Skip to main content
. 2021 Apr 22;11:8794. doi: 10.1038/s41598-021-87987-1

Table 4.

ROC-AUC scores for link prediction on the 7 reference multiplex networks, for link prediction heuristics (CN-av, AA-av, JC-av, PA-av) and network embedding methods combined with different operators (Hadamard, Weighted-L1, Weighted-L2, Average, and Cosine).

Operators Method CKM LAZEGA C.ELE ARXIV DIS HOMO MOL
Link prediction heuristics CN-av 0.4944 0.6122 0.5548 0.5089 0.5097 0.5113 0.5408
AA-av 0.4972 0.6105 0.549 0.5081 0.5428 0.5112 0.5404
JC-av 0.4911 0.523 0.5424 0.5113 0.5425 0.5113 0.5433
PA-av 0.5474 0.6794 0.5634 0.5139 0.496 0.5185 0.5278
Hadamard node2vec-av 0.7908 0.6372 0.8552 0.9775 0.9093 0.8638 0.8753
deepwalk-av 0.7467 0.6301 0.8574 0.9776 0.9107 0.8638 0.8763
LINE-av 0.5073 0.4986 0.5447 0.8525 0.9013 0.8852 0.8918
Ohmnet 0.7465 0.7981 0.833 0.9605 0.9333 0.9055 0.8613
MNE 0.5756 0.6356 0.794 0.9439 0.9099 0.8313 0.8736
Multi-node2vec 0.8182 0.7884 0.8375 0.9581 0.8528 0.8592 0.8835
MultiVERSE 0.8177 0.8269 0.8866 0.9937 0.9401 0.917 0.9259
Weighted-L1 node2vec-av 0.7532 0.737 0.8673 0.9738 0.885 0.6984 0.7976
deepwalk-av 0.7226 0.7094 0.8635 0.9751 0.8888 0.7142 0.8089
LINE-av 0.6091 0.5776 0.6192 0.7539 0.8586 0.7439 0.7792
Ohmnet 0.7421 0.7849 0.8128 0.8488 0.8503 0.7007 0.6983
MNE 0.6289 0.6523 0.8019 0.7805 0.8313 0.7619 0.8182
Multi-node2vec 0.8611 0.8089 0.8261 0.9659 0.8628 0.8472 0.8997
MultiVERSE 0.7043 0.7789 0.7516 0.8647 0.7754 0.683 0.7273
Weighted-L2 node2vec-av 0.7556 0.6851 0.8691 0.9743 0.8867 0.7048 0.8028
deepwalk-av 0.7221 0.6904 0.864 0.9771 0.8891 0.7145 0.813
LINE-av 0.5851 0.5756 0.6275 0.7609 0.8621 0.7429 0.7835
Ohmnet 0.7505 0.7788 0.8166 0.8439 0.8599 0.7041 0.6992
MNE 0.601 0.5397 0.7999 0.7815 0.8333 0.7483 0.8122
Multi-node2vec 0.8637 0.8091 0.8282 0.968 0.8675 0.8525 0.9004
MultiVERSE 0.7125 0.7801 0.7441 0.8661 0.7808 0.6918 0.7475
Average node2vec-av 0.59 0.6596 0.6842 0.6615 0.8256 0.8308 0.777
deepwalk-av 0.5954 0.657 0.6784 0.6582 0.8267 0.8307 0.7737
LINE-av 0.5465 0.6581 0.6699 0.6465 0.8477 0.8653 0.8276
Ohmnet 0.5764 0.656 0.7334 0.6772 0.8533 0.8825 0.7962
MNE 0.5882 0.6615 0.7028 0.6723 0.8242 0.8024 0.783
Multi-node2vec 0.5571 0.6584 0.7365 0.6657 0.8222 0.8216 0.7589
MultiVERSE 0.5963 0.6728 0.7438 0.6752 0.8586 0.8643 0.812
Cosine node2vec-av 0.7805 0.7335 0.8515 0.9711 0.8643 0.7368 0.8105
deepwalk-av 0.7465 0.7066 0.8416 0.9724 0.8667 0.7512 0.8079
LINE-av 0.545 0.5126 0.5477 0.8198 0.7409 0.6745 0.816
Ohmnet 0.7898 0.7352 0.8094 0.9642 0.859 0.7829 0.7909
MNE 0.6203 0.6506 0.7877 0.8951 0.8347 0.6474 0.8102
Multi-node2vec 0.8532 0.7931 0.7815 0.9435 0.7151 0.8477 0.8884
MultiVERSE 0.8148 0.8171 0.8719 0.9909 0.8775 0.8776 0.9103

For each multiplex network, the best score is in bold; for each operator, the best scores are underlined. Overall, the MultiVERSE algorithm combined with the Hadamard shows the best scores.