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Abstract

Background: Systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD) are manifestations of
an autoinflammatory disorder with complex pathophysiology and significant morbidity, together also termed Still's
disease. The objective of the current study is to set in silico models based on systems biology and investigate the
optimal treat-to-target strategy for Still's disease as a proof-of-concept of the modeling approach.

Methods: Molecular characteristics of Still's disease and data on biological inhibitors of interleukin (IL)-1 (anakinra,
canakinumab), IL-6 (tocilizumab, sarilumab), and glucocorticoids as well as conventional disease-modifying anti-
rheumatic drugs (DMARDs, methotrexate) were used to construct in silico mechanisms of action (MoA) models by
means of Therapeutic Performance Mapping System (TPMS) technology. TPMS combines artificial neuronal
networks, sampling-based methods, and artificial intelligence. Model outcomes were validated with published
expression data from sJIA patients.

Results: Biologicals demonstrated more pathophysiology-directed efficiency than non-biological drugs. IL-1
blockade mainly acts on proteins implicated in the innate immune system, while IL-6 signaling blockade has a
weaker effect on innate immunity and rather affects adaptive immune mechanisms. The MoA models showed that
in the autoinflammatory/systemic phases of Still's disease, in which the innate immunity plays a pivotal role, the IL-
1B-neutralizing antibody canakinumab is more efficient than the IL-6 receptor-inhibiting antibody tocilizumab. MoA
models reproduced 67% of the information obtained from expression data.

Conclusions: Systems biology-based modeling supported the preferred use of biologics as an immunomodulatory
treatment strategy for Still's disease. Our results reinforce the role for IL-1 blockade on innate immunity regulation,
which is critical in systemic autoinflammatory diseases. This further encourages early use on Still's disease IL-1
blockade to prevent the development of disease or drug-related complications. Further analysis at the clinical level
will validate the findings and help determining the timeframe of the window of opportunity for canakinumab
treatment.
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Background

Still's disease encompasses rare inflammatory disorders
ranging from systemic juvenile idiopathic arthritis (sJIA),
which occurs in children, to adult-onset Still’s disease
(AOSD) in adults [1, 2]. The overlapping clinical features
suggest that sJIA and AOSD are manifestations of a
phenotypic continuum [2, 3]. Autoinflammatory features
such as quotidian fever, polyserositis, evanescent rash,
and substantial systemic inflammation dominate the
clinical presentation of Still's disease at its onset [1].
Interleukin (IL)-1B has been shown to drive initial in-
flammation [4]. In addition, high levels of IL-6 and IL-18
as well as SI00A8/A9 and S100A12 are detectable in
serum [1, 5]. sJIA can be complicated during the sys-
temic phase by macrophage activation syndrome, a se-
vere hyperinflammatory condition that can result in
multi-organ failure with high mortality [6].

While the pathophysiology of Still's disease involves a
complex immune dysregulation on a polygenetic back-
ground, specific factors that trigger the disease are cur-
rently unknown. Today, Still's disease is discussed as a
biphasic disease [7]. Although a systemic and autoin-
flammatory phenotype is typically seen at the beginning,
in later phases, patients often present extremely aggres-
sive joint manifestations with destructive (poly)arthritis.
A shift in molecular mechanisms and clinical presenta-
tion towards severe autoimmune arthritis appears to
occur [8, 9]. In cases where it is possible to interrupt
hyperinflammation in the initial phase, the development
of chronic destructive joint inflammation can be pre-
vented in the further course of the disease. Indeed, it has
been demonstrated that IL-1 blockade is particularly ef-
fective when initiated as first-line therapy during the sys-
temic phase [10, 11]. Further studies suggest that
patients may benefit from therapeutic IL-6 receptor
(IL6R) blockade [12], but head-to-head comparison of
drugs interfering with either IL-1 or IL-6 signaling is still
lacking.

Over the past years, it has been established that effect-
ive therapies including cytokine blockers should be initi-
ated early in the disease course to exploit the “window
of opportunity” [7]; however, not even in this case pa-
tients respond in a uniform manner. Consequently,
“treat-to-target” protocols instruct switching therapies if
treatment targets are missed and no clinical improve-
ment is observed. It is currently impossible to choose
the best options for individualized therapies upfront,
e.g., by identifying molecular signatures indicating spe-
cific pathways active in patients with different pheno-
types or endotypes. According to the success of selected
therapeutic strategy, patients can be thus classified as
presenting chronic, polycyclic, or monocyclic courses of
the disease. The clinical complexity of the disease, with
its dual systemic/rheumatic symptomatology, makes it
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challenging for clinicians to set an optimal treatment ap-
proach, as well as for researchers to identify clear mo-
lecular signatures for the proposed phenotypes; however,
some recent initiatives are starting to address this issue
[8]. Thus, the most urgent unmet need in the context of
Still’s disease today is to find novel ways to advance the
understanding of the pathophysiology underlying its
clinical presentation and the molecular mechanisms of
action (MoAs) of available therapies [8, 13].

In recent years, the application of bioinformatics and
systems biology to generate pathophysiology-feasible
models has generated great interest in drug development
and regulatory decision fields for its potential in identify-
ing optimal therapeutic strategies [14]. Systems biology-
and machine learning-based methods are increasingly
becoming a reliable strategy to understand the molecular
effects of a pathology or drug in complex clinical set-
tings, and they are already being used in the context of
juvenile idiopathic arthritis [15, 16].

We hypothesized that systems biology-based models
of Still's disease, constructed with artificial intelligence
techniques, can be employed to answer the most chal-
lenging questions regarding disease understanding, pa-
tient diagnosis, and therapeutic target approaches, as
reported for other diseases. In this study, we used previ-
ously described protocols [17] to model the MoA of
Still’s disease treatments in the context of human physi-
ology, using systems biology- and artificial intelligence-
based techniques. These models were used to deepen
the understanding of the MoA of different therapeutic
strategies, such as biological drugs that target the IL-1
pathway (anakinra and canakinumab) or the IL-6 path-
way (tocilizumab and sarilumab, the latter not indicated
for Still's disease yet but being investigated in a phase II
clinical trial, NCT02776735) and non-biological drugs
(corticosteroids, i.e., prednisone, and methotrexate). The
results obtained from the evaluation of these models and
presented in this study provide a proof-of-concept of
their applicability as research tools in this pathology and
help to move towards the optimal treatment strategy of
Still’s disease.

Methods
TPMS technology: Still's disease systems biology-based
model creation
Therapeutic performance mapping system (TPMS) is
based on artificial intelligence and pattern recognition
techniques that integrate all available biological, pharma-
cological, and medical knowledge to create mathematical
models that simulate human (patho)physiology in silico.
The methodology employed has been previously de-
scribed [17].

In this study, the models were focused on Still’s dis-
ease pathophysiology and the drug targets evaluated.



Segu-Vergés et al. Arthritis Research & Therapy (2021) 23:126

Still’s disease pathophysiology was divided in known
cellular and molecular processes, in order to help
contextualize the model results according to the
current disease knowledge. Still’s disease protein effec-
tors and the drug protein targets were defined through
manual curation of dedicated databases [18-21] and
scientific literature (see supplementary methods,
Additional file 1, and supplementary Tables S1-S3,
Additional file 2). Models were trained using a
compendium of biological and clinical data defining
human physiology (supplementary Table S4, Add-
itional file 2). Two modeling approaches were used:
artificial neural networks (ANN), able to detect bio-
logical relationships, and sampling-based methods,
able to explain biological relationships. Detailed infor-
mation on the modeling methodology is provided in
the supplementary methods, Additional file 1. TPMS-
based models were used to evaluate the MoA and
treatment efficacy in sJIA (Fig. 1).
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Expression data

All expression data from sJIA and AOSD patients avail-
able in Gene Expression Omnibus [22] until April 2018
were retrieved to be used for evaluating and biologic-
ally validating the models (see supplementary Table
S5 [23-27], Additional file 2).

Statistical analyses

Protein activity differences between the sampling-based
MoA models were evaluated through Mann-Whitney-
Wilcoxon test (multi-test correction using false discovery
rate, significant results FDR <0.05) and linear/quadratic
classification analysis (significant results cross-validated
accuracy > 80%).

Expression data from diseased individuals were evalu-
ated using ¢ test. Differentially expressed transcripts for
sJIA evaluation were identified using T-Stouffer test for
4 experiments (T equivalent to FDR <0.05). Differen-
tially expressed transcripts for drug evaluation were
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Fig. 1 Schematic TPMS approach used to evaluate the Still's disease treatments efficacy and their MoA. TPMS is based on systems biology-based
models. TPMS encompass five steps: (i) the learning process of the protein-protein interaction (PPl) human network based on training and
validation using known information stored in the truth table; this learning is performed with artificial intelligence techniques to construct
accurate mathematical models that simulate the behavior of human physiology through two main strategies (ANNs and sampling-based
methods). (i) The molecular characterization of Still's disease and drugs through dedicated bibliographical revision, from which a Still's disease
interactome can be constructed using the PPl human network. (i) ANN evaluation of drugs efficacy over Still's disease definition. (iv) The
construction of specific MoA models for Still's disease and drugs. (v) The validation of the MoA models with available gene expression data from
sJIA patients. Expression data enrichment analysis was also used to be compared with the Still's disease interactome to evaluate the validity of
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identified using the paired samples ¢ test (P value <0.05).
Results from these analyses can be found in supplemen-
tary Tables S6-S8, Additional file 2.

Hypergeometric enrichment analysis was performed
over the database-derived sJIA-related gene expression
data (supplementary Table S6, Additional file 2) and
the network around Still's disease characterization to
determine the presence of enriched pathways defined
in functionally informative databases (see supplemen-
tary methods, Additional file 1). The degree of en-
richment of the protein sets was evaluated for each
database (FDR < 0.05).

Validation of the results obtained from model analysis
with expression data

The activity of the proteins presenting a differential
(FDR < 0.05) behavior between canakinumab and toci-
lizumab was compared to sJIA-derived expression data.
A validation score was calculated using the criteria de-
tailed in the supplementary methods, Additional file 1,
and a percentage over the total of potential validation
points according to the validation design was calculated.

Results

Still's disease interactome

The starting material for Still's disease network gener-
ation was the list of proteins (effectors) obtained from
literature review (supplementary Table S2, Additional
file 2). The enrichment analysis of the proteins around
Still’'s disease effectors (Fig. 2a) reflected 72% of the pro-
cesses that showed a significant enrichment when ana-
lyzing sJIA expression data sets (supplementary Table
S6, Additional file 2). Immune-related processes and
manifestations associated to the disease (hemolysis or
coagulopathy) (Fig. 2c) are the most relevant for the
study. Around half of the proteins included in Still’s dis-
ease network were associated to at least one of the com-
monly enriched processes. Furthermore, all treatments
evaluated presented at least one target directly related to
Still’s disease effectors (Fig. 2b).

Efficacy evaluation of Still's disease current treatment
options
The ANN analysis showed a strong and significant rela-
tionship between the biological agents and the molecular
pathophysiology of Still's disease (>78%, p <0.05) and
were quite similar to each other (Table 1). A weaker re-
lationship was found between non-biological drugs and
the molecular pathophysiology of Still’s disease. Similar
results were obtained when the relationships between
the different biological drugs and each Still's disease
component (systemic and rheumatic) was evaluated.

In order to explore differences in the mechanisms of
each drug, the individual motives implicated in Still’s
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disease pathophysiology (as defined by literature review,
supplementary Table S1 and S2, Additional file 2) were
also evaluated. ANN analyses showed that the action of
the IL-1 blockers (anakinra and canakinumab) is related
to the definition set for the innate immune system (sup-
plementary tables S1-S2, Additional file 2), whereas the
IL6R blockers (tocilizumab and sarilumab) are more re-
lated to the definition of the adaptive immune system
(supplementary Tables S1-S2, Additional file 2)
(Table 1).

As per the modeling approach used, tocilizumab and
sarilumab are not distinguishable, as they share the
pharmacological target. Both anakinra and canakinumab,
acting over different points of the IL-1 pathway, also
presented a similar behavior.

Impact of IL-1- vs. IL-6-targeted treatment on proteins
involved in the innate immune system response in Still’s
disease

Since Still’s disease onsets as an autoinflammatory dis-
ease, a deeper evaluation of the MoAs of canakinumab
(as IL-1 inhibitor) and tocilizumab (as IL6R inhibitor)
were performed focusing on the innate immune system
effectors (list on supplementary Tables S1-S2, Additional
file 2, and Table 2). The detailed evaluation of the MoA
of canakinumab and tocilizumab on the innate immune
system effectors showed that some well-known proteins
were differentially modulated (Fig. 3). Most of them (13
out of total 16; 81.2%) were more strongly modulated to
treat the disease by canakinumab than by tocilizumab
(FDR < 0.001) (Table 2). Within these proteins, we selected
those that were able to accurately classify the MoA
solutions of each drug (cross-validated accuracy >80%).
The mechanisms of these “classifier” protein effectors were
evaluated to explore their role within the mechanism of
action of the drugs (Fig. 3). Supplementary Figure S1-S2,
Additional file 3, and supplementary Tables S9-S10,
Additional file 2, contain the sources of information found
in the scientific literature supporting the predicted mecha-
nisms. According to the models, canakinumab inhibits NF-
kB (formed by the protein products of the genes NFKB1
and RELA), IL-8 (also known by its gene name, CXCLS),
and S100A9 more effectively than tocilizumab, among
other proteins. Canakinumab accomplishes this effect by
preventing the interaction between IL-1f and its receptor
IL-1R, with the subsequent inhibition of the canonical IL-1
signaling pathway. This pathway is initiated by the recruit-
ment of the adaptor protein MyD88 to the IL-1R, which is
known to involve the IRAK1-IRAK4-MyD88 complex for-
mation and recruitment to the receptor and activation of
E3 ubiquitin-protein ligase TRAF6 and mitogen-activated
protein kinase MAP3K?7, also known as TAK1. This signal-
ing pathway transduces its signal through NF-«kB and also
through the p38 MAP kinase family (MAPK11-14) with the
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receptor subunit IL6R and its ligand IL-6, blocking the
activation of the catalytic IL6R subunit gp-130. IL-6 sig-
nal is mediated through STATSs, mainly through STAT3

subsequent activation of AP-1 transcription factor. Aside
from the activation of well-known pro-inflammatory medi-
ators through the IL-1 signaling canonical pathway, the

models show involvement of inhibition of the early growth
response protein 1 (EGR1) and CCAAT enhancer binding
protein beta (CEBPB) transcriptional activity in canakinu-
mab mechanisms.

In contrast, tocilizumab preferentially inhibits the Fc
fragment of IgG receptor Ia or CD64 (protein codified
by the gene known as FCGR1A). As shown in Fig. 3,
tocilizumab prevents the interaction between the

activation; STAT3 is a signal transducer and transcrip-
tion activator implicated in the expression of several IL-
6 responsive genes. The models also show functional
interactions between STAT3 and other transcription
factors, such as FOXO1, which leads to modulation of
autophagy protein 5 (ATG5), although with a lower po-
tency than IL-1p blockade (Table 2 and Fig. 3). STAT3
and the NF-kB signaling pathways present a complex
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Table 1 Summary of ANN scores
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Biologics Non-biologics
Anakinra Canakinumab Sarilumab Tocilizumab Methotrexate Prednisone
Still's disease molecular definition +++ (81%)  +++ (86%) +++ (85%)  +++ (85%) —(5%) ++ (70%)
Phenotypic profiles:
Systemic profile +++ (80%)  +++ (88%) +++ (85%)  +++ (85%) — (4%) ++ (70%)
Rheumatic profile +++ (87%) +++ (92%) +++ (81%) +++ (81%) —(9%) ++ (64%)
Immune system components:
Innate immune system deregulation ++ (71%) ++ (71%) + (55%) + (55%) —(10%) ++ (65%)
Adaptive immune T cell response + (45%) —(37%) ++ (71%) ++ (71%) —(25%) + (47%)
system activation
Defective immune  —(19%) —(37%) + (47%) + (47%) —(15%) + (50%)

regulation

ANN scores show the probability of the resulted relationship to be a true positive: +++ (highlighted in bold font) correspond to values > 78% (p value< 0.05); ++
correspond to values >59% (p values < 0.15) and; + correspond to values > 38% (p value< 0.25). ANN, artificial neural network

cross-talk, which is highlighted in the mechanism model
for IL-6 blockade (Fig. 3 and Figure S2, Additional file 3);
hence, we predicted a weaker inhibition of the NF-kB
transcription activity (including, for example IL-8
(CXCLS8)) by IL-6 blockade compared to IL-1f blockade.
IL-6 blockade can also modulate STAT1 activity in two
ways, through modulation of the stability of IFN-y re-
ceptor mRNA (IFNGR1 and IFNGR2) and through regu-
latory cross-talk between STAT1 and STAT3. STAT1
modulation is responsible for FCGR1A transcription in-
hibition in the predicted tocilizumab mechanism of
action.

Validation of the drug-disease MoA models with
expression data

Besides internal cross-validation of the models (94% ac-
curacy), MoA models were validated using the sJIA gene
expression data (analyzing both untreated- and treated-
patients with canakinumab and tocilizumab). Figure 4
shows protein activities that are differential between
canakinumab and tocilizumab MoA models and whether
the predicted activity is validated or not by the change
in expression induced by the treatment in sJIA patients
(for both canakinumab and tocilizumab). Most validated
model protein activities were predicted to be inhibited

Table 2 Model activity values and differences between treatments among the innate immune system deregulation effector proteins

Gene name Protein name SD sign Canakinumab  Tocilizumab FDR ACC
FCGR1A High affinity immunoglobulin gamma Fc receptor | (CD64) 1 0 -072 7.23E-38 0.995
S100A9 Protein S100-A9 1 -0.75 0 203E-38 099
NFKB1 Nuclear factor NF-kappa-B p105 subunit 1 -1 —-0.56 329E-36 098
IL8 Interleukin-8 (CXCL8) 1 -1 -082 950E-36 097
MYD88 Myeloid differentiation primary response protein MyD88 1 -0.98 -0.18 4.09E-33 0.955
RELA Transcription factor p65 (TF65) 1 -1 -084 1.95E-33 0.925
ATG5 Autophagy protein 5 1 -091 -037 1.36E-26 0.865
CSF1 Macrophage colony-stimulating factor 1 1 —-0.89 -0.73 7.23E-07 0.795
SQSTM1 Sequestosome-1 1 - 068 - 046 1.93E-12 0.795
TLR7 Toll-like receptor 7 -1 -04 -0.12 1.536-07 0.745
ICAM1 Intercellular adhesion molecule 1 1 -087 -1 344E-14 0.73
MIF Macrophage migration inhibitory factor 1 -082 —-0.58 133E-04 072
S100A12 Protein S100-A12 1 0.16 -0.13 1.63E-03 0.66
S100A8 Protein S100-A8 1 -023 -022 1.03E-01 0.635
MAP1LC3A Microtubule-associated proteins 1A/1B light chain 3 (MLP3A) 1 -0.28 - 004 1.80E-04 0.605
INHBA Inhibin beta A chain 1 0.08 0 4.23E-03 0.57

SD sign column indicates whether the protein is increased/overactivated (1) or reduced/inhibited (- 1) in the context of Still's disease. The columns canakinumab
and tocilizumab present the predicted activity values (ranging from 1, totally activated, to — 1, totally inhibited) for each protein in each MoA model. FDR column
indicates the false discovery rate obtained after Mann-Whitney-Wilcoxon test for each protein. The ACC column indicates the cross-validated accuracy of

classification of the MoA models for each protein
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by the drugs and their expression was downregulated by
the drugs. Most of these proteins presented gene expres-
sion upregulation in sJIA patients compared to controls.
Overall, protein activities presenting significant differ-
ences between canakinumab and tocilizumab models
(FDR < 0.05) reproduced a 67% of the information ob-
tained from expression data.

Discussion
This study shows how the application of systems
biology-based in silico tools can help to identify im-
proved treatment strategies of Still's disease through
providing a better understanding of their molecular
mechanisms.

Currently, the therapy of Still’s disease is based on bio-
logical and non-biological therapeutic strategies. The in
silico models reproduced known clinical and molecular
findings of Still's disease treatment. These models con-
firmed that the biological drugs tested as proof-of-
concept had a more pathophysiology-directed MoA than
non-biological drugs. This may reinforce the claims for a
timely use of therapeutic approaches within treat-to-
target protocols that include interleukin-blockade as
first-line treatment, not only based on short-term re-
sponses but also because it supposes a reduction of

long-term disease-associated complications, corticoster-
oid dependence, and potential chronic arthritic courses
[7, 10, 12, 28-30]. Most importantly, the models pro-
vided feasible explanations of why IL-1p blockade may
be an optimal therapeutic strategy for early-stage Still’s
disease to prevent further disease progression.
Intriguingly, the mechanistic analysis suggests that
both biological drug strategies (IL-1 and IL6R blockade)
would be equally related to general Still’'s disease patho-
physiology, as well as the systemic and the rheumatic
component. The scientific literature contains diverging
evidence about the efficacy of each strategy (IL-1 and
IL6R blockade) with respect to the different components
of the disease (systemic/autoinflammatory and rheum-
atic/autoimmune). Some authors conclude that both
strategies would be efficient in both settings [1, 31].
However, other studies provide evidence pointing to-
wards the fact that IL-6 blockade would be more useful
for the arthritis component of the disease [12, 31, 32],
and still others suggest that the efficacy of IL-1 blockade
would be limited to the systemic features of the disease
[33-35]. The conflicting literature reports may be due to
any of the following reasons: (i) the molecular mediators
of both clinical components are closely related [36]; (ii)
the lack of understanding of the mechanisms mediating
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tocilizumab (each expression value matched with it corresponding MoA model value), b treated vs. non-treated sJIA patients with canakinumab
(each expression value matched with canakinumab MoA model values), and ¢ treated vs. non-treated sJIA patients with tocilizumab (each

each component; (iii) the true heterogeneity of the dis-
ease itself [1]; or (iv) biased information in the scientific
literature about the pathophysiology, mainly focused on
the arthritic phenotype and thus over-emphasizing this
component. The acquisition and evaluation of more data
on early Still's disease patients’, as was recently per-
formed by Gohar et al. [8], may advance understanding
of the systemic component of the disease.

The predictive and mechanistic analyses suggest that
biological drugs are effective by a combined action on
different motives. The IL-1 blockers modulate the de-
regulation of innate immunity and well-known inflam-
matory proteins specifically. In contrast, IL6R blockers
would rather act on t establishing the innate immune
system deregulation loop, related to adaptive immunity,
processes currently thought to happen in a later phase
[7]. According to our models and the results observed in
the evaluated proteins, IL-1 blockade might be more

effective in treating deregulation of the innate immune
system than IL6R blockers.

Due to the autoinflammatory nature of Still’s disease
[9], deeper analysis on how IL-1 vs. IL6R blockers may
affect the innate immune system was performed by
modeling their mechanisms of action in detail, which
were later biologically validated with expression data.
Canakinumab was chosen as representative of IL-1
blockers because both, anakinra and canakinumab,
showed similar results on the ANN analyses and canaki-
numab targets specifically the Still's disease hallmark
molecule IL-1f [4, 9], without affecting IL-1a. Similarly,
tocilizumab was used as IL6R inhibitor representative
because it is currently approved for sJIA treatment and
because the expression data of sJIA patients required for
the validation of the model are not available for sarilu-
mab. According to the information used and the model-
ing approach, the conclusions from tocilizumab might
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be extended to sarilumab. The comparison analysis be-
tween IL-1P and IL6R inhibition showed that some well-
known effector proteins were modulated at a different
level by each strategy. Through the use of sampling
methods-based models, canakinumab was predicted to
inhibit more strongly most of the proteins included in
the definition of innate response deregulation in Still’'s
disease than tocilizumab.

Canakinumab preferably modulates NF-xB, IL-8
(CXCLS8), MyD88, S100A9, and ATG5 predicted activity;
these proteins are involved in processes of general innate
immune inflammation, neutrophil recruitment and acti-
vation, and autophagy, all of them processes involved in
Still's disease pathophysiology [9, 11, 37], These signal-
ing is predicted to involve both canonical and non-
canonical IL-1 downstream molecular pathways. In con-
trast, tocilizumab, through the collateral modulation of
STAT]1, preferably modulates FCGR1 activity, which is
involved in neutrophil activation, a relevant hallmark in
Still's disease [11]. Furthermore, the IL-6 canonical
downstream signaling partner, STAT3, has been exten-
sively reported to interact with high complexity with
NF-«xB function in immune cells [38], and our models
highlight this interaction as a relevant consequence of
IL-6 blockade. These data are in line with the hypothesis
that IL-1 blockade inhibits innate immune mechanisms
more directly than IL-6 blockade. Using this ability to
control disease at early stages, when innate immunity
plays a key role [1, 4], might be a good option to prevent
later disease- or treatment-derived complications.

Focused on Still’s disease, our study confirms the abil-
ity of systems biology in silico modeling approaches to
provide mechanistic insights on the effects of current
available drugs and grants their use to predict bio-
markers of treatment response, required for tailoring
treatment for the appropriate patients. Throughout the
compilation and reinterpretation of available biological
data, this in silico approach reproduces known aspects
of the disease and the drugs and is able to generate new
hypotheses. The presented technology relies on general
human pathophysiological information, not only cen-
tered on the drugs and diseases under study. This aspect
is of vital importance for rare diseases where patient
numbers are low and detailed information on molecular
pathophysiology is scarce, since it allows performing
strategic studies including the available data without the
need of large groups of patients. Similar studies per-
formed in other clinical conditions demonstrate the po-
tential clinical-translational use of TPMS [39, 40].

Nevertheless, the in silico modeling approaches and
their biological validation are limited by the information
about diseases, drugs, and the data available in public re-
positories. In the case of Still's disease characterization,
biased information in the scientific literature towards
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molecular definition of late or mixed (systemic and
rheumatic) [8] might be shifting the results towards con-
clusions that are more based on arthritic/autoimmune
versus systemic/autoinflammatory features. Likewise, the
motive-based classification of the disease effectors in cel-
lular and molecular processes is a simplification of the
complexity that represents the immune system and its
deregulation in the pathology. Regarding drug-related
information, the expression data available was no com-
parable between the drugs due to different experimental
designs (treatment time, number of samples, response
criteria) and could not be used in the drugs’ MoA model
construction. Given the modeling methodology applied,
the fact of not including specific information on the dif-
ferent drugs allows for an unbiased evaluation of all the
drugs tested. However, we used these data and other
obtained from independent gene expression datasets,
including a total of 197 sJIA patients and 79 control
patients available in public repositories (supplemen-
tary Table S5, Additional file 2) to validate the
models’ results. This validation has two main limita-
tions: it compares different types of data (i.e., changes
in gene expression data vs predicted protein activity)
and there was lack of statistical power of expression
data from tocilizumab-treated patients due to low
number of samples. Furthermore, only sJIA (not
AOSD) expression data was available and thus used
for validation; however, as suggested by clinical [3,
33, 41, 42], epidemiological,’ and molecular data [2,
33, 41, 44, 49], we considered both pathological en-
tities as a continuum, so sJIA data can be used to
validate the Still's disease models evaluation conclu-
sions. Therefore, the models and conclusions are sus-
ceptible of being updated over time if prospective
data and new information is generated (e.g., early sJIA
patients’ datasets), making them more accurate re-
garding Still's disease pathophysiology. With the
current knowledge, we cannot define the time period
after disease onset for the optimal efficacy of IL-1p
blockade. The increasing trend of depositing data in
public repositories to be shared among the scientific
community will surely help performing more studies
and accelerating clinical investigation [50], including
the confirmation of the herein proposed hypotheses
and the determination of the exact timeframe for
canakinumab’s window of opportunity.

'From the incidence point of view, both diseases present differences
when age of onset [33, 43] or sex ratios [44—46] are taken into
consideration. Differences in age are easily justified if we consider the
infectious hypothesis [47]. In the case of sex, the hormonal influence
justifies the fact that women are more likely to be affected by AOSD
than men (70 vs. 30% in rheumatologic cohorts) [48]. Since children
do not have sexual hormonal differences, this could explain the similar
occurrence in boys and girls in sJIA.
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Conclusions

In conclusion, the application of systems biology-based
in silico modeling confirmed the use of biologics as an
appropriate immunomodulatory treatment strategy for
Still's disease and supported the benefits of early IL-1
blockade to prevent the development of disease- or
drug-related complications. Our data point towards a
more efficient role of canakinumab in the initial autoin-
flammatory/systemic phases that are dominated by in-
nate immune deregulation, which suggests that early
interventions might allow to prevent the development of
destructive (poly-)arthritis and long-term treatment-
associated complications, although the exact timeframe
of the window of opportunity for these interventions re-
mains to be determined. Furthermore, the models
propose detailed molecular mechanisms explaining the
findings. All these results are in line with current know-
ledge and hypotheses on the mechanisms of Still’s dis-
ease treatment and represent a proof-of-concept of the
applicability —of systems biology-based artificial
intelligence models in this clinical field.
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