Skip to main content
. 2021 Apr 23;54(6):4653–4684. doi: 10.1007/s10462-021-10008-0

Table 3.

Accuracy across models and methods

Method Artificial neural network Logistic regression Tree Linear discriminant Kernel Naïve Bayes Support vector machine
Fine Medium Coarse Linear Quadratic Cubic Fine Gaussian Medium Gaussian Coarse Gaussian
CNF1 55.2 62.1 44.8 44.8 44.8 41.4 27.6 51.7 55.2 51.7 48.3 55.2 48.3
CNF2 69 51.7 58.6b 58.6b 58.6b 27.6 37.9 48.3 51.7 51.7 41.4 48.3 41.4
CNF3 31 65.5 34.5 34.5 34.5 31 27.6 44.8 44.8 41.4 41.4 44.8 41.4
DEA 96.3a 77.8a 48.1 48.1 48.1 63 33.3 74.1 74.1 77.8b 40.7 63 59.3
Method K-nearest neighbors Ensemble
Fine Medium Coarse Cosine Cubic Weighted Boosted trees Bagged trees Subspace discriminant Subspace KNN RUSBoosted trees
CNF1 34.5 44.8 48.3 62.1b 48.3 48.3 48.3 44.8 55.2 44.8 31
CNF2 37.9 41.4 41.4 51.7 37.9 44.8 41.4 44.8 44.8 31 44.8
CNF3 31 37.9 41.4 41.4 34.5 44.8 41.4 27.6 48.3b 27.6 34.5
DEA 70.4 59.3 37 48.1 55.6 70.4 37 55.6a 70.4 40.7 59.3

aIdentifies the highest accuracy score achieved when implementing ANN, logistic regression, and random forest (codified as bagged trees in MATLAB) to the different categorization methods analyzed

bIdentifies the highest accuracy score achieved by the DEA hybrid and each alternative configuration through the battery of remaining tests