Table 3.
Method | Artificial neural network | Logistic regression | Tree | Linear discriminant | Kernel Naïve Bayes | Support vector machine | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fine | Medium | Coarse | Linear | Quadratic | Cubic | Fine Gaussian | Medium Gaussian | Coarse Gaussian | |||||
CNF1 | 55.2 | 62.1 | 44.8 | 44.8 | 44.8 | 41.4 | 27.6 | 51.7 | 55.2 | 51.7 | 48.3 | 55.2 | 48.3 |
CNF2 | 69 | 51.7 | 58.6b | 58.6b | 58.6b | 27.6 | 37.9 | 48.3 | 51.7 | 51.7 | 41.4 | 48.3 | 41.4 |
CNF3 | 31 | 65.5 | 34.5 | 34.5 | 34.5 | 31 | 27.6 | 44.8 | 44.8 | 41.4 | 41.4 | 44.8 | 41.4 |
DEA | 96.3a | 77.8a | 48.1 | 48.1 | 48.1 | 63 | 33.3 | 74.1 | 74.1 | 77.8b | 40.7 | 63 | 59.3 |
Method | K-nearest neighbors | Ensemble | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fine | Medium | Coarse | Cosine | Cubic | Weighted | Boosted trees | Bagged trees | Subspace discriminant | Subspace KNN | RUSBoosted trees | |
CNF1 | 34.5 | 44.8 | 48.3 | 62.1b | 48.3 | 48.3 | 48.3 | 44.8 | 55.2 | 44.8 | 31 |
CNF2 | 37.9 | 41.4 | 41.4 | 51.7 | 37.9 | 44.8 | 41.4 | 44.8 | 44.8 | 31 | 44.8 |
CNF3 | 31 | 37.9 | 41.4 | 41.4 | 34.5 | 44.8 | 41.4 | 27.6 | 48.3b | 27.6 | 34.5 |
DEA | 70.4 | 59.3 | 37 | 48.1 | 55.6 | 70.4 | 37 | 55.6a | 70.4 | 40.7 | 59.3 |
aIdentifies the highest accuracy score achieved when implementing ANN, logistic regression, and random forest (codified as bagged trees in MATLAB) to the different categorization methods analyzed
bIdentifies the highest accuracy score achieved by the DEA hybrid and each alternative configuration through the battery of remaining tests