test Immobility duration No difference 8 weeks-old Females Sha et al. 2015

Light-Dark transfert
Latency to enter light, 

time spend in light, 
transfert number

No difference 28 weeks-old Males Sabino et al. 2009

Open-field Time spend in the 
center Decrease 8 weeks old Males Chevallier et al. 2011

Open-field Time spend in the 
center No difference 8 weeks old Females Chevallier et al. 2011

STPA Latency to enter dark Decrease 8 and 48 
weeks old Males Chevallier et al. 2011
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STPA Latency to enter dark No difference 8 and 48 
weeks old Females Chevallier et al. 2011

Tail suspension Immobility duration Increase 20 weeks old Males Di et al. 2017

Tail suspension Immobility duration Increase 8 weeks-old Males Sha et al. 2015

Tail suspension Immobility duration No difference 8 weeks-old Females Sha et al. 2015

Water intake
Two-bottle choice 
continuous acces 

paradigm
No difference 9–13 weeks 

old Males Valenza et al. 2015

Somato-
sensation Formalin test Duration of licking/

biting of injected paw Decrease 7–9 weeks old female Cendan et al. 2005

Acetone Test
Duration of biting or 
licking of the hind 

paw
No difference 8–11 weeks female Bravo - Caparros et 

al. 2019

Acetone Test
Duration of biting or 
licking of the hind 

paw
No difference 8–11 weeks males Bravo - Caparros et 

al. 2019

Capsaicin test. 
Dynamic Plantar 
Aesthesiometer 

(mechanical 
hypersensitivity)

Paw withdrawal 
latency time at 0.5 g 

(4.90 mN) force.
Increase n/a female Entrena et al. 2009

Dynamic Plantar 
Aesthesiometer 

(mechanical sensitivity)

Paw withdrawal 
latency time No difference n/a female Entrena et al. 2009

Hot plate test at 50 ± 
0.5 °C

Latency to the 
beginning of forepaw 
licking and jumping

No difference 6–8 weeks old males De la Puente et al. 
2009

hot/cold plate (5 ± 0.5 
°C)

The number of 
elevations of each 

hindpaw
No difference 6–8 weeks old males De la Puente et al. 

2009

Paw pressure
The struggle response 

latency at 450g 
constant pressure

No difference n/a female Sanchez-Femandez et 
al. 2014

Paw pressure
The struggle response 

latency at 450g 
constant pressure

No difference n/a female Montilla-Garcia et al. 
2018

Plantar test
Hindpaw withdrawal 
latency in response to 

radiant heat
No difference 6–8 weeks old males De la Puente et al. 

2009

Tail-flik Latency to tail-flick 
response No difference 6–8 weeks old males De la Puente et al. 

2009

Thermal stimulus 
(radiant heat) 

Hargreaves method

Hind paw withdrawal 
latency No difference 4–5 weeks old female Castany et al. 2018

Thermal stimulus 
(radiant heat) 

Hargreaves method

Hind paw withdrawal 
latency No difference 8–11 weeks female Bravo - Caparros et 

al. 2019

Thermal stimulus 
(radiant heat) 

Hargreaves method

Hind paw withdrawal 
latency No difference 8–11 weeks males Bravo - Caparros et 

al. 2019

Unilateral hot plate Paw withdrawal 
latency at 55 ± 1°C No difference n/a female Montilla-Garcia et al. 

2018

Von Frey filament (up 
and down 0.008 to 2 g)

Hindpaw withdrawal 
response No difference 6–8 weeks old males De la Puente et al. 

2009

Von Frey filament (up 
and down 0.02 to 1.4g)

Paw withdrawal 
thresholds No difference 8–11 weeks female Bravo - Caparros et 

al. 2019

Von Frey filament (up 
and down 0.02 to 1.4g)

Paw withdrawal 
thresholds No difference 8–11 weeks males Bravo - Caparros et 

al. 2019
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Von Frey filament (up 
and down 0.04–2 g)

Paw withdrawal 
thresholds No difference 4–5 weeks old female Castany et al. 2018

Peripheral 
organs Test Measured 

parameter

Sig-IR KO 
mice 

compare to 
Wt

Mice

Reference
Age Gender

Cardiovascular 
system Echocardiography Left ventricul systolic 

internal dimension No difference 12 to 24 
weeks old Mix Abdullah et al. 2018

Echocardiography Left ventricul systolic 
internal dimension Increase 60 weeks old Mix Abdullah et al. 2018

Echocardiography Percentage fractional 
shortening No difference 12 weeks old Mix Abdullah et al. 2018

Echocardiography Percentage fractional 
shortening Increase 24 to 60 

weeks old Mix Abdullah et al. 2018

Echocardiography Left ventricul systolic 
volume No difference 12 to 24 

weeks old Mix Abdullah et al. 2018

Echocardiography Left ventricul systolic 
volume Increase 60 weeks old Mix Abdullah et al. 2018

Echocardiography Pourcentage ejection 
fraction No difference 12 weeks old Mix Abdullah et al. 2018

Echocardiography Pourcentage ejection 
fraction Increase 24 to 60 

weeks old Mix Abdullah et al. 2018

Echocardiography Pourcentage ejection 
fraction No difference 24 to 60 

weeks old Mix Abdullah et al. 2018

Invasive Hemodynamic 
Assessement

Systolic blood 
pressure Increase 12 to 16 

weeks old Mix Abdullah et al. 2018

Invasive Hemodynamic 
Assessement

Heart rate, 
left ventricule 
contractibility

No difference 12 to 16 
weeks old Mix Abdullah et al. 2018

Liver 2D gel electropherisis 
and mass spectroscopy

BiP, 40S 
Ribosomal Protein 

SA,b-Globinm, CPS1, 
Prdx6

Increase 12 weeks old n/a Pal et al. 2012

2D gel electropherisis 
and mass spectroscopy HSP5, Mups Decrease 12 weeks old n/a Pal et al. 2012

DCFH-DA assay ROS Increase 12 weeks old n/a Pal et al. 2012

Nuclear magnetic 
resonance metabolomic 

screening

Ala, AMP, Glu, 
Lactic Acid, 

Myoinositol, GSSG, 
Thr, Betaine, Gin

Increase 12 weeks old n/a Pal et al. 2012

Nuclear magnetic 
resonance metabolomic 

screening
Val Decrease 12 weeks old n/a Pal et al. 2012

Lung DCFH-DA assay ROS Increase 12 weeks old n/a Pal et al. 2012

Bladder Western Blot ERK1/2, pERKl/2 No difference n/a Females González-Cano et al. 
2020

Myeloperoxidase 
activity - No difference n/a Females González-Cano et al. 

2020

General 
metabolism

Measured 
parameter

Sig-IR KO mice compare 
to Wt

Mice
Reference

Age Gender

Weight Weight No difference 1 to 25 days postpartum n/a Langa et al. 2003

Weight No difference 8 weeks old Males and 
females Chevallier et al. 2011

Weight No difference 3 and 15 weeks old n/a Ha et al. 2012
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General 
metabolism

Measured 
parameter

Sig-IR KO mice compare 
to Wt

Mice
Reference

Age Gender

Blood 
composition Estradiol Decrease 8 weeks old Female Chevallier et al. 2011

Glucose No difference 3 and 15 weeks old n/a Ha et al. 2012

Insuline No difference 3 and 15 weeks old n/a Ha et al. 2012

Temperature Rectal temperature No difference 14 weeks old Males Guzman et al. 2008

The table presents the test and the measured parameter. The effect induced by the deletion of Sig-1R (increase, decreased or no difference). 
The age and the sex are also presented when available in the original article if not n/a (not applicable) is mentioned Ala alamine, BiP binding 
immunoglobulin protein, CPS1 carbamoyl phosphate synthetase I, ERK1/2 extracellular signal-regulated kinases 1 and 2, Gln glutamine, Glu 
glutamic acid, GSSG oxidized glutathione, HSP5 heat shock protein 5, Mups major urinary proteins, pERK1/2 phosphorylated ERK1/2, Prdx6 
peroxiredoxin-6, ROS reactive oxygen species, STPA step-through passive avoidance, Thr threonine, Val valine, YMT Y-maze test
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