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Abstract

Background: Ovarian cancer (OC) is a gynecological malignancy with the highest mortality rate. Cisplatin (DDP)
based chemotherapy is a standard strategy for ovarian cancer. Despite good response rates for initial
chemotherapy, almost 80% of the patients treated with DDP based chemotherapy will experience recurrence due
to drug-resistant, which will ultimately result in fatality. The aim of the present study was to examine the
pathogenesis and potential molecular markers of cisplatin-resistant OC by studying the differential expression of
mRNAs and miRNAs between cisplatin resistant OC cell lines and normal cell lines.

Methods: Two mRNA datasets (GSE58470 and GSE45553) and two miRNA sequence datasets (GSE58469 and
GSE148251) were downloaded from the Gene expression omnibus (GEO) database. Differentially expressed genes
(DEGs) and differentially expressed miRNAs (DEMs) were screened by the NetworkAnalyst. Gene Ontology (GO)
analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to analyze the
biological functions of DEGs. The protein-protein interaction network was constructed using STRING and Cytoscape
software to identify the molecular mechanisms of key signaling pathways and cellular activities. FunRich and
MiRNATip databases were used to identify the target genes of the DEMs.

Results: A total of 380 DEGs, and 5 DEMs were identified. Protein–protein interaction (PPI) network of DEGs
containing 379 nodes and 1049 edges was constructed, and 4 key modules and 24 hub genes related to cisplatin-
resistant OC were screened. Two hundred ninety-nine target genes of the 5 DEMs were found out. Subsequently,
one of these 299 target genes (UBB) belonging to the hub genes of GSE58470 and GSE45553 was identified by
MCODE and CytoHubba,which was regulated by one miRNA (mir-454).

Conclusions: One miRNA–mRNA regulatory pairs (mir-454-UBB) was established. Taken together, our study
provided evidence concerning the alteration genes involved in cisplatin-resistant OC, which will help to unravel the
mechanisms underlying drug resistant.
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Background
Ovarian cancer (OC), originated in gynecological genital
tract, is the ninth most common cancer in female with
313,959 newly diagnosed cases and 207,252 new death
in 2020 worldwide [1]. OC is more frequently diagnosed
at an advanced stage because of the lack of efficient
screening measures [2, 3]. And the advanced stages
prognosis (FIGO stage III and IV) is extremely poor with
5-year survival rates of approximately 39 and 17%, re-
spectively [4]. The standard treatment of OC involves
cytoreductive surgery and platinum-based chemother-
apy. Despite the good response rates to initial surgery
and chemotherapy, for over a decade, the median
progression-free survival rate of patients remains low at
about 18 months [5]. Indeed, almost 80% of the patients
experience recurrence as a drug resistant population in
tumors that ultimately results in fatality [6].
Cisplatin is the first generation of platinum-based drugs

that can directly interact with DNA of cancer cells to
prevent DNA synthesis and RNA transcription [7].
Numerous protein-coding genes were revealed that are
connected with ovarian cancer cisplatin resistance. For ex-
ample, PTGER3 overexpression confers to cisplatin

resistance in OC through up-regulation of Ras-MAPK/
Erk-ETS1-ELK1/CFTR1 axis [8]. CpG island promoter
hypermethylation of BRCA1, PTK6, PRKCE can enhance
sensitivity to cisplatin in OC [9, 10]. Genes with coding
ability only account for 2% of all genes in human genome,
while the rest belong to noncoding RNAs including
microRNA (miRNA), long noncoding RNA (lncRNA),
and so on [11]. MicroRNAs (miRNAs) are endogenous,
highly conserved small RNAs, 20–24 nucleotides in
length, and specifically bind to target mRNA to inhibit
post-transcriptional gene expression. MiRNA were also
reported to play an important role in cisplatin resistance.
MiR-375 overexpression can enhance the cisplatin sensi-
tivity in OC by targeting PAX2 [12]. MiR-138-5p down-
regulation promotes overexpression of EZH2 and SIRT1
in OC cell, thereby regulating the cisplatin sensitivity [13].
In the present study, bioinformatics tools were used to

analyze the cisplatin resistant OC expression profile
chips in a public gene chip database for the purpose of
identifying differentially expressed genes (DEGs),
differentially expressed miRNAs (DEMs), and of con-
structing miRNA–mRNA regulatory networks involved
in cisplatin-resistant OC.

Fig. 1 Identification of overlapping DEGs and DEMs related to cisplatin-resistant OC. a Venn diagram for the overlapping DEGs between OVCAR-8
and IGROV-1. b Volcano plots for DEGs in IGROV-1. c Volcano plots for DEGs in OVCAR-8. d Venn diagram for the overlapping DEMs between W1
and IGROV-1 cell lines. e Volcano plots for DEMs in IGROV-1. f Volcano plots for DEMs in W1
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Materials and methods
Microarray data
We screened the gene chip data by using the Gene ex-
pression omnibus (GEO, http://www.ncbi.nlm.nih.gov/
geo) database [14]. Cisplatin resistant ovarian cancer
public gene expression data sets (GSE58470 and
GSE45553) and miRNA expression data sets (GSE58469
and GSE148251) were selected and downloaded from
GEO, with the keywords “ovarian cancer” and “cisplatin

resistant” [15–17]. The GSE58470 and GSE45553 data-
sets, which are two mRNA datasets, contain 2 ovarian
cancer cell lines (IGROV-1, OVCAR-8) and 14 samples,
including 7 cisplatin resistant cell samples and 7 parental
cell samples. The miRNA GSE58469 and GSE148251
datasets, which were analyzed using MicroRNA expres-
sion beadchips, contain 2 OC cell lines (IGROV-1, W1)
and 12 samples, including 6 cisplatin resistant cell sam-
ples and 6 parental cell samples.
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Fig. 2 Functional enrichment analysis of DEGs. a GO analysis of DEGs in GSE58470 and GSE45553 datasets. b KEGG analysis of DEGs in GSE58470
and GSE45553 datasets
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Fig. 3 Degree of Top 20 genes in cisplatin resistant OC

Fig. 4 Four key modules of the protein-protein interaction network analysis
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Differentially expressed genes (DEGs) and differentially
expressed miRNAs (DEMs)
The raw data of GSE58470, GSE45553 and GSE58469,
GSE148251 were effectively processed using the Networ-
kAnalyst, an online data-analytics platform, using
correction, normalization and log2 conversion [18]. The
DEGs in cisplatin resistant OC cell lines compared with
parental cell lines were determined using limma algo-
rithm [19]. DEGs were screened with a false discovery
rate (FDR) corrected p-value< 0.05 and |log2 fold-
change (FC)| > 1. The DEMs in cisplatin resistant OC
cell lines compared with parental cell lines were also
processed by the NetworkAnalyst. The FDR corrected p-
value< 0.05 and |log2 fold-change (FC)| > 1 were used as
the screening thresholds.

Functional enrichment analysis of DEGs
DAVID (https://david.ncifcrf.gov/), a widely used web-
based genomic functional annotation tool, was used for
data annotation analysis [20]. In our study, we used the
DAVID to perform Gene Ontology (GO) analysis
including cellular component (CC), molecular function
(MF), biological process (BP), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment
analysis. A p-value that is smaller than 0.05 and enrich-
ment score above 1.5 were considered as significant
enrichment.

Construction of protein-protein interaction (PPI) networks
and module research
The PPI network of the DEGs was constructed and visu-
alized using the STRING (https://string-db.org) database
to determine the molecular mechanisms of key signaling
pathways and cellular activities in cisplatin resistant
ovarian cancer [21]. An interaction score > 0.4 was con-
sidered to identify the significant PPIs. We then used the
Cytoscape software (version 3.8.2; www. cytoscape.org)
to analyze the PPI network [22]. Relationships among
DEGs were analyzed by NetworkAnalyzer plug-in of
Cytoscape software to characterize small-world network
through calculating the network properties such as the
clustering coefficient of the network, distribution of
node degree and the shortest path [23]. Molecular Com-
plex Detection (MCODE) was used to identify key clus-
ters of genes within PPI network using the cutoff criteria
(MCODE score > 5) [24, 25] with the default parameters
(degree cutoff = 5, node score cutoff = 0.2, K-core = 2,
and Max depth = 100). Hub genes in the network were
selected using CytoHubba through connection degree
method (cutoff criteria: degree above 20). Finally, we
summarized the overlapping genes between results of
MCODE and CytoHubba to create a consensus of pre-
dictions to identify more accurate hub genes.

miRNA target prediction
MiRNATip and FunRich are two bioinformatics plat-
form and analysis tools for predicting DEMs target genes
and miRNA-gene pairs [26–28]. In the present study,
the targets of the DEMs were predicted using MiRNA-
Tip and FunRich (version 3.1.3). The Venny 2.1 online
Tool (http://bioinfogp.cnb. csic.es) was used to find
overlapping genes between DEGs and predictive targeted
genes of DEMs [29]. The miRNA-gene regulatory net-
work was depicted and visualized using Cytoscape
software.

Construction of miRNA–mRNA regulatory pairs
MiRNA–mRNA regulatory pairs related to cisplatin-
resistance in ovarian cancer were constructed according
to the miRNA targets prediction results and DEGs to
display the interaction among miRNA and mRNA. Fur-
thermore, the K-M plotter database (https://kmplot.
com/analysis/) and OncomiR database (http://www.
oncomir.org/) were used to assess the potential prognos-
tic significance of our selected mRNAs and miRNAs by
performing survival analysis [30, 31].

Table 1 24 hub genes of GSE58470 and GSE45553

Gene symbol Degree MCC Score

MX1 22 479000000

IFIT1 17 479000000

IFIT2 16 479000000

OASL 28 479000000

IFIT3 15 479000000

DDX58 25 479000000

IFIH1 24 479000000

DDX60 15 479000000

IFI44 13 479000000

IFI35 15 479000000

IFI6 13 479000000

IFI27 13 479000000

IFI16 14 479000000

PSMB8 25 403736

UBB 40 403798

PSMB9 21 403736

PSMC4 19 403475

PSMA4 19 403473

PSMD7 14 403392

PSMD10 14 403332

CDK1 34 364936

MAD2L1 25 364750

CDC25A 22 364044

TNF 68 43334
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Results
Identification of DEGs, DEMs
The data was successfully normalized to ensure the ac-
curacy. Dataset GSE58470 and GSE45553 were utilized
to identify DEGs in IGROV-1 and OVCAR-8 cell lines.
As presented in Fig. 1a, a total of 380 overlapping DEGs
were identified between IGROV-1 and OVCAR-8 cell
lines. Volcano plots were drawn to give a direct presen-
tation of all the examined genes in the data sets. The red
dots represent the significantly upregulated genes, while
the blue dots represent the significantly downregulated
genes. Volcano plots for gene expression in IGROV-1
and OVCAR-8 cell lines were presented in Fig. 1b and c.
In miRNA datasets GES58469 and GSE148251,5 over-
lapping DEMs were detected between IGROV-1 and W1
cell lines which was shown in Fig. 1d. Volcano plots for
miRNA expression in IGROV-1 and W1 cell lines are
presented in Fig. 1e and f.

Functional enrichment analysis of DEGs
GO analysis including cellular components (CC), mo-
lecular function (MF), biological process (BF), and
KEGG analysis was performed using DAVID database to
understand the functions of DEGs. The GO functional
enrichment analysis resulted in a total of 380 DEGs
mapped to 265 GO terms. With the FDR corrected p-
value< 0.05 and enrichment score > 1.5 as the cut-off
value, 17 significant enriched functional clusters were
screened (Fig. 2a). In total, 7 GO terms were signifi-
cantly enriched in cellular components including ‘extra-
cellular exosome’, ‘cytosol’, ‘cell surface’, ‘extracellular
space’, ‘cell-cell adherens junction’, ‘focal adhesion’ and

‘perinuclear region of cytoplasm’. Enrichment of 4 GO
terms, such as ‘heparin binding’, ‘GTPase activity’, ‘cad-
herin binding involved in cell-cell adhesion’ and ‘protein
homodimerization activity’, belongs to molecular func-
tions. A total of 6 biological processes were enriched,
mainly involving ‘type I interferon signaling pathway’,
‘response to estradiol’, ‘response to virus’, ‘cell migra-
tion’, ‘positive regulation of apoptotic process’ and ‘nega-
tive regulation of apoptotic process’. A total of 380
DEGs were mapped into the KEGG database using
DAVID, enrichment score > 1.5 and p-value< 0.05 were
used as an enrichment screening standard. In total, 27
enriched functional clusters of the DEGs were obtained
(Fig. 2b), such as ‘Pathways in cancer’ (20 genes), ‘PI3K-
Akt signaling pathway’ (18 genes), ‘Proteoglycans in can-
cer’ (15 genes), ‘MAPK signaling pathway’ 13 genes),
‘Regulation of actin cytoskeleton’ (13 genes).

Table 2 GO analysis of 24 hub genes

Category ID Description Count P-value

Molecular function GO:0005515 Protein binding 21 < 0.001

GO:0005524 ATP binding 6 0.039

GO:0003725 Double-stranded RNA binding 4 < 0.001

GO:0004298 Threonine-type endopeptidase activity 3 < 0.001

GO:0003727 Single-stranded RNA binding 3 0.001

Cellular component GO:0005829 Cytosol 19 < 0.001

GO:0005737 Cytoplasm 17 < 0.001

GO:0005634 Nucleus 14 0.007

GO:0005654 Nucleoplasm 10 0.005

GO:0000502 Proteasome complex 6 < 0.001

Biological process GO:0009615 Response to virus 10 < 0.001

GO:0060337 Type I interferon signaling pathway 9 < 0.001

GO:0051436 Negative regulation of ubiquitin-protein ligase
activity involved in mitotic cell cycle

9 < 0.001

GO:0051437 Positive regulation of ubiquitin-protein ligase activity
involved in regulation of mitotic cell cycle transition

9 < 0.001

GO:0031145 Anaphase-promoting complex-dependent catabolic process 9 < 0.001

Table 3 KEGG analysis of the 24 hub genes

Term Description Count P-value

hsa03050 Proteasome 5 < 0.001

hsa05168 Herpes simplex infection 5 < 0.001

hsa05164 Influenza A 4 0.004

hsa04622 RIG-I-like receptor signaling pathway 3 0.007

hsa04914 Progesterone-mediated oocyte maturation 3 0.011

hsa05169 Epstein-Barr virus infection 3 0.021

hsa04110 Cell cycle 3 0.022

hsa05162 Measles 3 0.025

hsa05160 Hepatitis C 3 0.025

hsa05161 Hepatitis B 3 0.029
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Establishment of PPI network and identification of hub gene
The PPI network of 380 DEGs was constructed and vi-
sualized using STRING database. The isolated nodes
and partially loosely connected gene nodes were re-
moved, and the remaining DEGs together constituted a
complex multi-center interaction network map, which
contained 379 nodes and 1049 edges. The average node
degree was 5.54 and the average local clustering coeffi-
cient was 0.394. Among the 379 nodes, top 20 DEGs
with the highest degree of nodes were screened based on
the Cytoscape software analysis results (Fig. 3). The re-
sults of the top 10 DEGs were as follows: TNF, CXCL8,
CD44, UBB, CDK1, ITGB3, RAC1, RELA, OASL, VCL.
The key clusters of genes were obtained using MCODE,
with 9 key modules and a false degree cutoff = 5. Four
significant key modules including 40 key genes with the
MCODE score > 5 were identified (Fig. 4). Subsequently,
the CytoHubba was used to find the hub genes in the
PPI network of the DEGs. In total, 25 hub genes were
identified. At last, we summarized the overlapping genes
between the MCODE and CytoHubba results (Table 1).
Twenty-four hub genes belonging to the GSE58470 and
GSE45553 were identified. Furthermore, the functional
and pathway enrichment of these genes was also analyzed
using DAVID online tools shown in Tables 2 and 3. The
24 significantly upregulated or downregulated hub genes
were also presented in heatmaps (Fig. 5a,b).

miRNA-gene regulatory network
The FunRich (http://www.funrich.org) online tool
searched and predicted 611 target genes of the 5 DEMs

and the MiRNATip predicted 1534 target genes of 5
DEMs. And then, there were 299 overlapping genes
between the predicted targeted genes of FunRich and
MiRNATip. As presented in Fig. 6, the 299 overlapping
genes were regulated by 3 DEMs (mir-146a, mir-708,
mir-454), but 2 DEMs (mir-675, mir-1250) have no
targeted genes. In addition, the target gene UBB among
the 299 overlapping genes also belonged to the 24 hub
genes of GSE58470 and GSE45553 and was regulated by
mir-454 (Fig. 7a). The expression of the UBB was low
and the expression of the mir-454 was high in cisplatin
resistant cell lines (Fig. 7b,c). Furthermore, to validate
the predicting results of our present study, we have
performed the survival analysis by using K-M plotter
database and OncomiR database. The results of Kaplan-
Meier survival analysis illustrated that lower UBB ex-
pression predicted poor progression-free-survival and
overall survival both in ovarian cancers (Fig. 8a,b) and
cisplatin treated ovarian cancers (Fig. 8c,d), respectively.
The Kaplan-Meier survival analysis of mir-454 revealed
that high expression of the mir-454 predicted poor
prognosis in ovarian cancer (Fig. 8e). On the basis of
these results, the miRNA–mRNA regulatory pair was
established, indicating the importance of this
miRNA-mRNA pair in cisplatin-resistant ovarian
cancer.

Discussion
Ovarian cancer is a lethal malignant cancer with differ-
ent histopathological and biological characteristics, and
a < 40% overall remission rate at all stages [32]. Over the
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past a few decades, systematic chemotherapy has
brought plenty of benefits to patients with OC [33].
Cisplatin-based chemotherapy is the most commonly
used treatment regimen; however, acquisition of cis-
platin resistance is a major clinical obstacle to treatment
of OC [34]. Thence, there is a compulsive need to iden-
tify more effective biomarkers to overcome cisplatin re-
sistance and improve the prognosis of OC. Noncoding
RNAs are reported to have vital roles in regulating hu-
man cell behaviors [35, 36]. MicroRNAs (miRNA) are a
kind of noncoding RNAs, which are composed of 22–25

nucleotides and bind with the 3′-untranslated region of
targeted mRNAs to regulate mRNA expression [37].
miRNAs have been regarded as essential regulators of
chemoresistance of many cancers to common chemo-
therapy agents [38, 39], including cisplatin-based chemo-
therapy [40, 41].
In our study, 380 DEGs were screened from the

GSE58470 and GSE45553 datasets and processed using
bioinformatics methods. The results of the KEGG and
GO enrichment analysis of the DEGs revealed that the
identified genes were enriched in various signaling

Fig. 6 PPI network of 299 target genes, which were regulated by 3 miRNAs
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pathways, such as ‘Pathway in cancer’, ‘Proteoglycans in
cancer’, ‘RIG-I-like receptor signaling pathway’, ‘Hippo
signaling pathway’. RIG-I-like receptors, a member of
cytosolic pattern-recognition receptors (PRRs), can dis-
tinguish pathogen-associated molecular patterns and ac-
tivate antiviral immune responses [42]. The RIG-I-like
receptor signaling pathway induce the expression of
large numbers of IFN-β and IFN-α proteins [43]. A re-
cent research has illustrated that the downregulation of
RIG-I expression was correlated with poorer prognosis
and weakened response to IFNα therapy in hepatocellu-
lar carcinoma (HCC) patients [44]. The KEGG analysis
results of our study revealed that the aberrant activation

of the RIG-I like receptor signaling pathway may be re-
lated with the cisplatin resistance in the OC patients,
which needed to be further validated. Hippo signaling
pathway is one of the eight major signaling pathways
commonly altered in human cancers [45]. Dysfunction
of Hippo signaling pathway has been implicated in an
increasing number of human cancers [46]. For example,
miR372 and miR373 mediated silencing of LATS2 ex-
pression, a Hippo pathway tumor suppressor, is related
with testicular germ cell tumors [47]. MiR-149-5p can
aggravate chemoresistance in ovarian cancer cells by dir-
ectly targets the core kinase components of the Hippo
signaling pathway [48].
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In the present study, 5 overlapping DEMs (mir-146a,
mir-708, mir-454, mir-675, mir-1250) were identified
from the GSE58469 and GSE148251 datasets. Subse-
quently, we predicted the target genes of these 5 DEMs
by using the FunRich and MiRNATip analysis tools and
got 299 different target genes regulated by 3 DEMs
(mir-146a, mir-708, mir-454). Among these 299 target
genes, UBB also belongs to the 24 hub genes of
GSE58470 and GSE45553 which is regulated by mir-454.
Stefanie et al. has demonstrated that mir-454 can regu-
late UBB expression in kidney tissue and HEK293 cell
lines [49]. But, the role of mir-454-UBB regulatory pair
has not been revealed in cisplatin treated ovarian cancer
before. So, we perform our bioinformatics analysis and
the results of our present study indicate that the mir-
454-UBB regulatory pair is associated with cisplatin re-
sistance in OC. To validate the results of our study, the
survival analysis was performed and illustrated that UBB
and mir-454 expressions are associated with the progno-
sis of ovarian cancer. The K-M survival plots proven that
low expression of UBB and high expression of mir-454
may not only predict poor prognosis of OC (Fig. 8a,b,e)
but also poor prognosis of cisplatin treated OC (Fig. 8c,
d), which indicated that mir-454 and UBB regulatory
pair may be correlated with cisplatin resistance in OC.
MiR-454 has been reported to be implicated in the

progression of many types of cancer and play import-
ant roles in chemotherapeutic drug resistance. Several
studies show that miR-454 functions as an oncogene
in colorectal cancer [50], hepatocellular carcinoma
[51], non-small cell lung cancer [52] and induce the
oxaliplatin resistance in gastric carcinoma cells by tar-
geting CYLD [53]. UBB also known as ubiquitin B is
highly expressed in all eukaryotic cells and can mark
some target proteins for ubiquitin-proteasome system
degradation. Previous studies emphasize UBB and
UBB dependent ubiquitin-proteasomal protein degrad-
ation are essential in histone deacetylase inhibitor-
induced tumor selectivity. Tian et al. studied the role
of UBB expression in cervical cancer and demonstrated
that UBB can maintain cancer stem-like characteristics
[54]. The results of our current study showed that miR-
454 -UBB regulatory pair was significant in cisplatin
resistance OC cell lines. This study may advance the un-
derstanding of the mechanism of cisplatin resistance in
ovarian cancer and suggest that miR-454 and UBB may be
two novel biomarker and therapeutic targets for ovarian
cancer patients.
There are some limitations in our study. First, the

regulatory network we constructed using bioinformatic
methods was not validated by experimental work. In our
future work, we will validate these findings using experi-
ment manners on cell lines and human tissues. Second,
all the data analyzed in our study was retrieved from one

online database, which might result in some biases. So,
further studies consist of larger sample sizes are needed
to validate our findings.

Conclusions
Our study analyzed gene and miRNA expression be-
tween cisplatin resistant OC cell lines and parental OC
cell lines using mRNA data and non-coding RNA data
from the GEO database, and identified aberrant expres-
sion of mRNAs and miRNAs in cisplatin resistant OC
cell lines. Based on these analysis results, we found that
mir-454-UBB regulatory pair is significant in cisplatin
resistance ovarian cancer cell lines. These finds will no
doubt help us to understand the mechanisms under the
skin of ovarian cancer cisplatin-resistance.
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