Skip to main content
. 2021 Apr 22;11:8794. doi: 10.1038/s41598-021-87987-1

Table 5.

precision@K scores for network reconstruction on the 7 reference multiplex networks, for the network embedding methods combined with different embeddings operators (Hadamard, Weighted-L1, Weighted-L2, Average, and Cosine).

Operators Method CKM (95%) LAZEGA (95%) C.ELE (95%) ARXIV (5%) DIS (2,5%) HOMO (2,5%) MOL (2.5%)
Hadamard node2vec-av 0.6764 0.9174 0.4526 0.8207 0.5578 0.7599 0.2989
deepwalk-av 0.6564 0.9351 0.4416 0.7886 0.5486 0.7636 0.3164
LINE-av 1.0 0.9924 0.8924 0.8204 0.4955 0.5191 0.4006
Ohmnet 0.7842 0.8334 0.5329 0.9156 0.4811 0.6979 0.2591
MNE 0.9505 0.9094 0.2728 0.7891 0.4218 0.3641 0.1316
Multi-node2vec 0.8352 0.8811 0.6875 0.8605 0.6063 0.7584 0.3123
MultiVERSE 0.9687 0.9695 0.7436 0.9015 0.6734 0.8729 0.3674
Weighted-L1 node2vec-av 0.5923 0.9494 0.5129 0.6922 0.5859 0.8123 0.3194
deepwalk-av 0.5791 0.9784 0.4896 0.6878 0.5921 0.7984 0.3206
LINE-av 0.9985 0.9953 0.9229 0.7837 0.4921 0.6839 0.3586
Ohmnet 0.7355 0.8581 0.5785 0.8771 0.6025 0.8019 0.3769
MNE 0.9926 0.975 0.4722 0.8593 0.4377 0.5241 0.1861
Multi-node2vec 0.8636 0.9235 0.7379 0.7684 0.6356 0.7649 0.2671
MultiVERSE 0.8545 0.9638 0.7444 0.8705 0.6678 0.7913 0.3559
Weighted-L2 node2vec-av 0.5886 0.9436 0.5097 0.6983 0.5953 0.8193 0.352
deepwalk-av 0.5829 0.9672 0.5146 0.6877 0.5857 0.805 0.3233
LINE-av 1.0 0.9962 0.9367 0.7749 0.4945 0.6697 0.392
Ohmnet 0.7418 0.8687 0.5724 0.8694 0.6209 0.8143 0.3701
MNE 0.9926 0.9764 0.4646 0.8818 0.4351 0.5529 0.176
Multi-node2vec 0.8644 0.93 0.7568 0.7548 0.6361 0.7896 0.2922
MultiVERSE 0.8653 0.969 0.754 0.8776 0.6784 0.7876 0.3701
Average node2vec-av 0.8408 0.917 0.4817 0.889 0.5587 0.6809 0.2686
deepwalk-av 0.8331 0.9379 0.501 0.8853 0.5318 0.6714 0.2795
LINE-av 0.9855 0.9382 0.7103 0.8725 0.5093 0.5677 0.3244
Ohmnet 0.9412 0.8287 0.5825 0.906 0.4989 0.6551 0.2887
MNE 0.9179 0.9151 0.2966 0.7146 0.4175 0.352 0.1444
Multi-node2vec 0.9767 0.8937 0.6726 0.9498 0.6243 0.6216 0.2901
MultiVERSE 0.978 0.9059 0.5326 0.9758 0.6316 0.7204 0.4143
Cosine node2vec-av 0.5103 0.4936 0.18 0.2537 0.1825 0.116 0.0441
deepwalk-av 0.4807 0.4776 0.1741 0.2835 0.1854 0.1036 0.0462
LINE-av 0.3291 0.4974 0.1867 0.2638 0.2384 0.1476 0.0454
Ohmnet 0.5696 0.509 0.1718 0.2655 0.1984 0.1311 0.044
MNE 0.3169 0.4536 0.1768 0.2445 0.1957 0.1667 0.044
Multi-node2vec 0.5127 0.52 0.186 0.273 0.195 0.1032 0.0461
MultiVERSE 0.6395 0.5026 0.1818 0.254 0.1983 0.1522 0.0474

For each multiplex network, the best score is in bold; for each operator, the best score is underlined. The percentage of edges used for the reconstruction is indicated in parenthesis under the name of the network. In the case of large networks (DIS, ARXIV, HOMO and MOL) MultiVERSE achieves the best performance in combination with different operators.