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Abstract
Early blight is the most devastating disease in tomato which causes huge yield losses across the globe. Hence, development 
of specific, efficient and ecofriendly tools are required to increase the disease resistance in tomato plants. Here, we system-
atically investigate the defensive role and priming effect of silicon (Si) in tomato plants under control and infected condi-
tions. Based on the results, Si-treated tomato plants showed improved resistance to Alternaria solani as there was delay in 
symptoms and reduced disease severity than non-Si-treated plants. To further examine the Si-mediated molecular priming in 
tomato plants, expression profiling of defense-related genes like PR1, PR2, WRKYII, PR3, LOXD and JERF3 was studied in 
control, Si-supplemented, A. solani-inoculated and Si + A. solani-inoculated plants. Interestingly, Si significantly increased 
the expression of jasmonic acid (JA) marker genes (PR3, LOXD and JERF3) than salicylic acid (SA) marker genes (PR1, PR2 
and WRKYII). However, Si + A. solani-inoculated plants showed higher expression levels of defence genes except WRKYII 
than A. solani-inoculated or Si-treated plants. Furthermore, pre-supplementation of Si to A. solani-infected tomato plants 
showed increased activity of antioxidant enzymes viz. superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase 
(APX), glutathione reductase (GR) and peroxidase (POD) than control, Si-treated and A. solani-inoculated plants. Altogether, 
present study highlights the defensive role of Si in tomato plants in response to A. solani by increasing not only the transcript 
levels of defense signature genes, but also the activity of antioxidant enzymes.
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Introduction

Tomato (Lycopersicon esculentum Mill.) is one of the 
important and widely grown vegetable crops in the world 
(Guil-Guerrero and Rebolloso-Fuentes 2009; Khan et al. 
2017; Alenazi et al. 2020) and fulfils nearly 50% of veg-
etable requirements of the country. It is the second most 
consumed vegetable after potato in the world (Foolad 2007). 
They are nutritionally important because of high content 
of vitamin A and C and also provide antioxidant lycopene 
pigment that protects heart diseases and cancer as well 

(Story et al. 2010; Singh and Goyal 2008). Unfortunately, 
the productivity of tomato crops has been largely affected 
by various biotic stresses (Pandey et al. 2017; Gerszberg and 
Hnatuszko-Konka 2017; Fahad et al. 2017). Among them, 
fungal pathogens like A. solani, Phytophthora infestans, 
Fusarium oxysporium, Verticilium dahlia and Septoria lyco-
persici are the major limiting factors of tomato production 
across the globe. Early blight caused by A. solani is one of 
the destructive diseases in tomato which causes approxi-
mately 79% yield losses (Panthee and Chen 2009; Adhikari 
et al. 2017). Besides huge losses, it also damages the fruit 
quality and market value of tomato thereby causing huge 
economical losses. Generally, A. solani shows unique symp-
toms in tomato plants which mainly depend on the organ 
infected like leaf blight or early blight, collar rot or stem 
lesions and fruit rot (Chaerani et al. 2006; Thirthamallappa 
and Lohithaswa 2000). Unfortunately, tomato plants lack 
sufficient disease resistance to A. solani. However, fungicide 
applications are currently used to manage early blight but 
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are environmentally hazardous. Therefore, it is essential to 
find other strategies to manage early blight in tomato. Si 
supplementation is one of the promising and ecofriendly 
approach to overcome the negative effects of A. solani in 
tomato plants.

Si forms one of the beneficial and multifunctional ele-
ments which provides disease resistance not only to micro-
bial pathogens but also enhances stress tolerance to multiple 
abiotic stresses. Plants are classified as Si accumulators or 
non accumulators based on their ability to absorb the ele-
ment. Plants consume silicic acid as a source of Si and are 
known to be safe if accumulated in higher quantities (Tubaña 
et al. 2015; Tubana et al. 2016). Silicic acid transporters 
both influx (Lsi1) and efflux (Lsi2) have been identified in 
number of plants including rice, barley and maize, soybean 
and cucumber (Deshmukh et al. 2013). The pioneer work on 
Si transporters further provides information on Si perme-
ability in plants (Deshmukh et al. 2015). Recently, trans-
portation of Si through multiple transportation processes 
has been studied in various plant species (Mitani-ueno and 
Ma 2020). To defend against pathogens, plants use both 
preformed (structural and biochemical) as well as inducible 
defense responses which are regulated by a multifaceted net-
work of signal pathways (Fraser 2000). These mechanisms 
involve lignin formation, callose deposition, production of 
reactive oxygen species (ROS), phytoalexins, phenolics, 
induction of pathogenesis-related (PR) proteins, peroxidase 
and catalase (Torres et al. 2006; Almagro et al. 2009; Das 
and Roychoudhury 2014; Doughari 2015). Si addition can 
reduce the severity of plant disease through the formation of 
physical barrier by fortification of the host epidermal tissue, 
improving biochemical mechanisms and systemic signaling 
pathways (Ma 2004; Fortunato et al. 2012; Van Bockhaven 
et al. 2013; Reynolds et al. 2016). A number of studies have 
revealed that silicification of the epidermal cells delayed 
fungal penetration, colonization and sporulation during 
various plant pathogen interactions such as Cucumis sativus-
Colletotrichum lagenarium, Arabidopsis thaliana-Erysip-
hecichoracearum, Oryza sativa-Monographella albescens, 
Oryza sativa-Rhizoctonia solani and Triticum aestivum-P. 
oryzae (Araujo et al. 2016; da Silva et al. 2015; Domiciano 
et al. 2013; Kauss et al. 2003; Sousa et al. 2013; Fauteux 
et al. 2005). Generally, Si can improve disease resistance 
by various modes viz. preventing pathogen access through 
structural strengthening (Fortunato et al. 2012; Fauteux et al. 
2005), activation of systemic acquired resistance (SAR), 
stimulates the accumulation of antimicrobial molecules 
like pathogenesis-related proteins and activating a cascade 
of defense hormonal signaling pathways (Van Bockhaven 
et al. 2013; Vivancos et al. 2015). It was primary reported 
in dicots that, Si positively declines the negative impact of 
powdery mildew on cucumber plants (Samuels et al. 1991; 
Sousa et al. 2013; Reynolds et al. 2016). It was reported 

earlier that Si supplementation successfully prevents pen-
etration of Pyricularia oryzae and Bipolaris sorokiniana in 
wheat plants (Sousa et al. 2013; Domiciano et al. 2013). 
Similarly in rice plants, Si supplementation significantly 
prevented the penetration of two fungal pathogens namely 
Pyricularia grisea and Rhizoctonia solani by forming Si 
dense layer on leaf tissues (Rodrigues et al. 2001; See-
bold et al. 2004; Hayasaka et al. 2008). (Wiese et al. 2005) 
showed that the addition of Si strongly enhanced barely 
resistance to powdery mildew infection. In addition to cell 
wall strengthening, Si supplementation is known to induce 
an array of biochemical defense responses in plants such as 
activating SA, JA and ET pathways, increases production of 
antimicrobial molecules and enzymes and enhances activ-
ity of antioxidant enzymes (Fauteux et al. 2005; Fortunato 
et al. 2012; Van Bockhaven et al. 2013). Classically, JA/ET 
pathway provides resistance to necrotrophic pathogens and 
herbivorous pests while as SA pathway mediated disease 
resistance to biotrophic pathogens (Glazebrook 2005; Bari 
and Jones 2009). Generally, activation of defense signal-
ing pathways viz., SA and JA leads to the accumulation of 
PR proteins that minimizes pathogen load or disease onset 
in uninfected plant organs. There are plethora of studies 
which have shown that Si effectively modulates the SA 
and JA signaling pathways, which improves host defense 
machinery against the stresses. Previous reports highlighted 
that pre-supplementation of Si in Erysiphe cichoracearum 
infected Arabidopsis plants stimulates the biosynthesis of 
SA, JA, and ET thereby enhancing disease resistance (Fau-
teux et al. 2006). Similarly, Si supplementation in Ralstonia 
solanacearum infected tomato plants triggers the activation 
JA and ET signaling pathways. Interestingly, many studies 
have shown that Si increases disease resistance in rice plants 
against wide range of pathogens by activating defense path-
ways (Brunings et al. 2009; Van Bockhaven et al. 2015). 
In addition, Si is known to increase the transcript levels 
of pathogenesis-related genes like PR1, PR2 (glucanse), 
PR3 (chitinase) and other regulatory or transcription fac-
tors which provides effective resistance against broad range 
of pathogens. It is well documented that Si supplementa-
tion significantly increases the activity of defense-related 
enzymes like phenylalanine ammonia-lyase, peroxidase, 
polyphenoloxidase and glucanase in different crops against 
wide range of pathogens. In plants, Si is known to improve 
disease resistance by modulating defense signaling pathways 
(Zhang et al. 2004; Fauteux et al. 2006; Iwai et al. 2006; 
De Vleesschauwer et al. 2008; Brunings et al. 2009; Chen 
et al. 2009; Ghareeb et al. 2011; Reynolds et al. 2016). A 
high Si concentration in the shoots of plants infected with 
different pathogens was associated with a more efficient 
antioxidant metabolism (high APX, CAT, GR, and SOD 
activities), thereby enhancing the removal of ROS (Curvêlo 
et al. 2013; Debona et al. 2014; Pereira Domiciano et al. 
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2015; Fortunato et al. 2012; Li et al. 2012; Resende et al. 
2012a; Polanco et al. 2014; Mohaghegh et al. 2011; Sun 
et al. 2010). Recently, multiomics studies on the effect of Si 
on different pathosystems have provided vast information 
to further broaden our understanding on the role of Si in 
disease or stress tolerance. These findings suggested that 
Si addition enhances resistance to plants (dicots and mono-
cots) against pathogens. Generally, tomato plants are low Si 
accumulators which are mainly due to the absence of Lsi2-
type transporter. However, Lsi1 is present in the root cells of 
tomato plants which are functional in silicon accumulation 
(Sun et al. 2020). The primed state of Si could be mediated 
via ethylene, jasmonic acid and/or reactive oxygen species 
signaling pathways. As there are many studies which have 
shown that Si increases the expression of antifungal genes 
in Si-non accumulator plants (Ghareeb et al. 2011; Vivancos 
et al. 2015; Almutairi, 2016). In this

Materials and methods

Plants and growth conditions

In the present study, the seeds of L. esculentum Mill variety 
Shalimar-2 were obtained from vegetable seed production 
section (SKAUST-K) Srinagar, Jammu and Kashmir, India. 
The seeds were surface sterilized with HgCl2 and grown in 
pots containing a mixture of sterile soil and organic manure 
(2:1) in a growth chamber with a temperature of 22  °C and 
illuminated with compact fluorescent lamps for 16 h/8 h 
light and dark cycles. The 30-day-old tomato seedlings were 
then transferred to the green house of Centre of Research 
for Development, University of Kashmir, India. Prior to A. 
solani infection, tomato plants were supplemented with Si 
in the form of potassium silicate (1.7 mM) as described by 
Ouellette et al. (2017) and control plants were treated with 
potassium chloride solution.

Alternaria solani infection in Lycopersicon 
esculentum plants and disease scoring

To study the A. solani-tomato pathosytem, A. solani strain 
was isolated from infected leaves of L. esculentum and cul-
tured on potato dextrose agar (PDA) media Rodrigues et al. 
(2010). Si-supplemented tomato plants (45-d-old) plants 
were inoculated with A. solani by the method described by 
Ali et al. (2017a). For mock, control plants were treated with 
sterile distilled water and placed separately to prevent cross 
contamination. Both the control and infected plants were 
incubated at 22 °C under 100% relative humidity. Evaluation 
of disease resistance in Si- and non-Si-treated tomato plants 
in response to A. solani infection was carried out by studying 
following disease parameters viz. lesion appearance, lesion 

diameter (cm), number of lesions per leaf and percentage 
of disease leaf area (%DLA) (Ghosh et al. 2009; Ali et al. 
2017b).

RNA isolation and reverse transcription quantitative 
PCR

To investigate the expression of defense marker genes such 
as PR1, PR2, WRKYII, PR3, LOXD and JERF3 in response 
to Si amendment in plants inoculated and non-inoculated 
with A. solani, real-time quantitative PCR was performed 
using gene-specific primers. Leaf samples from control, 
Si-treated, A. solani-inoculated and Si + A. solani-inocu-
lated plants were collected (three technical replicates) and 
immediately frozen in liquid nitrogen and stored in -800C. 
Total RNA was extracted from control, Si-treated, A. solani-
inoculated and Si + A. solani-inoculated leaf samples (100 
mg) using Ambion RNA isolation kit as described by manu-
facturer’s protocol (Life Technologies). In this study, PR1, 
PR2, WRKYII, PR3, LOXD, JERF3 and alpha tubulin gene 
specific primers were designed by Oligoanalyzer software 
(Table1). For complementary DNA (cDNA) preparation, 2 
µg of highly purified total RNA was used in 20 µl reaction 
volume containing oligo(dT) 18 primers, 10 mM deoxynu-
cleotide (dNTPS), reverse transcriptase and water follow-
ing the manufacturer’s instructions (Invitrogen, Canada). For 
expression analysis, qPCR was done in a mixture contain-
ing 5 µl of SYBR green real-time PCR master mix (Takara, 
Japan), 2 µl of cDNA and 0.5 µl (10 pmol) of each primer. 
The qPCR reactions were performed at 95  °C for 5 min, 
followed by 40 cycles at 94  °C for 30 s, at 60  °C for 30 s, 
and at 72  °C for 30 s. The relative expression levels of PR1, 
PR2, WRKYII, PR3, LOXD and JERF3 were quantified by 
2¯ΔΔCt method Livak and Schmittgen (2001). All reactions 
were performed with three technical replicates.

Estimation of activities of antioxidant enzymes

Leaf samples (500 mg) were harvested from control, Si-
treated, A. solani-inoculated and Si + A. solani-inoculated 
plants after 15 days and were immediately frozen, ground 
in liquid nitrogen and extracted in 50 mM potassium phos-
phate buffer (K2HPO4) at pH 7. After centrifugation of the 
homogenate at 11,000 rpm for 15 min at 4 °C, the super-
natant was taken and used for determination of antioxidant 
enzyme activities. SOD activity was carried out according 
to the method of Beauchamp and Fridovich (1971) by deter-
mining the ability of the enzyme to inhibit the formation 
of NBT from formazan. The absorbance of reduced NBT 
was measured at 560 nm. CAT activity was determined 
according to the method of Aebi (1984) and absorbance of 
the reaction mixture containing enzyme extract and phos-
phate buffer was measured at 240 nm before and after the 
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addition of hydrogen peroxide. APX activity was determined 
by employing the method of Nakano and Asada (1981) to 
find its ability to catalyse the reduction of hydrogen peroxide 
into water in presence of phosphate buffer and measuring the 
activity as decrease in absorbance at 290 nm. GR activity 
was assayed by following the method of Foyer and Halli-
well (1976). It was determined by measuring the decrease 
in absorbance at 340 nm by examining the glutathione 
dependent oxidation of NADPH. POD activity was assayed 
by following the method of Chance and Maehly (1955). It 
was recorded by measuring the change in absorbance of the 
reaction mixture at 470 nm.

Statistical analysis

The results were statistically analyzed by student’s t-test and 
Tukey multiple comparison test. For each experiment, three 
replicates were used and repeated three times. Student’s 
t-test was carried out to determine significant differences in 
gene expression in control, Si-treated, A. solani-inoculated 
and Si + A. solani-inoculated samples. Statistical evaluation 
of significant differences was determined as (p < 0.05) or 
extremely significant (p < 0.01).

Results

Disease development in Lycopersicon esculentum

In the present experiment first we studied the early blight 
disease development in L. esculentum by inoculating A. 
solani spores on the leaves under defined conditions. The 
appearance of necrotic lesions appeared on tomato leaves 
after 48 h of post inoculation while no symptoms were seen 
on non-infected leaves. These results showed the suscep-
tibility of L. esculentum to A. solani infection as well as 

compatible interaction between A. solani and L. esculentum 
pathosystem.

Silicon improves disease resistance in tomato plants 
against Alternaria solani infection

In the present study, we systematically examined the role Si 
in improving disease resistance against early blight disease 
in L. esculentum plants. To further assess the resistance level 
of Si-treated L. esculentum, 45-day-old plants were infected 
with A. solani and disease scoring was done for 1–3 weeks. 
The disease resistance was assessed by measuring the aver-
age lesion diameter, lesion appearance and disease severity 
in the A. solani-infected leaves for both Si-treated and con-
trol plants from 3 to 15 dpi. After 3 days of post inoculation, 
small necrotic lesions began in non-Si-treated L. esculentum 
plants and size of the necrotic lesions increased significantly 
after disease progression (Fig. 1). In contrast, Si-treated plants 
also showed lesions but the lesion size or diameter was com-
paratively lower than non-treated plants days after inoculation. 
After 15 dpi, lesion diameter increases more significantly in 
non Si-treated infected plants (Fig. 2). Furthermore, our results 
revealed that disease severity was very high in non-Si-treated 
L. esculentum plants and covers approximately 75% of the total 
leaf area than Si-treated plants at 15th dpi (Fig. 3). The dis-
ease resistance was assessed by measuring the average lesion 
diameter in the A. solani infected leaves for both Si-treated 
and control plants and lesion diameter was 75% reduced in 
the former compared to non-Si-treated plants. The increased 
number of lesions spread in distal portions of leaves in non-
treated plants than Si-treated plants after A. solani infection. 
Based on disease index (0–9 scale), non-silicon-treated plants 
showed early blight infection with disease scale of 8 (70–80%). 
While, Si-treated plants show disease scale of 3 (20–30%), 
respectively. Therefore, our results showed that Si-treated 
plants exhibit improved disease resistance to Alternaria early 

Table 1   List of primer pairs 
used for qRT-PCR

Gene Accession No Sequence

PR1 M69247 Sense 5′-ACT​TGG​CAT​CCC​GAG​CAC​AA-3′
Antisense 5′-CTC​GGA​CAC​CCA​CAA​TTG​CA-3′

PR2 M80604 Sense 5′-TTT​CGA​TGC​CCT​TGT​GGA​TTC-3′
Antisense 5′-GGC​CAA​CCA​CTT​TCC​GAT​AC-3′

PR3 U30465 Sense 5′-GCG​TTG​TGG​TTC​TGG​ATG​ACA-3′
Antisense 5′-CAG​CGG​CAG​AAT​CAG​CAA​CA-3′

WRKYII AY157064 Sense 5′-GCT​TGG​AAG​ACG​CTT​CAA​TGC-3′
Antisense 5′-GTG​ATG​GCA​ACC​TGG​GAT​GA-3′

JERF3 AY383630 Sense 5′-GCC​ATT​TGC​CTT​CTC​TGC​TTC-3′
Antisense 5′-GCA​GCA​GCA​TCC​TTG​TCT​GA-3′

LOXD AF384374 Sense 5′-AGA​TTT​CTC​CCG​AAT​ATG​CTGAA-3′
Antisense 5′-ATA​CTA​CTGATITCA​TCA​ACG​GCA​T-3′

α-Tubulin NM_1003603 Sense 5′-GCT​GGG​AGC​TGT​ACT​GTC​TTG-3′
Antisense 5′-CAA​CGG​AGG​TAG​AGA​CCT​GTG-3′
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blight as there was delay in lesion appearance, size and spread 
of infection in comparison to non-Si-treated-inoculated plants. 
On the other hand, we also found the difference in the plant 
height and dry weight of the infected tomato plants after Si 
application than non-Si-treated A. solani-infected plants. As 
Si-treated A. solani-inoculated plants showed increase in their 
height and more dry weight than non-Si-treated A. solani-inoc-
ulated plants (Table 2).

Silicon modulates the expression of defense genes 
in tomato.

Plant defense hormones like SA and MeJA play an essen-
tial role in the regulation of plant immune responses to 

Fig. 1   Disease resistance screening of Si-treated tomato plants after 
A. solani infection. Forty-five-day-old Si-treated and non-Si-treated 
tomato plants were infected with A. solani. Si-treated plants showed 

reduction and delay in disease severity than non-Si-treated-inoculated 
plants. C: control (a: 3 dpi, b: 6 dpi, c: 9 dpi, d: 12 dpi, e: 15 dpi) and 
Si: Si treated (f: 3 dpi, g: 6 dpi, h: 9 dpi, i: 12 dpi, j: 15 dpi)

Fig. 2   Disease scoring like lesion diameter of Si-treated and non-
Si-treated plants after A. solani infection at different dpi. Three bio-
logical replicates were used. Values are mean ± SD of each condition. 
Statistically significant difference is shown by different asterisks on 
bars (*p < 0.05; **p < 0.01) between Si-treated and control-inoculated 
plants

Fig. 3   Early blight disease severity was monitored in-Si + infected 
and + Si + infected plants based on total leaf area infected. Values are 
(mean ± SD) of three replicates. Bars with different asterisks depict-
ing statistically significant difference (*p < 0.05; **p < 0.01)

Table 2   Phenotypic examination of Si-treated-infected and without 
Si-treated-infected tomato plants showed significant variations in 
terms of plant height and dry weight

Different letters indicate significant differences between the treat-
ments at p < 0.05

S. No Plants Plant height (cm) Dry weight (g)

1  + Si + Infected 135 ± 3a 2.9 ± 0.9c
2 -Si + Infected 129 ± 1b 2.5 ± 0.1d
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microbial pathogens. In this study, we systematically inves-
tigated the effect of Si, A. solani and Si + A. solani on SA 
and MeJA signalling marker genes (PR1, PR2, WRKYII, 
PR3, LOXD and JERF3) which are known to play important 
role in disease resistance in both model and crop plants. 
Based on the results, Si treatment increases the expression 
of PR1 (1.9 fold), PR2 (3.5 fold) WRKYII (1.8 fold) com-
pared to control plants. However, pre supplementation of 
Si in A. solani-infected tomato plants further increases the 
expression of PR1 (2.7 fold), PR2 (4.5 fold) defense genes 
except WRKYII (1.2 fold) than Si or A. solani-inoculated 
plants (Fig. 4). On the other hand, transcript levels of JA 
marker genes PR3 (10.3 fold), LOXD (4.3 fold) and JERF3 
(11.8 fold) increased dramatically during combined Si + A. 
solani treatments when compared to control, Si-treated or A. 
solani-inoculated plants (Fig. 4). These results provide the 
evidence that application of Si in tomato plants was associ-
ated with the upregulation of PR genes and defense related 
transcription factors which could enhance disease resistance 
in L. esculentum to A. solani.

Improvement in the activities of antioxidant 
enzymes by silicon supplementation

To decrease the harmful effects of reactive oxygen spe-
cies (ROS) during biotic stress, plants produce an effective 
antioxidative defence systems or ROS scavengers such as 
SOD, CAT, APX, GR and POD respectively. In this study, 
we examined the effect of Si on the activity of antioxi-
dant enzymes in relation to control and A. solani-infected 
tomato plants. The enzyme activity is expressed in enzyme 
units per milligram (mg) of protein. Based on our find-
ings, Si-supplemented A. solani-infected plants dramati-
cally increased SOD activity (121 ± 3) compared to control 

(75 ± 1), Si-treated (80.5 ± 2) and A. solani-inoculated plants 
(95.5 ± 3) (Fig. 5a). On the other hand, upon Si addition 
higher levels of CAT activity (38 ± 1) were observed in 
Si + A. solani-inoculated plants than Si-treated (27.5 ± 0.6), 
A. solani-inoculated (31 ± 0.9) and control plants (25 ± 0.5) 
(Fig. 5b). These results suggested that Si supplementa-
tion significantly increases the activity of SOD and CAT 
enzymes in L. esculentum plants. Interestingly, APX activity 
in Si + A. solani-inoculated plants was significantly higher 
(18 ± 1) than control (8 ± 0.4), Si-treated (8.5 ± 0.5) and A. 
solani-inoculated plants (11 ± 0.8) (Fig. 5c). Alternatively, 
there was significant difference in GR activity between con-
trol, Si-treated, Si + A. solani-inoculated and A. solani-inoc-
ulated plants and based on the results, GR activity was found 
to be higher in Si + A. solani-inoculated plants (12 ± 0.9) 
than control (6 ± 0.3), Si-treated (7 ± 0.4) and A. solani-
inoculated plants (8 ± 0.6) (Fig. 5d). Generally, peroxidases 
are known to be the early defense enzymes produced dur-
ing biotic stress response Jouili et al. (2011). Here, addition 
of Si significantly increases POD activity in Si + A. solani-
inoculated plants (5 ± 0.4) than control (2 ± 0.1), Si-treated 
(3 ± 0.2) and A. solani-inoculated plants (3.8 ± 0.2) (Fig. 5e). 
These results strongly suggest that upon the addition of Si 
to L. esculentum plants, free radical production declines by 
the increase in the activity of antioxidant enzymes thereby 
declines disease progression.

Discussion

Lycopersicon esculentum Mill. is one of the most economi-
cally important vegetable crop, which is very often affected 
by various biotic stresses. Among them, early blight caused 
by A. solani is one of the major diseases in L. esculentum 
crops with no proven source of disease resistance in any 
of the germplasm. In this regard, novel strategies of effec-
tive disease protection should be developed. It is well docu-
mented that Si plays a multifaceted role in plants by modu-
lating various biochemical, physiological and molecular 
adaptation processes for their survival under stress condi-
tions. Addition of Si to plants has been shown to decrease 
the severity of numerous diseases like root rots, leaf spots, 
damping off, powdery mildews, galls, root rots, rusts, and 
wilts (Fortunato et al. 2015; Rodrigues et al. 2015). Inter-
estingly, in susceptible crop plants, Si supplementation 
enhanced disease resistance to the level of cultivars with 
race-specific resistance (Resende et  al. 2012b; Seebold 
et al. 2004). Hence, present study was carried out to further 
investigate the positive effect of Si on improving disease 
resistance against early blight disease in L. esculentum. 
Based on our results, Si supplementation improves disease 
resistance in tomato plants against A. solani, by delayed 
incubation period, lesion number, size and reduced mean 

Fig. 4   Relative expression levels of PR1, PR2, PR3, LOXD, 
WRKYII and JERF3 genes in L. esculentum in response to Si treat-
ment and inoculation with A. solani determined by qRT-PCR. 
Expression levels were compared with an internal control alpha tubu-
lin. Data represent mean ± S.D of three technical replicates. Aster-
isks indicating statistically significant differences between Si-treated, 
A. solani-inoculated and Si + A. solani-inoculated plants (*p < 0.05; 
**p < 0.01)
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lesion diameter. Our results go in concurrent lines with the 
findings that Si induces resistance and enhances plant toler-
ance against the bacterial wilt, Fusarium crown and root 
rot in tomato plants (Dannon and Wydra 2004; Diogo and 
Wydra 2007; Huang et al. 2011). In addition, many studies 
have shown that Si confers resistance to both necrotrophic 
and biotrophic pathogens (Samuels et al. 1994; Heine et al. 

2007; Ma and Yamaji 2006, 2008). Interestingly, we also 
found that lower rate of disease spreading to distal/non-
infected parts of tomato plants after Si supplementation, 
thus provides the evidence of activation of SAR pathway. 
There is growing body of evidences that systemic resistance 
in plants developed by Si application through roots forms 
more effective against pathogen attack (Liang et al. 2005). 

Fig. 5   Activity of antioxidant enzymes in control, Si-treated, Si + A. 
solani- and A. solani-inoculated L. esculentum plants a SOD, b CAT, 
c APX, d GR, e POD. Data presented are the mean ± SD of three 

replicates. Different letters on bars indicate significant differences 
between means at P ≤ 0.05
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On the other hand, we also found the significant difference 
in the height and dry weight of the infected tomato plants 
after Si supplementation. As Si + A. solani-inoculated plants 
showed increase in their height and more dry weight than 
non-Si-treated A. solani-inoculated plants. Previous reports 
have also highlighted the role of Si on plant growth and 
development (Epstein 1999, 2001; Sun et al. 2010). These 
findings suggested that Si amendment not only improves dis-
ease resistance to A. solani but also improves growth param-
eters in infected tomato plants. Our findings go in concurrent 
lines with earlier findings that Si supplementation improves 
growth parameters in tomato plants under stress conditions 
(Zhang et al. 2018; Li et al. 2015).

Si is known to trigger inducible defense mechanisms 
to overcome pathogen challenges mainly by modulating 
defense gene expression, series of physiological and bio-
chemical signal transduction processes (Fauteux et al. 2005; 
Vivancos et al. 2015). In plants, phytohormones SA and JA 
are key players of inducible defense pathways that regulate 
the expression of an array of antimicrobial genes that mini-
mizes pathogen load or disease onset in plant organs upon 
receiving pathogen infections (Balbi and Devoto 2008). To 
explore whether there is a significant effect on the expression 
of defense signaling marker genes upon Si application, A. 
solani infection and Si + A. solani infection in L. esculen-
tum plants. We investigated the expression of SA marker 
genes (PR1, PR2, WRKYII) and JA marker genes (PR3, 
JERF3, LOXD), respectively. In response to Si and Si + A. 
solani, increased transcript levels of PR1 were observed 
in tomato plants. PR1 is universally known as a molecular 
indicator of induced plant immune system such as hyper-
sensitivity response (HR) and systemic acquired resistance 
(SAR) (Jung and Hwang 2000; Jung et al. 2009). In addi-
tion, PR1 proteins isolated from tobacco and tomato possess 
strong in vitro antifungal activity (Niderman et al. 1995). 
Hence, increased expression of PR1 in Si-treated A. solani-
inoculated tomato plants is responsible for enhanced dis-
ease resistance to necrotrophic fungi. On the other hand, pre 
supplementation of Si significantly increases the expression 
of PR2 (β-1,3-glucanase) gene in A. solani infected plants 
which is not only antifungal but also releases oligosaccha-
rides from fungal cell walls which further elicit the host 
defense response and systemic acquired resistance (SAR) 
(Ferreria et al. 2007). β-1,3-glucanase catalyzes the hydroly-
sis of β-1,3-glucans found in the cell walls of many genera 
of fungi and so exhibit antifungal activity (Ferreria et al. 
2007). Previous reports have also shown that the expres-
sion of β-1,3-glucanase was increased in different crops 
after Si supplementation and pathogen infection (Shwetha-
kumari and Prakash 2018; Cruz et al. 2015). In plants, NPR1 
forms a regulatory protein that is critical for the regulation 
of PR gene expression and the expression levels of NPR1 
are in turn regulated by a transcription factor WRKY (Li 

et al. 2004). In the present experiment, the expression of 
WRKYII was significantly induced after Si supplementation 
but decreases during combined treatment of Si and A. solani 
in tomato plants. Interestingly, our results are in concurrent 
lines with earlier findings that upregulation of WRKY after 
Si treatment to L. esculentum (Menke et al. 2005; Ghareeb 
et al. 2011). Furthermore, our findings go in line with previ-
ous reports that Si supplementation in Arabidopsis increases 
the transcript levels of SA induced genes (PR1, PR2, PR5) 
and its biosynthetic genes (EDS1 and PAD4) (Vivancos 
et al. 2015).

Si can also enhance JA-dependent defense response in 
both model and crop plants by elevating the expression of 
JA biosynthetic and marker genes, which provides resist-
ance not only to necrotrophic fungal pathogens but also to 
insects. Si supplementation up regulates the ubiquitin-pro-
tein ligase activity, which plays a key role on fine-tuning of 
JA-dependent immune response by degrading the JA-nega-
tive regulator (JAZ1) (Thines et al. 2007; Dreher and Callis 
2007). In addition, previous studies have highlighted that 
JA promotes overall leaf silicification and the maturation of 
phytolith bearing silica cells by increasing Si accumulation 
(Fauteux et al. 2006; Ye et al. 2013). In the present study, 
we studied the impact of Si, Si + A. solani and A. solani on 
JA dependent genes viz. PR3, JERF3 and LOXD in tomato 
plants. JERF3 is a transcription factor which is activated in 
response to JA and ET signaling pathway in plants. In our 
study, JERF3 was significantly induced after Si treatment 
in A. solani-inoculated tomato plants than Si-treated or A. 
solani-inoculated plants thus indicating the activation and 
involvement of JA pathway which could trigger the immune 
response by activating an array of defense genes. (Ghareeb 
et al. 2011) showed that Si supplementation increases the 
transcript levels of JERF3 during R. solanacearum infec-
tion thus supporting that Si induced resistance were medi-
ated via ET and JA signaling pathways. Chtinases or (PR3) 
are pathogenesis-related proteins are well known fungal 
cell wall hydrolyzing enzymes, restricting fungal growth 
and development are also upregulated by Si supplementa-
tion (Brisson et al. 1994). In our study, Si supplementation 
strongly increases the expression of chitinase gene in Si-
supplemented A. solani-inoculated plants which contribute 
in Si-mediated disease resistance against early blight in 
tomato plants. Overexpression or elicitor-mediated stud-
ies have shown that chitinases provide effective resistance 
to fungal pathogens (Ignacimuthu and Ceasar 2020). Tom 
LOXD, a lipoxygenase gene that is involved in JA biosyn-
thesis is localized in the autonomous organelle (choloro-
plast) of the cell. Overexpression of Tom LOXD leads to an 
enhanced resistance against necrotrophic fungal pathogens 
and insect herbivory attack. Our results revealed that after 
Si addition, expression of LOXD was highly upregulated 
in Si + A. solani inoculated plants, than non treated and A. 
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solani inoculated plants, suggesting that Si plays important 
role in regulating defense signaling marker genes in plants, 
study in this line was carried by (Song et al. 2016) to deter-
mine the effect of Si on LOX genes. These results clearly 
indicates that Si supplementation in tomato plants leads 
increased expression of SA and JA marker genes and other 
defense-related transcription factors which could enhance 
disease resistance in L. esculentum not only to A. solani, but 
also to an array of pathogens.

Plants produce reactive oxygen species as by products 
under normal cellular metabolic processes (Tripathy and 
Oelmüller 2012). However, under stress conditions they 
produce higher levels of ROS such as superoxide anion, 
H2O2, and hydroxyl radical which severely inhibit the 
growth, development and productivity of plants mainly by 
oxidative stress (Thannickal and Fanburg 2000; Sies et al. 
2017). Interestingly, plants possess a well-developed protec-
tive mechanism of scavenging ROS, which includes both 
enzymatic and non-enzymatic antioxidants to maintain 
their ROS-homeostasis and protect cellular toxicity and fine 
tune ROS-mediated signal transduction (Gong et al. 2005; 
Gechev et al. 2006; Shi et al. 2014). Si is known to modu-
late the activity of antioxidant enzymes during stress condi-
tions which make it as an important factor for alleviating the 
harmful effects of ROS in crop plants during stress condi-
tions. In the present study, we investigate the effect of Si on 
antioxidant enzymes in tomato plants after A. solani infec-
tion. Based on our findings, Si supplementation considerably 
increases the activities of antioxidant enzymes viz. SOD (EC 
1.15.1.1), CAT (EC 1.11.1.6), APX (EC 1.11.1.11), GR (EC 
1.6.4.2) and POD (EC 1.11.1.7) in A. solani-infected tomato 
plants. In contrast, non-Si-treated A. solani-infected tomato 
plants shows decreased levels of antioxidant enzymes which 
may increase the cell damage due to oxidative stress. Our 
results provide the evidence that Si plays a key role in alle-
viating the harmful effects of oxidative stress generated by 
A. solani in L. esculentum. Similar findings of increased 
antioxidant enzymes were also observed during powdery 
mildew (Guoqiang wei 2004), sheath blight (Zhang et al. 
2006), and rust diseases in different crops. Previous reports 
have shown that Si treatment increases SOD, CAT, APX, 
GR and POD activities thereby, preventing the formation of 
hydroxyl radicals (Al-Huqail et al. 2019; Al-aghabary et al. 
2005; Shi et al. 2014 and Shi et al. 2016). In another study, 
increased activity of SOD, GPX, APX, in Cucumber (Zhu 
et al. 2004), SOD, CAT, and POD in Turfgrass (He et al. 
2010) and SOD, GR, and CAT in peas (Tripathi et al. 2015) 
were observed upon Si application. Earlier findings are in 
same line with our results that Si increases the antioxidant 
enzyme levels in plants, further suggests the potential role of 
Si in alleviating harmful effects during stresses (Liang et al. 
2003; Shekari et al. 2017). However, contradictory results 
were seen in wheat plants where, Si application did not 

increase the levels of antioxidant enzymes but showed lower 
cellular damage (Debona et al. 2014; Moldes et al. 2016). Si 
supplementation reduces the levels of oxidative stress mark-
ers such as malondialdehyde (MDA) and hydrogen peroxides 
(H2O2) when added to the plants during stressed conditions. 
Meta analytic reports have further provided the evidence that 
Si supplementation in stressed plants change the activity 
of antioxidant enzymes which are mainly depends on the 
type of stress (Cooke and Leishman 2016). Similarly, in this 
study Si supplementation significantly decreases the harmful 
effects of various reactive oxygen species (ROS) during A. 
solani infection in tomato plants by increasing the activity 
of an array of antioxidant enzymes.

Conclusion

In conclusion, early blight disease is one of the major prob-
lems in tomato cultivation which causes huge yield losses. 
The limited availability of disease resistant varieties within 
the tomato germplasm is a major hindrance for the develop-
ment of resistant varieties. However, fungicides are used to 
control fungal diseases in tomato plants but possess seri-
ous threat to the environment. In this study, we systemati-
cally studied the role of Si in improving disease resistance 
against Alternaria early blight in tomato plants. The sup-
plementation of Si improves the disease resistance against 
A. solani by increasing the expression of defense related 
genes, transcriptional factors and activity of antioxidant 
enzymes. These findings also suggest that Si plays a key 
role in defense priming in tomato plants during A. solani 
infection. Future studies are required at genomic, metabo-
lomic, proteomic and ionomic levels to further investigate 
the potential role of Si during plant pathogen interactions 
and stresses.
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