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Introduction

The olfactory system is highly conserved across mammalian species (Ache and Young, 

2005; Gelperin, 1999; Hildebrand and Shepherd, 1997; Laurent, 2002). In particular, the 

human and rodent olfactory systems share numerous common traits, including the basic 

organization of the olfactory central nervous system, aspects of odor guided behaviors, the 

nature of odorant receptor proteins, and processing at the molecular and synaptic levels (Fig. 

1). These shared characteristics make rodents an excellent model for use in understanding 

the human olfactory system and has led to widespread use of rodents in olfactory studies. As 

a result, knowledge of the rodent olfactory system is expansive, and has been the primary 

guide to human olfactory research for decades. Though the olfactory systems of the two 

species are highly similar (Ache and Young, 2005), some differences are apparent (Mainland 

et al., 2014; Maresh et al., 2008; McGann, 2017; Trimmer et al., 2019), and direct data from 

humans is lacking. Our current understanding of the human olfactory system relies 

substantially on inferences from direct knowledge obtained in rodents. Inferring from 

rodents is well justified, and has moved the field of human olfaction forward. However, 

within the growing human olfaction literature, it is often unclear which statements are 

inferred from rodent work, and which are directly from human data. In a field dominated by 

rodent studies, and in order to avoid confusion and compounded misstatements, there arises 

a periodic need to assess the state of direct knowledge of the human olfactory system. Our 

goal here is to provide a thorough review of olfactory literature in order to assess and clarify 

our current direct knowledge of the human olfactory system, as compared to the rodent 

olfactory system.

In particular, direct knowledge of the rodent olfactory system has far out-paced direct 

knowledge of the human olfactory system, leaving large gaps in our relative knowledge of 

the human olfactory system. By identifying these deficits in human olfactory knowledge, we 

hope to provide some guidance for future work that will help close these gaps. Here, we 

argue this point by providing a review of the current knowledge of the rodent and human 

olfactory systems, highlighting similarities and differences across species, and particularly 

highlighting unknowns in the human system. A critical examination of confirmed versus 
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inferred features of the human olfactory system will help identify particularly large gaps in 

this knowledge.

We also emphasize the clinical importance of obtaining direct knowledge of the human 

olfactory system. Olfaction is profoundly involved in a broad range of neuropathology, but 

our understanding of the mechanisms of this involvement is poor.

Neurodegenerative diseases often present with early olfactory symptoms in humans (Albers 

et al., 2006; Barresi et al., 2012; Doty, 2012; Godoy et al., 2015; Hawkes, 2003; Mesholam 

et al., 1998; Ross et al., 2008), and olfactory loss is a strong predictor of life expectancy 

(Devanand et al., 2015; Ekström et al., 2017; Pinto et al., 2014; Schubert et al., 2016). Both 

human and rodent work has implicated olfactory structures in Parkinson’s disease (Doty, 

2012; Ubeda-Bañon et al., 2014; Westermann et al., 2008), and there is also significant 

research from both species suggesting that olfactory cortical structures may be involved in 

seizure generation for some forms of epilepsy (Espinosa-Jovel et al., 2019; Galovic et al., 

2019; Laufs et al., 2011; Menassa et al., 2017; Vaughan and Jackson, 2014; Vismer et al., 

2015; Young et al., 2018).

In this article, we will review the current state of direct knowledge about each cortical 

structure of the human olfactory system. To maintain distinctions between the human and 

rodent systems, we will review each olfactory structure separately for each species, followed 

by a brief comparison of the two in order to elucidate how well the structure corresponds 

across species. We include a particularly thorough discussion of piriform cortex, which is 

the largest subregion of primary olfactory cortex, and the olfactory area most implicated in 

epilepsy.

Olfactory Bulb

The olfactory bulb is the first site of olfactory processing and refinement. It receives 

projections from olfactory sensory neurons in the olfactory epithelium located inside the 

nasal cavity, whose axons project into glomeruli—spheroid units which are the site of 

synapses between the terminals of olfactory sensory neurons and dendrites of olfactory bulb 

cells, including mitral, tufted and periglomerular cells—in the bulb.

Rodent: The rodent olfactory bulb has been studied extensively. It has a clear laminar 

organization (Inaki et al., 2004; Macrides and Schneider, 1982; Nagayama et al., 2014), and 

contains a distinct layer of glomeruli situated in a regular layer that spans the entire 

circumference of the bulb. Each olfactory sensory neuron innervates a single glomerulus (or 

two) per half-bulb (Mombaerts, 2004), and each glomerulus is innervated only by sensory 

neurons expressing the same type of receptor (Firestein, 2001; Mombaerts, 1999), enabling a 

powerful convergence of input. In line with this organization, the total number of glomeruli 

in the bulb is about twice the number of receptor types found in the epithelium.

Numerous studies suggest that the rodent bulb forms odor representations through a 

spatiotemporal combinatorial pattern of activated glomeruli that is unique for each odor 

(Bathellier et al., 2008; Buck, 2004; Firestein, 2001; Fletcher et al., 2009; Haddad et al., 

2013; Johnson et al., 1998; Kauer and White, 2001; Leon and Johnson, 2003; Mombaerts, 
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1999; Mori et al., 1999; Rubin and Katz, 1999; Spors et al., 2006; Spors and Grinvald, 2002; 

Xu et al., 2003; Youngentob et al., 2006). Another salient feature of the rodent bulb, on 

which there is extensive literature, is the presence of regular local field potential oscillations 

in several frequency bands. These oscillations have been associated with specific sensory, 

motor, and behavioral events (Beshel et al., 2007; Buonviso et al., 2003; Chery et al., 2014; 

Galán et al., 2006; Gray and Skinner, 1988; Kay, 2003; Kay et al., 2009; Lledo et al., 2004; 

Manabe and Mori, 2013; Martin et al., 2004; Ravel et al., 2003). The most prominent 

olfactory bulb oscillatory rhythm is the respiratory rhythm, which shapes the bulbar odor 

response (Fontanini et al., 2003; Fontanini and Bower, 2006, 2005; Schoppa and Westbrook, 

2001; Spors and Grinvald, 2002; Tort et al., 2018; Tristan et al., 2009). There is also 

mounting evidence that olfactory bulb responses are modulated by noradrenergic (Doucette 

et al., 2007; McLean et al., 1989; Shea et al., 2008; Shipley et al., 1985), cholinergic 

(Ichikawa and Hirata, 1986; Liu et al., 2015; Nunez-Parra et al., 2013; Ojima et al., 1988; 

Rothermel et al., 2014) and serotonergic input (Brunert et al., 2016; Kapoor et al., 2016; 

Petzold et al., 2009), from the locus coeruleus, the basal forebrain and the Raphe, 

respectively. Thus output of the rodent olfactory bulb is impacted by both contextual cues 

and internal states (Doucette et al., 2007; Pager, 1974).

Throughout the lifespan, the olfactory system is a major site of neurogenesis in the rodent 

brain, with both sensory neurons and bulbar interneurons replaced at a rate of thousands per 

day (Alvarez-Buylla et al., 2001; Brann and Firestein, 2014; G. A. Graziadei and Graziadei, 

1979; P. P. Graziadei and Graziadei, 1979; Lois and Alvarez-Buylla, 1994; Loo et al., 1996; 

Ming and Song, 2005). Neuroblasts move within cerebrospinal fluid, from the stem cell 

production sites in the subventricular zone to the olfactory bulb. Stem cells in the olfactory 

epithelium generate new sensory neurons. It has been suggested that this is due in part to the 

fact that olfactory sensory neurons are exposed and experience significant environmental 

stress (Sammeta and McClintock, 2010).

Human: The human olfactory bulb has not been as well characterized as its rodent 

counterpart. Similar to rodents, it has a laminar organization (Burmeister et al., 2012; 

Maresh et al., 2008; Zapiec et al., 2017). However, unlike rodents, the distinction between 

layers is not rigorous, and varies across individuals (Maresh et al., 2008). The spatial 

distribution of glomeruli in the human olfactory bulb is irregular and complex. The 

glomerular layer does not extend around the full circumference of the bulb (Hoogland et al., 

2003; Maresh et al., 2008; Zapiec et al., 2017), and glomeruli are sometimes found at deep 

locations that invade other layers (Hoogland et al., 2003; Maresh et al., 2008; Zapiec et al., 

2017). Human glomeruli also have highly variable volumes and shapes (Hoogland et al., 

2003; Maresh et al., 2008; Zapiec et al., 2017).

It is still unknown how human olfactory sensory neurons map onto the bulb, and therefore 

we lack a basic understanding of what a human glomerulus represents (Zapiec et al., 2017). 

A topic of much interest is the total number of glomeruli contained in the human olfactory 

bulb. Due to their irregular shapes and sizes, it is difficult to unambiguously identify distinct 

glomeruli in sections or in 3D reconstructions (Zapiec et al., 2017). Due to these 

considerations, a definitive, exact count of glomeruli in the human bulb is still lacking. It 

appears likely, however, that it contains a surprisingly large number of glomeruli, especially 
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in relation to the number of olfactory sensory neurons, with estimates averaging above 

5,500, and ranges in number to above 10,000 (Maresh et al., 2008; Zapiec et al., 2017). 

Since there are around 400 olfactory sensory neuron types in the human genome, the ratio of 

2–3 glomeruli per olfactory receptor type, which has been established in rodents, may not 

apply in humans. This suggests that there may be a fundamentally different organization of 

human glomeruli compared to rodent counterparts. Despite these possible differences in 

overall organization of glomeruli, odor processing appears to be identical at the molecular 

and synaptic levels in the bulb across species (Maresh et al., 2008). No studies have 

examined spatial activation patterns in the human bulb. Very few studies have examined 

oscillatory dynamics of local field potentials in the human bulb (Hughes et al., 1970; Iravani 

et al., 2019; Sem-Jacobsen et al., 1953), with just a handful of studies reporting odor-evoked 

oscillations in the theta (Hughes et al., 1970), beta (Hughes et al., 1970) and gamma (Iravani 

et al., 2019) ranges, similar to rodents. Moreover, the relationship between these local field 

potential dynamics and sniff cycles is not yet clear.

It is a matter of significant controversy whether neurogenesis takes place in the human 

olfactory bulb, with high-profile publications reporting contradictory results (Curtis et al., 

2007; Sanai et al., 2004). It is generally agreed that human glomeruli degrade over the 

human life span, leading to reduced olfactory perceptual function (Doty and Kamath, 2014; 

Smith, 1942). Loss of olfactory function has also been observed in early stages of numerous 

degenerative diseases (Adams et al., 2018; Del Tredici et al., 2002; Demarquay et al., 2007; 

Doty, 2017; Godoy et al., 2015; Hüttenbrink et al., 2013; Pinto et al., 2014; Whitcroft et al., 

2017; Wilson et al., 2011), and has been linked to life expectancy (Devanand et al., 2015; 

Ekström et al., 2017; Pinto et al., 2014; Schubert et al., 2016). However, with so few studies 

measuring the integrity of the human glomerular layer, it is not clear whether loss of 

olfactory function relates to degradation of the glomerular layer in the human bulb. Notably, 

a careful review of an early pioneering study by Carlton G. Smith (Smith, 1942), which 

quantified the degree of glomerular degradation in more than 200 human olfactory bulbs, 

found that some humans across a broad age range—including above the age of 80—showed 

absolutely no loss of glomeruli. [Footnote: See also Liss and Gomez (1958), in which bulbs 

from a patient over 100 years showed only mild neuronal loss, and no correlation between 

bulbar degeneration and age was found; and Bhatnagar et al. (1987), where the volume of a 

102-year-old’s glomerular layers was found to be among the largest of all ages examined.] 

This finding may have been somewhat lost within the field, as the published paper broadly 

concluded that human glomeruli degrade with age at an average rate of about 1% a year. 

Though this general conclusion is true, closer inspection of the original data (Fig. 2) 

revealed a number of aged bulbs showing no glomerular loss, including some over the age of 

80 (Fig. 2, red box). Put another way, some 80-year-olds have glomeruli that are 

indistinguishable from those of a 15-year old. We can think of two possible explanations for 

this. One is that the glomeruli in the olfactory bulbs of these individuals do not degrade, for 

either environmental or genetic reasons. The other is that olfactory neurogenesis occurs over 

the lifetime of these individuals, but not (or lesser so) in those whose glomeruli show 

degeneration. The finding that glomerular layer integrity is preserved in some individuals 

deserves reconsideration within the olfactory community, and the mechanisms behind it 

investigated, as it may have profound clinical implications.
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Comparison—The rodent and human olfactory bulbs both receive projections from 

sensory neurons in the olfactory epithelium inside the nasal cavity, through the cribriform 

plate. Both human and rodent bulbs exhibit an overall laminar organization, but the layers 

are less rigorous and lacking in symmetry in humans compared to rodents. Both the human 

and rodent bulbs exhibit glomerular compartmentalization, indicating similar organization 

and features of glomerular synapses across species (Maresh et al., 2008). Aside from these 

similarities, there are indications of potentially dramatic differences between rodents and 

humans in the overall organization and number of glomeruli. Human glomeruli are patchy, 

variable in size and shape, and intrude into deep layers of the bulb. In stark contrast, rodent 

glomeruli are highly regular and symmetrically positioned around the entire bulb 

circumference (Hoogland et al., 2003; Maresh et al., 2008; Zapiec et al., 2017). There also 

appear to be a surprisingly large number of glomeruli in the human bulb relative to the 

number of distinct olfactory receptor types found in the epithelium, perhaps on the order of a 

ten times higher ratio than is found in rodents. This suggests likely differences in the 

organization of axon convergence from the epithelium to the bulb across species. The human 

bulb also exhibits wide variations in morphology that do not correlate with age on autopsy 

(Bhatnagar et al., 1987; Hoogland et al., 2003; Maresh et al., 2008; Smith, 1942; Zapiec et 

al., 2017), and a recent study found normal olfactory abilities in humans with no observable 

olfactory bulbs on MRI scans (Weiss et al., 2020), suggesting wide individual variation in 

the overall shape of the human olfactory bulb. Given these differences in the spatial 

organization of the glomerular layer, and number of glomeruli across species, we suggest 

caution in inferring rodent findings of odor-evoked spatial patterns and electrophysiological 

signatures to humans. It is possible that the human bulb may exhibit very different odor-

evoked responses, in both their spatial and oscillatory characteristics. Notably, it is worth 

mentioning that environmental differences between laboratory animals and naturally 

behaving animals, including humans, may also contribute to the stark observed differences. 

Specifically, rodents in the lab come from particular strains, and are housed in ventilated, 

climate-controlled, pathogen-free environments with highly consistent olfactory exposures 

(Zapiec et al., 2017). By contrast, humans experience a much broader range of olfactory 

exposures, toxins, viruses, and aging. The extent to which these living conditions may drive 

observed differences across species is unknown. Therefore, these differences should be 

considered when drawing conclusions from existing studies.

Olfactory cortex:

Mitral and tufted cells in the olfactory bulb project monosynaptically, without relaying 

through the thalamus, onto a number of brain regions which have been collectively defined 

as primary olfactory cortex (Carmichael et al., 1994; Price, 2009, 1990). Olfactory cortical 

targets of mitral and tufted cells appear to differ in rodents (Ghosh et al., 2011; Nagayama et 

al., 2010; Shipley et al., 2004). The extent to which the cortical targets of mitral and tufted 

cells differ in humans is unknown. In general, olfactory cortical regions are better defined in 

rodents compared to humans, in both their structures and functions. However, we do not 

have a complete understanding of the functional role that each of these cortical areas plays 

in olfactory processing in either species. Here we will discuss the major primary olfactory 

cortical structures present in both rodents and humans, including the anterior olfactory 

nucleus, the olfactory tubercle, amygdala, entorhinal cortex and piriform cortex.
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Olfactory cortex: Anterior olfactory nucleus

The lateral olfactory tract—the bundle of nerves containing mitral and tufted cell axons—

projects first to the anterior olfactory nucleus (AON), which is the anterior/rostral-most 

cortical olfactory structure, in both rodents and humans. It is a complex structure that has not 

been well characterized in either species, and its function in olfactory processing is not well 

understood. It is generally agreed that the AON is in fact a cortical structure, despite its 

name (Allison, 1954; Haberly, 2001; Haberly and Price, 1978; Rose, 1926; Scott and 

Harrison, 1987; Shipley and Ennis, 1996), and therefore the term “anterior olfactory 

nucleus” has been challenged (Brunjes et al., 2005; Haberly, 2001).

Rodent: In rodents, the AON is divided into two main zones based on Nissl staining, the 

pars externa and the pars principalis. The pars externa is a thin, dense ring of cells at the 

rostral end of the AON, and the pars principalis encompasses the rest of the structure 

(Brunjes et al., 2005; Valverde et al., 1989). The pars principalis has been further subdivided 

into dorsal, ventral, medial and lateral divisions, but their exact borders are variable and 

somewhat arbitrary across studies (Davis and Macrides, 1981; de Olmos et al., 1978; 

Haberly and Price, 1978; Herrick, 1948, 1924; Price, 1973; Valverde et al., 1989; Young, 

1936). There is considerable heterogeneity within the AON, in terms of anatomical and 

functional subdivisions, cell morphology and neurochemical phenotypes (Brunjes et al., 

2005; Illig and Eudy, 2009). This suggests the region likely has a complex role in olfactory 

processing (Brunjes et al., 2005), though it has historically been assumed to function as a 

simple intermediate relay between the bulb and cortical areas (Lledo et al., 2005). Studies 

suggest there are topographically defined projections from the bulb to the pars externa 

(Lledo et al., 2005; Scott et al., 1985), but these do not appear to be maintained in the 

remainder of the AON (Kay et al., 2011; Miyamichi et al., 2011). However, the entire AON 

does appear to maintain the dorsal-ventral topography of the bulb (Miyamichi et al., 2011). 

Rodent studies suggest the pars externa is involved in odor localization (Esquivelzeta Rabell 

et al., 2017; Kikuta et al., 2010), and it forms symmetrical mirrored connections between the 

two bulbs (Grobman et al., 2018; Yan et al., 2008). The medial aspect of the pars principalis 

could be involved in top-down modulation of bulbar responses (Aqrabawi et al., 2016). More 

broadly, rodent studies suggest a role for the anterior olfactory nucleus in the initial 

formation of representations of odor objects—complex odor stimuli processed as unique 

percepts (Haberly, 2001; Lei et al., 2006; Thomas-Danguin et al., 2014)— allowing higher 

cortical structures to perform more associative functions, relating information about odor 

objects to movement and behavior.

Human: The human AON has been only scarcely studied. Broadly, the anatomy of the 

human AON does not appear to closely correspond to the rodent AON. Early anatomical 

studies reported that the human AON does not include a pars externa (Crosby and 

Humphrey, 1941; Crosby and Humphrey, 1939). It has been divided into retrobulbar, cortical 

anterior and cortical posterior subdivisions (Mai et al., 2015; Öngür et al., 2003; Ubeda-

Bañon et al., 2017). Like the rodent AON, the human AON is a true cortical structure (Zilles 

and Amunts, 2012). The topography of bulb projections into the human AON is still 

unknown, and its cell morphology has not been thoroughly characterized (Allison, 1954; 

Crosby and Humphrey, 1939). Though no studies have specifically examined the olfactory 
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function of the human AON, a recent study found unique functional connectivity between 

the AON and brain areas involved in object recognition (Zhou et al., 2019a), in accordance 

with earlier suggestions that the AON is involved in olfactory object formation in rodents 

(Haberly, 2001; Lei et al., 2006).

Though the specific function of this region in human olfactory processing is not known, 

several studies have implicated the human anterior olfactory nucleus as a key early site of 

pathological changes in neurological diseases, including Parkinson’s Disease and 

Alzheimer’s disease (Del Tredici et al., 2002; Marin et al., 2018; Pearce et al., 1995; Saiz-

Sanchez et al., 2010; Ubeda-Bañon et al., 2017, 2014), emphasizing the potential clinical 

importance of future studies of the AON in humans.

Comparison: There is a strong need for more studies on both rodent and human AON. 

With so little data on the human AON in particular, it is difficult to draw meaningful 

comparisons of this structure across species. It is possible that the pars principalis is 

functionally similar across species, but the apparent lack of a pars externa in humans 

suggests significant differences in functionality of this region. The pars externa is thought to 

be involved in olfactory lateralization in rodents (Esquivelzeta Rabell et al., 2017; Kikuta et 

al., 2010). Its absence in humans may account for poor human performance in lateralizing 

olfactory stimuli with no trigeminal component (Frasnelli et al., 2010, 2008; Kobal and 

Hummel, 1992; Moessnang et al., 2011; Porter et al., 2005; Radil and Wysocki, 1998; 

Sorokowski et al., 2019; Wysocki et al., 2003). Rodent studies suggest a potential role for 

the AON in odor object formation (Aqrabawi and Kim, 2018; Haberly, 2001), and human 

resting functional connectivity data support this hypothesis (Zhou et al., 2019a).

Olfactory cortex: Olfactory tubercle:

The olfactory tubercle is a recipient of direct bulbar input, and along with the nucleus 

accumbens, constitutes the ventral striatum. As such, the majority of research on the 

olfactory tubercle has been conducted in the context of reward, rather than olfaction 

(Ikemoto, 2007). Thus the role of the olfactory tubercle in olfactory processing is not well 

understood.

Rodent: In rodents, the olfactory tubercle occupies a relatively large aspect of the basal 

forebrain (Giessel and Datta, 2014; Millhouse and Heimer, 1984; Wesson and Wilson, 

2010). The tubercle is a cortical structure, though unlike other olfactory cortical areas, it 

does not possess an association fiber system (Haberly and Price, 1978). It can be divided 

into two main components: a cortical zone and a cap/hilus zone (Wesson and Wilson, 2010; 

Millhouse and Heimer, 1984). Projections from the olfactory bulb to the tubercle consist 

mainly of tufted, as opposed to mitral, cells (Giessel and Datta, 2014; Wesson and Wilson, 

2011). Since tufted cells show enhanced odor sensitivity, enhanced respiratory entrainment 

and broader receptive fields compared to mitral cells (Mori and Shepherd, 1994; Shepherd et 

al., 2004), the olfactory tubercle may be important for olfactory tasks requiring high 

sensitivity. Indeed, rodent studies suggest potential roles for the tubercle in odor 

discrimination (Murakami et al., 2005; Wesson and Wilson, 2010), olfactory multisensory 

integration (Wesson and Wilson, 2010) and state-dependent modulation of olfactory bulb 
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activity (Gervais, 1979). Studies also suggest a role for the rodent olfactory tubercle in 

sensory hedonics and social behavior (Gervais, 1979; Hitt et al., 1973). These data suggest 

the olfactory tubercle is an integral structure for processing olfactory information.

Human: The human olfactory tubercle is a relatively small structure that has not been well 

defined either anatomically or functionally. In general, its broad characteristics are similar to 

the rodent tubercle (Allison, 1954). On the surface of the brain it shows two distinct parts: 

one, adjacent to the olfactory tract, is smooth and rounded; the other is perforated by many 

small blood vessels. These likely correspond to the cortical and cap/hilus zones in the 

rodent. The characteristic lamination is most conspicuous in the anterolateral part, and this 

breaks up more medially (Allison, 1954). It is not known whether the human tubercle 

receives more tufted, as opposed to mitral, cell projections from the bulb. Few human studies 

have examined the function of the tubercle in olfactory processing, though it may be 

involved in odor reward value coding (Howard et al., 2016), olfactory attention (Zelano et 

al., 2005) and determination of the source of olfactory information (trigeminal versus 

olfactory) (Zelano et al., 2007). Resting-state functional magnetic resonance imaging (fMRI) 

data suggest unique functional connectivity between the olfactory tubercle and brain areas 

that are involved in emotional processing, depression, and social cognition, including 

anterior paracingulate cortex, left frontal pole and the left fusiform gyrus (Zhou et al., 

2019a), consistent with early rodent data suggesting a role for the tubercle in hedonics and 

social cognition.

Comparison: Broadly speaking, the rodent and human olfactory tubercle appears similar, 

with both containing two distinct zones. However, with so little data collected from the 

human tubercle, we do not know how well these zones correspond across species. While the 

rodent tubercle receives exclusively tufted cell projections from the bulb, we do not know if 

this is the case in humans. We are also lacking electrophysiological data from the human 

olfactory tubercle, and there have only been a handful of descriptive, early anatomical 

studies that describe it. Interestingly, human studies found functional connectivity between 

the olfactory tubercle and brain regions that exhibit known tubercle-connectivity in rodents, 

including the mediodorsal thalamus, the nucleus accumbens and the raphe nuclei in the 

brainstem (Zhou et al., 2019a). This suggests similar functional profiles across rodent and 

human olfactory tubercle, however more research is needed on the human tubercle to 

confirm these similarities.

Olfactory cortex: Amygdala:

The amygdala is comprised of numerous subregions, a subset of which receive direct input 

from the olfactory bulb. The amygdala has been studied extensively as a region critical for 

emotional processing and learning, and threat detection. Its role in olfactory processing is 

less understood, despite the fact that several of its subregions are considered part of primary 

olfactory cortex.

Rodent: In rodents, the olfactory bulb sends projections to several amygdalar subregions, 

including the posterolateral cortical amygdala, the anterior cortical amygdala, the medial 

nucleus of the amygdala, the periamygdaloid cortex and the nucleus of the lateral olfactory 
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tract (de Olmos et al., 1978; Devor, 1976; Ennis et al., 2014; Iurilli and Datta, 2017; 

Martinez-Marcos and Halpern, 2006; Miyamichi et al., 2011; Pro-Sistiaga et al., 2007; 

Scalia and Winans, 1975; Skeen and Hall, 1977; Sosulski et al., 2011; Ubeda-Bañon et al., 

2007). The posterolateral cortical amygdala receives the most projections from the bulb 

(Iurilli and Datta, 2017), with significantly fewer connections reaching the other subregions. 

The amygdala also receives input from the accessory olfactory bulb, which is important for 

innate social and olfactory guided behaviors in rodents (Edwards, 1974; Feierstein et al., 

2010; Luo et al., 2003; Murphy and Schneider, 1970; Wilson et al., 1987). Accessory 

olfactory information mainly reaches the medial nucleus of the amygdala and the 

posteromedial cortical amygdala (Dulac and Wagner, 2006; Guthman and Vera, 2016; 

Keshavarzi et al., 2015; Pardo-Bellver et al., 2017; Raisman, 1972). The majority of rodent 

studies on olfactory amygdala subregions have focused on the accessory olfactory system. 

These studies suggest that the medial amygdala represents olfactory social information 

(Ying Li et al., 2017), and plays a key role in predator-odor-induced innate fear behaviors 

(Takahashi, 2014). Studies have also shown that medial amygdala is involved in innate 

approach and avoidance behaviors, through divergent projections that regulate each behavior 

(Miller et al., 2019). Amygdala studies focusing on the main olfactory system are fewer in 

number, and have focused mainly on the cortical amygdala. These studies suggest the 

cortical amygdala also participates in innate, odor-driven behaviors (Root et al., 2014), 

potentially through a preserved bulb-to-amygdala topographical map (Sosulski et al., 2011). 

However, a more recent study concluded that the cortical amygdala exhibits a distributive 

odor coding mechanism (Iurilli and Datta, 2017). Very little is known about the 

periamygdaloid cortex, and it has inconsistent naming conventions across studies and 

species. Finally, the nucleus of the lateral olfactory tract is the smallest of the cortical 

olfactory amygdala areas, and recent studies suggest that it may be required for normal 

olfaction and that it undergoes neuroplastic changes during chronic stress (Vaz et al., 2017).

Human: In humans, direct evidence has shown that the olfactory bulb sends monosynaptic 

projections to the anterior cortical amygdala, the medial amygdala, the periamygdaloid 

cortex (Allison, 1954; Crosby and Humphrey, 1941; Gonçalves Pereira et al., 2005). In 

addition, descriptive evidence from humans and indirect evidence from monkeys strongly 

suggests that the nucleus of the lateral olfactory tract receives direct projections as well 

(Allison, 1954; Crosby and Humphrey, 1941), though this remains to be shown directly. It 

has been suggested that the human nucleus of the lateral olfactory tract may be divided into 

rostral and caudal nuclei (Crosby and Humphrey, 1941), which has been observed in 

monkeys, rabbits and bats (Meyer and Allison, 1949). The central nucleus and the bed 

nucleus of the stria terminalis likely receive bulb projections in monkeys (Meyer and 

Allison, 1949); though unknown, it is possible that this is also the case in humans. Notably, 

these areas have not been well-defined in humans, and the precise location and extent of 

bulbar projections into these areas has not been quantified. Though olfactory involvement in 

the amygdala as a whole has been investigated, few human studies have considered the 

olfactory subregions separately, and therefore we know very little about the specific 

functions of these areas in human olfaction. Functional neuroimaging studies suggest the 

amygdala may represent odor intensity and valence (Anderson et al., 2003; Jin et al., 2015; 

Winston et al., 2005), though in these studies, fMRI signals were combined across 
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subregions. Intracranial EEG (iEEG) studies suggest that the amygdala is involved in odor 

coding (Hudry et al., 2003; Jiang et al., 2017), and iEEG and electrical stimulation studies 

suggest a role in nasal respiratory control mechanisms (Zelano et al. 2016; Nobis et al. 2018; 

Nobis et al 2019).

Comparison: The projections from the olfactory bulb to the amygdala may constitute 

some of the biggest differences between rodents and humans in the central organization of 

the olfactory system. This is not only because the rodent bulb projects to a larger number of 

subregions, but also because the rodent amygdala receives heavy input from the accessory 

olfactory system, which humans lack (Meredith, 2001). Additionally, the olfactory amygdala 

subregion receiving the most bulbar projections in rodents is the posterolateral cortical 

amygdala, whereas in humans, it is the anterior cortical amygdala. Despite these differences, 

there are indications of potential similarities across species. For example, human studies 

have found valence and intensity coding in the amygdala, and a potential role in nasal 

respiratory control, which, taken together, may be analogous to rodent amygdala roles in 

approach-avoid behaviors. There is a need for more human studies aimed at quantifying the 

number and location of olfactory projections into the amygdala, and for more human studies 

aimed at deciphering the unique role that each subregion plays in olfactory processing.

In clinical terms, olfactory amygdala subregions have been implicated in respiratory control; 

rodent studies have established anatomical connections between respiratory centers in the 

brainstem and the amygdala (Hopkins, 1975). Human studies have found that electrical 

stimulation of human amygdala disrupts nasal breathing (Dlouhy et al., 2015; Lacuey et al., 

2017; Nobis et al., 2019, 2018). A deeper understanding of the role of amygdalar subregions 

in human respiration has particular importance to patients with epilepsy, given its potential 

relevance to sudden unexpected death in epilepsy (SUDEP), a leading cause of death in 

epilepsy (Bateman et al., 2010; Dlouhy et al., 2015; Ryvlin et al., 2013).

Entorhinal cortex: The entorhinal cortex, a multi-sensory area, is the main interface 

between the neocortex and the hippocampus, and is important for memory, navigation and 

the perception of time (Fyhn et al., 2004; Jessen et al., 2006; Suzuki et al., 1997) The 

entorhinal cortex is engaged at an earlier stage of processing in the olfactory system 

compared to other sensory systems, because it receives direct input from the olfactory bulb.

Rodents: In rodents, the olfactory bulb sends projections that cover the entire extent of 

entorhinal cortex (Insausti et al., 2002). Each of the entorhinal cortical subfields projects in a 

topographical manner onto the hippocampus. Relatively few studies have focused 

specifically on the role of entorhinal cortex in olfactory processing, though it appears that 

the medial and lateral entorhinal cortices may have distinct functions. While the medial 

entorhinal cortex is critical for spatial navigation, with a prominent role in grid cell coding 

(Doeller et al., 2010; Hafting et al., 2005; Stensola et al., 2012; Zhang et al., 2013), the 

lateral entorhinal cortex encodes other stimulus features, including olfactory information, 

with importance in olfactory memory, discrimination and associative learning (Chapuis et 

al., 2013; Igarashi et al., 2014; Leitner et al., 2016; Xu and Wilson, 2012; Young et al., 

1997). It was recently demonstrated that the direct, lateral entorhinal cortex-to-hippocampal 

Lane et al. Page 10

Exp Neurol. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CA1 pathway is required for olfactory associative learning, highlighting a key role for this 

region in olfactory associative learning (Yiding Li et al., 2017).

Human: Very few studies have focused on the human olfactory entorhinal cortex (Beall and 

Lewis, 1992; Krimer et al., 1997). Experimental evidence for a direct human bulb-entorhinal 

connection is still lacking, though strong but indirect evidence exists, in the identification of 

a distinct rostromedial subfield that shows similarities with the olfactory entorhinal area in 

monkeys (Insausti et al., 1995) (also see EO in Mai et al. 2015). Unlike rodents, the human 

olfactory bulb projections into entorhinal cortex likely do not cover the entire region, but 

appear to focus on a small subregion comprising approximately 15% of the entorhinal 

cortex. Aside from a small collection of functional neuroimaging studies that have identified 

odor-responsiveness in the entorhinal cortex (Bensafi et al., 2008; Gottfried et al., 2002a; 

Levy et al., 1997; Poellinger et al., 2001; Wang et al., 2005; Zald and Pardo, 2000; Zelano et 

al., 2007), few studies have directly examined its role in olfactory processing. That said, a 

recent study found grid-like representations in entorhinal cortex during olfactory spatial 

navigation (Bao et al., 2019), though this study was not focused on the olfactory entorhinal 

area. Still, this recent exciting finding indicates similarity in the function of the entorhinal 

cortex across species.

Comparison: With very little data on human entorhinal cortex, it is difficult to draw 

meaningful comparisons across species. However, the apparent large difference in the extent 

of bulbar projections into rodent and human entorhinal cortices may suggest significant 

differences in olfactory processing within this region across species.

Olfactory cortex: Piriform Cortex:

Piriform cortex is the largest recipient of olfactory bulbar input, and is by far the most 

studied of all central olfactory areas. Piriform cortex has a phylogenetically preserved three-

layered paleocortical structure (Vaughan and Jackson, 2014). It is often referred to as 

primary olfactory cortex.

Rodent: Piriform cortex is a relatively large structure within the rodent brain, occupying up 

to 10% of the total cortical volume (Illig and Wilson, 2009). It can be divided into three 

main subdivisions: anterior, ventral-anterior, and posterior (Illig and Wilson, 2009), though 

is also commonly divided into only anterior (APC) and posterior (PPC) subdivisions (Calu et 

al., 2007; Grau-Perales et al., 2019; Haberly and Price, 1978; Stettler and Axel, 2009; Yang 

et al., 2017). These subregions have been defined based on their distinct bulbar inputs, 

distinct intrinsic architecture, and distinct outputs. Anterior piriform receives the heaviest 

output from the bulb, with much lighter bulbar input into posterior piriform. Ventral-anterior 

piriform is likely the only part of piriform that receives input from tufted cells, with dorsal-

anterior piriform receiving mitral cell projections and little or no tufted cell input; whereas 

posterior piriform receives only mitral cell input (Igarashi et al., 2012; Illig and Wilson, 

2009; Mori et al., 2013). Furthermore, anterior piriform has a thicker layer Ia, whereas 

posterior piriform has a thicker layer Ib, reflecting its much heavier associative input 

compared to anterior piriform (Wilson et al., 2006). In line with these anatomical 

differences, studies suggest functional differences across the piriform subregions as well 
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(Litaudon et al., 2003; Wilson, 1998; Zhang et al., 2006). Generally, studies have found that 

odor-evoked responses in anterior piriform are more closely tied to physical features of the 

stimulus, whereas responses in posterior piriform reflect more associative information (Calu 

et al., 2007; Kadohisa and Wilson, 2006; Roesch et al., 2006).

It has consistently been shown that projections from the bulb to piriform cortex are spatially 

distributed, with no preservation of the topography of the olfactory bulb (Ghosh et al., 2011; 

Iurilli and Datta, 2017; Miyamichi et al., 2011), and that information about odor identity can 

be extracted from the spatiotemporal dynamics of these ensemble patterns and from firing 

rates (Haddad et al., 2013; Illig and Haberly, 2003; Miura et al., 2012; Poo and Isaacson, 

2009; Rennaker et al., 2007; Stettler and Axel, 2009; Sugai et al., 2005; Zhan and Luo, 

2010). Information about odor intensity may be represented through different features of 

piriform responses, including response latency (Bolding and Franks, 2017). At the same 

time, numerous studies suggest that the function of piriform cortex goes beyond simple 

odor-identity coding and is strongly impacted by its regional connectivity with other cortical 

areas (Cleland and Linster, 2003; Sadrian and Wilson, 2015). Posterior piriform cortex has 

been implicated in associative functions such as odor learning and memory (Calu et al., 

2007; Chen et al., 2014; Choi et al., 2011; Gire et al., 2013; Johnson et al., 2000; Martin et 

al., 2006; Roesch et al., 2006; Sacco and Sacchetti, 2010; Schoenbaum and Eichenbaum, 

1995), and the region may mediate learned olfactory responses and behaviors (Choi et al., 

2011). Moreover, the strength and composition of piriform networks has also been shown to 

depend on experience and on the state of the organism (Chapuis et al., 2013; Cohen et al., 

2015, 2008; Hasselmo and Barkai, 1995; Kay and Freeman, 1998; Linster and Hasselmo, 

2001; Wilson and Sullivan, 2011).

The connectivity patterns of the different rodent piriform subregions also differ. For 

example, one of the major output targets of rodent piriform is the mediodorsal thalamus 

(Courtiol and Wilson, 2015). The posterior piriform cortex (along with AON and cortical 

amygdala) projects more medially in the mediodorsal thalamus while the anterior piriform 

cortex (along with the olfactory tubercle) projects mainly to the central region of the 

mediodorsal thalamus (Bay and Çavdar, 2013; Inagaki et al., 1983; Krettek and Price, 1974; 

Price, 1985; Price and Slotnick, 1983; Ray and Price, 1992). As another example, ventral-

anterior piriform output is almost exclusively to anterior piriform and orbitofrontal cortex, 

which projects back to the ventral-anterior piriform (Illig and Wilson, 2009). Anterior and 

posterior piriform have relatively similar projection patterns to regions outside of primary 

olfactory cortex, with just a few key differences. Both subregions project to ventral agranular 

insula and infralimbic areas, but only anterior piriform projects to ventrolateral orbitofrontal 

cortex, and only posterior piriform projects to posterior agranular insula and perirhinal 

cortex (Luskin and Price, 1983).

Human: Human piriform cortex is located at the junction of the frontal and temporal lobes, 

medial to the temporal stem (Mai et al., 2015). In humans, piriform cortex is subdivided 

anatomically into frontal- and temporal-lobe subdivisions (pirF and pirT, respectively). PirF 

and pirT occupy approximately 15% and 85% of the total piriform volume, respectively 

(Gonçalves Pereira et al., 2005). PirF is confined to a small triangular area on the lateral side 

of the olfactory tract. Medially, it is bound by the olfactory tubercle and lateral olfactory 
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tract, and laterally, it merges into the insular cortex (Mai et al., 2015). PirF exhibits a typical 

laminar structure, including a plexiform layer containing olfactory tract fibers, a band of 

deeply staining pyramidal cells and a polymorphous cell layer with ill-defined internal limits 

(Allison, 1954). In earlier studies, pirF was considered part of the agranular insular cortex 

(Rose, 1928). PirT is much more extensive than pirF (Allison, 1954), beginning anteriorly at 

the limen insulae (which is the junction between the frontal and temporal lobes) and 

extending posteriorly to overlie the amygdaloid complex (Allison, 1954; Gonçalves Pereira 

et al., 2005). PirT progressively occupies a larger proportion of the gray matter in the caudal 

direction on the medial temporal lobe, up to 80% immediately anterior to the amygdala. 

Medially, pirT cortex merges into the perirhinal or entorhinal cortex, with its border marked 

by the sulcus semiannularis. Numerous olfactory tract fibers spread over pirT from their 

main point of termination at the angle between the frontal and temporal lobes. These fibers 

are present in the plexiform layer, and many turn inwards to terminate in relation to the 

dendrites of the pyramidal cells (Allison, 1954). In parts, pirT presents a typical lamination 

that is highly similar to monkeys or rabbits, but on the edges, the conspicuous pyramidal cell 

band breaks up to form small islets.

With so little knowledge about the human olfactory bulb and its cortical projections, we do 

not know whether bulbar input to human piriform cortex is spatially distributed, as in 

rodents. We also do not have a complete understanding of the distinct functions of human 

piriform subregions in olfactory processing. However, some progress has been made, with 

the vast majority of studies conducted using functional neuroimaging techniques. These 

studies have broadly corroborated rodent findings showing that ensemble spatial patterns in 

piriform cortex represent odor objects (Fournel et al., 2016; Gottfried, 2010; Howard et al., 

2009; Li et al., 2010, 2008; Qu et al., 2016; Zelano et al., 2011). Notably, human studies 

have not always used the same procedure for defining piriform subregions, resulting in 

ambiguity in findings of heterogeneity across the human frontal and temporal subregions.

Though human neuroscience techniques are limited compared to those available to rodent 

researchers, working with human subjects does carry the advantage of allowing researchers 

to ask subjects to directly rate certain features of the odor stimulus. Several fMRI studies 

have reported greater BOLD signal magnitudes in piriform in response to unpleasant odors 

compared to pleasant odors (Bensafi et al., 2007; Gottfried and Dolan, 2003; Royet et al., 

2003; Zelano et al., 2007), suggesting that odor pleasantness is represented in piriform 

cortex. Strikingly, all of these studies found that odor pleasantness was represented 

specifically in pirF, and not pirT, suggesting the possibility that these regions perform 

distinct olfactory functions. Interestingly, this effect was also present in the absence of odor 

stimulation, during imagined pleasant and unpleasant smells (Bensafi et al., 2007). The 

duration of BOLD signal increases may also play a role, with unpleasant odor responses 

being strong and short, and pleasant odor responses being longer and weaker (Gottfried et 

al., 2002b). Notably, some of these effects could be partly influenced by odor intensity, 

which must be very carefully controlled when studying odor hedonics (Anderson et al., 

2003; Grabenhorst et al., 2007; Grabenhorst and Rolls, 2009; Rolls et al., 2008, 2003).

Also in agreement with rodent studies, numerous human studies have found that activity in 

human piriform cortex reflects higher-order associative functions, including working 
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memory, odor imagination, odor learning and attention (Bensafi et al., 2007; Cerf-Ducastel 

and Murphy, 2006; Djordjevic et al., 2005; Gottfried et al., 2004, 2002a, 2002b; Gottfried 

and Dolan, 2003; Plailly et al., 2008; Royet et al., 2011; Zelano et al., 2009, 2005, 2011). 

More recently, iEEG techniques have been used to record local field potentials from human 

piriform cortex (Jiang et al., 2017; Noto et al., 2018; Zelano et al., 2016; Zhou et al., 2019b). 

These studies suggest a particular prevalence, relative to other frequency ranges, of theta 

oscillations in piriform cortex during odor detection and multisensory integration (Jiang et 

al., 2017; Zhou et al., 2019b). Thus the functional role of human piriform cortex is complex, 

with findings across studies indicating numerous potential aspects of odor processing 

represented in this region. While it is possible that different features of odors are represented 

as different features of piriform activity—oscillatory frequencies, temporal codes, spatial 

ensemble patterns, overall magnitude, etc.—these questions remain to be answered.

Recent fMRI data strongly suggest that human pirF and pirT have unique functional 

connectivity patterns (Zhou et al., 2019a) (Fig 3). Using data-driven k-means clustering 

techniques, pirF and pirT can be accurately parcellated based on their distinct whole-brain 

functional connectivity patterns. This distinction robustly survives across data sets, k values, 

and hemispheres. Interestingly, pirF exhibits connectivity with the mediodorsal thalamus 

whereas pirT does not. Furthermore, pirF exhibits strong functional connectivity with motor 

planning areas, including the caudate/putamen and the primary motor cortex, specifically at 

the face/nose/jaw section of the motor homunculus. In contrast, pirT exhibits connectivity 

with the brainstem raphe magnus and posterior insula, areas implicated in pain processing 

(Segerdahl et al., 2015; Woo et al., 2009) and respiratory modulations (Ackermann and 

Riecker, 2010; Evans et al., 2009), as well as the core language network (Ardila et al., 2014; 

Wible et al., 2005).

Comparison: Based on the limited knowledge we have about human piriform cortex, there 

are likely important differences in this region between species. Rodent and human piriform 

cortices are generally similar in their laminar structures (Allison, 1954), however our 

knowledge of human piriform cortex is much less detailed compared to rodent piriform. 

There is a great need for more studies on the anatomy and histology of human piriform 

cortex. In rodents, piriform cortex is divided into two main subregions—APC and PPC— 

with recent work indicating that ventral APC may constitute an important third subdivision. 

In humans, piriform is divided into two subregions—pirF and pirT (Allison, 1954; Crosby 

and Humphrey, 1941, 1939; Gonçalves Pereira et al., 2005; Rose, 1928). It is unclear how 

the human subdivisions correspond to the rodent subdivisions. While it is possible that non-

human primate frontal piriform corresponds to rodent anterior, and non-human primate 

temporal piriform corresponds to rodent posterior (Carmichael et al., 1994), the small of 

number of human studies do not suggest the same to be true in humans. Rodent APC is 

similar in size to PPC, and APC receives a significantly greater density of projections from 

the bulb than PPC. In contrast, human pirF is very small relative to pirT, occupying only 

approximately 15% of the total volume of piriform cortex, and does not receive 

proportionally greater density of projections from the bulb compared to pirT. In fact, based 

on data from the few human studies, it seems likely that pirT receives a larger number of 

projections from the bulb than pirF (Allison, 1954). Further evidence from functional 
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connectivity studies suggests a lack of correspondence between human pirF/pirT and rodent 

APC/PPC, with pirF and pirT exhibit strikingly different patterns of functional connectivity 

in humans (Zhou et al., 2019a). In rodents, the functional connectivity profiles of APC and 

PPC are not well established, but structural studies suggest overall similar connectivity 

patterns with areas outside of olfactory cortex. (Luskin and Price, 1983). More studies are 

needed to determine the correspondence between rodent and human piriform subdivisions.

Understudied bulbar targets

In rodents, the olfactory bulb projects to several medial brain areas that have been neglected 

in human olfactory studies. As a result, while these areas have been found to receive direct 

projections from the main olfactory bulb in rodents, whether this is also the case in humans 

is unknown. These areas constitute a medial olfactory cortex (Shipley et al., 2004), including 

the ventral and dorsal tenia tecta, the indusium griseum and the supraoptic nucleus of the 

hypothalamus. We will briefly discuss these areas in this section, and propose that all of 

these areas should receive more attention in future studies across species, and human studies 

in particular, to determine whether they receive human bulbar projections, and if so, what 

role they play in olfaction.

Tenia tecta—Also spelled taenia tecta, this structure is commonly divided into two 

subregions: the ventral tenia tecta (vTT) and the dorsal tenia tecta (dTT). The tenia tecta 

receives direct bulbar projections in rodents (Cleland and Linster, 2003; Haberly and Price, 

1978). dTT is also referred to as the anterior hippocampal continuation (McNamara et al., 

2004). The vTT contains predominantly pyramidal-type cells, while the dTT contains a 

more hippocampal-like cell structure (Haberly and Price, 1978).

In human olfactory studies, the tenia tecta is badly neglected. It is not known whether the 

human tenia tecta receives direct bulbar projections. In the human brain, the tenia tecta is a 

band of grey matter following a path analogous to the rodent along the inferior surface of the 

subcallosal gyrus, first described in 1712 by Lancisi (Di Ieva et al., 2007), with subsequent 

reports from Campbell (1905) and Rose (1927).

Indusium Griseum: Overlapping with or synonymous with the dorsal hippocampal 

continuation and the hippocampal rudiment, this thin band of grey matter is a continuation 

from the dTT moving along the supracollosal gyrus to the hippocampus. The indusium 

griseum receives direct projections from the rodent olfactory bulb (Wyss and 

Sripanidkulchai, 1983) and has a layered cellular structure which suggests analogues to the 

hippocampal formation. It is thought to be a continuation of the hippocampal formation 

(Wyss and Sripanidkulchai, 1983).

In humans, the indusium griseum also appears to be continuous with the tenia tecta, moving 

along the surface of the supracollosal gyrus to the hippocampus (Di Ieva et al., 2015). It is 

not known whether this region receives direct projections from the human olfactory bulb, 

and therefore whether it has any olfactory function in humans.

Supraoptic nucleus of the hypothalamus: In rodents, the supraoptic nucleus of the 

hypothalamus is situated at the base of the brain, adjacent to the optic chiasm. It receives 
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direct projections from the olfactory bulb (Smithson et al., 1989), and is thought to be 

involved in post-partem bonding and water retention/regulation (Yang et al., 1995).

In humans, the supraoptic nucleus is situated medial to the olfactory tubercle and superior to 

the optic chiasm. It is not known whether this area receives any direct projections from the 

human olfactory bulb.

All of these areas lie medial to the lateral olfactory tract. Though it is now generally agreed 

that mammals have no medial olfactory tract, as all olfactory fibers moving medially arise 

from the lateral olfactory tract (Price, 1990), the pathway comprising the tenia tecta and the 

indusium griseum could constitute a medial olfactory pathway to the hippocampus, though 

this is highly speculative and has not been studied.

Clinical aspects of the olfactory system:

Olfactory dysfunction is a pervasive and early symptom across numerous neurodegenerative 

diseases, including Alzheimer’s disease, Parkinson’s disease, Lewey Body dementia, and 

others (Adams et al., 2018; Del Tredici et al., 2002; Demarquay et al., 2007; Doty, 2017; 

Godoy et al., 2015; Hüttenbrink et al., 2013; Pinto et al., 2014; Whitcroft et al., 2017; 

Wilson et al., 2011), highlighting the importance of furthering our understanding of human 

olfactory cortical areas. It is especially important, from a clinical perspective, to hash out the 

similarities and differences between the rodent and human olfactory systems, given the 

prevalence of rodent studies that have important clinical implications.

The reason that olfactory decline is so common in neurological disease is not fully 

understood, but there are several key differences between olfaction and other sensory 

modalities that could contribute. Anatomically, the olfactory system is unique in that its 

sensory neurons constitute the only part of the central nervous system that makes direct 

contact with the external environment. Sensory neurons in the nasal epithelium project from 

the olfactory mucosa, through the cribriform plate, and onto the olfactory bulb. The olfactory 

mucosa provides a potential location of pathogen entry in disease states where normal 

immune function could be compromised. The olfactory system is also unique in that 

projections from the periphery reach the cortex without relaying through the thalamus, 

meaning that olfactory information has privileged access to cortical and limbic brain areas 

and also may provide a potential pathway for pathology (Gottfried and Zald, 2005; Zald and 

Pardo, 1997).

Whether these unique aspects of the olfactory system play a role in the pervasive nature of 

olfactory deficits in cognitive decline is not clear. However, regardless of the reason, the 

frequency of olfactory deficits in neurodegenerative disease highlights the clinical 

importance of studying olfactory brain regions in patient populations. Abnormalities in 

olfactory cortical areas have been reported in several neurological disease types. It has been 

shown that different forms of cognitive impairment can be distinguished based on complex 

graph measures obtained from piriform cortex (Ebadi et al., 2017). Additionally, Parkinson’s 

disease and Lewy body dementia have both been shown to impact olfactory cortical areas 

(Ubeda-Bañon et al., 2017). Finally, another unique aspect of the olfactory system is that it 

constitutes one of the few areas in the brain where adult neurogenesis occurs (Lötsch et al., 
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2014; Whitman and Greer, 2009). Though speculative, it is tempting to consider the 

possibility that neurodegenerative disease could involve deficits in neurogenesis, thus 

leading to early olfactory degeneration. These data combine to show the clear clinical 

importance of understanding olfactory cortical structure and function and highlight olfactory 

pathways as key players in the progression of numerous neurodegenerative diseases. Future 

research is necessary and will be important in reaching full understanding of the known link 

between olfactory dysfunction and neurodegeneration.
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Figure 1: 
Overview of the human and rodent olfactory systems. The major targets of olfactory bulb 

efferents are illustrated for humans (red) and rodents (blue and purple). MOB, main 

olfactory bulb; AOB, accessory olfactory bulb; AON, anterior olfactory nucleus; vTT, 

ventral taenia tecta; dTT, dorsal taenia tecta; IG, indusium griseum; OT, olfactory tubercle; 

APC, anterior piriform cortex; PPC, posterior piriform cortex; pirF, frontal piriform cortex; 

pirT, temporal piriform cortex; BNST, bed nucleus of stria terminalis; MeA, medial 

amygdala; PAC, periamygdaloid cortex; ACo, anterior cortical nucleus of the amygdala; 

PlCo, posterolateral cortical amygdala; PmCo, posteromedial cortical amygdala; NLOT, 

nucleus of the lateral olfactory tract; lENT, lateral entorhinal cortex; mENT, medial 

entorhinal cortex; SO, supraoptic nucleus. Dashed lines indicate that these projections have 

not been definitively shown in humans but are likely based on strong indirect evidence. *, it 

is not known whether this area receives direct projections from the main olfactory bulb in 

humans.
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Figure 2: 
Glomerular loss in over 200 olfactory bulbs, plotted by age. Notably, there is a subset of 

bulbs showing no glomerular loss over the broad range of ages. The red box highlights aged 

bulbs showing no glomerular loss in individuals over the age of 60. Points on or above the 

100% line have lost all their olfactory nerve-fibers, and points on or below the 0% line have 

no glomerular loss. Dots and circles represent males and females, respectively. Figure 

adapted from and data taken from Smith (1942). To extract the data, the raw image was read 

into Matlab and binarized. The unweighted center of each marker, which was traced using 

Matlab’s bwboundaries function, was retrieved and its age and atrophy values were 

calculated by interpolating the values of the x-axis and y-axis ticks.
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Figure 3: 
Functional connectivity profiles of human pirF and pirT, adapted from (Zhou et al., 2019a). 

PirF and pirT show distinct whole-brain functional connectivity profiles. The t value maps 

show statistically significant (threshold-free cluster enhancement corrected P < 0.001) 

functional connectivity profiles unique to pirF (top row) and pirT (bottom row). R, right 

hemisphere; ACC, anterior cingulate cortex; THAL, thalamus; CAU, caudate; PUT, 

putamen; SUP, supramarginal gyrus; TP, temporal pole; HIPP, hippocampus; BA, Broca’s 

area.
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