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Abstract

Maternal nutrition and physiology are intimately associated with reproductive success in diverse 

organisms. Despite decades of study, the molecular mechanisms linking maternal diet to the 

production and quality of oocytes remain poorly defined. Nuclear receptors (NRs) link nutritional 

signals to cellular responses and are essential for oocyte development. The fruit fly, Drosophila 
melanogaster, is an excellent genetically tractable model to study the relationship between NR 

signaling and oocyte production. In this review, we explore how NRs in Drosophila regulate the 

earliest stages of oocyte development. Long-recognized as an essential mediator of developmental 

transitions, we focus on the intrinsic roles of the Ecdysone Receptor and its ligand, ecdysone, in 

oogenesis. We also review recent studies suggesting broader roles for NRs as regulators of 

maternal physiology and their impact specifically on oocyte production. We propose that NRs 

form the molecular basis of a broad physiological surveillance network linking maternal diet with 

oocyte production. Given the functional conservation between Drosophila and humans, continued 

experimental investigation into the molecular mechanisms by which NRs promote oogenesis will 

likely aid our understanding of human fertility.

1. Drosophila as a model for maternal physiological control of oogenesis

Obesity, metabolic disorders, and diabetes disrupt the body’s natural steroid hormone 

milieu, negatively impacting human health. An important, but often overlooked co-morbidity 

of metabolic disorders in women is poor reproductive outcome (Gu et al., 2015; Roa & 

Tena-Sempere, 2014). The quality of preconception maternal diets is tightly correlated with 

reproductive success (Gaskins & Chavarro, 2018; Hohos & Skaznik-Wikiel, 2017; Luzzo et 

al., 2012). Maternal obesity is associated with poor oocyte quality, which manifests as 

increased time to pregnancy, early pregnancy loss, and congenital abnormalities in offspring 

(Purcell & Moley, 2011; Talmor & Dunphy, 2015). Despite the prevalence of metabolic 

disorders in the United States, and the clear public health relevance (Panth, Gavarkovs, 

Tamez, & Mattei, 2018), the molecular mechanisms connecting oocyte quality and 

production to nutritionally regulated endocrine signals are poorly understood.

Among the many cell-cell communication pathways used by ovarian cells to promote oocyte 

development, steroid hormones are essential for maintenance of fertility, including follicle 

assembly, oocyte maturation, and oocyte survival (Grive & Freiman, 2015). Hormones 
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circulating through the blood or hemolymph of an organism create local and long-distance 

signaling networks by binding to nuclear receptors in target cells, affecting transcriptional 

change (Weikum, Liu, & Ortlund, 2018). Steroid synthesis is a complex molecular process 

requiring coordinated activity of multiple substrates and enzymes in gonads and other 

endocrine tissues (Dallel et al., 2018). Tight spatial and temporal control of steroid synthesis 

and steroid reception by cognate nuclear receptors must be achieved to facilitate successful 

oocyte production and fertilization. As such, many female reproductive disorders (such as 

polycystic ovarian syndrome, endometriosis, and early pregnancy loss) are associated with 

aberrations in steroid hormone levels or exposure to endocrine disrupting chemicals 

(Pivonello et al., 2020; Zhang, Wesevich, Chen, Zhang, & Kallen, 2020).

Given the complexity of hormone signaling pathways in mammals, the fruit fly, Drosophila 
melanogaster, has emerged as an excellent genetically tractable model to study the 

relationship between maternal nutrition and oocyte production. Female fruit flies contain 

two ovaries made of about 15 ovarioles, each consisting of oocytes in increasing stages of 

development arranged linearly from anterior to posterior (Fig. 1A and D) (Hinnant, Merkle, 

& Ables, 2020). The morphology of the ovary enables young female flies to lay 80–90 eggs 

per day (Drummond-Barbosa & Spradling, 2001). The progressive arrangement of oogenesis 

also allows researchers to visualize the complete development of oocytes, from their 

establishment as daughters of a germline stem cell population through ovulation. Female 

fruit flies are exceptionally sensitive to diet conditions and can be reared on specialized 

media to manipulate the levels of available nutrients. Moreover, Drosophila oogenesis can be 

monitored on a per-cell basis in vivo using confocal microscopy (Fig. 1A and B) and germ 

cells can be easily manipulated via a widely available sophisticated genetic toolkit. The ease 

with which Drosophila are reared and their remarkable similarity to human physiology and 

genetics make fruit flies an incredibly powerful model organism for research.

2. Nuclear receptors as molecular surveyors of physiology

Nuclear receptors (NRs) directly link dietary and hormonal signals to transcriptional 

responses in target cells and serve as key regulators of development, metabolism, and 

reproduction (Ables & Drummond-Barbosa, 2017; Bodofsky, Koitz, & Wightman, 2017; 

Crowder, Seacrist, & Blind, 2017; Dallel et al., 2018; Evans & Mangelsdorf, 2014; King-

Jones & Thummel, 2005; Mirth, Nogueira Alves, & Piper, 2019; Pardee, Necakov, & 

Krause, 2011; Weikum et al., 2018). The nuclear receptor superfamily is one of the largest 

families of transcription factors, divided into seven subfamilies (NR0-NR6) based on 

domain conservation across species, including steroid receptors, thyroid hormone receptors, 

retinoid acid receptors, and retinoid X receptors (Bodofsky et al., 2017; Evans & 

Mangelsdorf, 2014; King-Jones & Thummel, 2005; Pardee et al., 2011). NRs primarily 

function as ligand-gated transcription factors. A conserved zinc-finger DNA-binding domain 

allows NRs to bind specific sequences in the promoter regions of target genes and activate or 

repress transcription. Small lipophilic ligands, processed from dietary lipids such as 

cholesterol and fatty acids, bind to a more sequence-diverse C-terminal ligand binding and 

dimerization domain in the receptor, promoting conformational change when ligand is 

bound (Bodofsky et al., 2017; Weikum et al., 2018). The ability to directly link 

transcriptional change with ligands whose concentrations vary with physiology allows 
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organisms to adapt to a wide variety of environmental conditions and stressors. NRs 

frequently partner with other NRs in heterodimer configurations, and their activity can be 

modified by the binding of additional co-factors to increase repressor or activator function. 

Not all NRs, however, have known natural ligands, and at least some can affect transcription 

in the absence of ligand. Though mammals exhibit exceptional diversity in NRs (encoded by 

48 genes in humans), the Drosophila genome encodes 18 NR family members, representing 

each of the known mammalian subfamilies. Unlike humans, the Drosophila genome is 

largely free from duplications, making functional assignments to particular genes easier than 

in most vertebrate model organisms. Early experimental studies in Drosophila took 

advantage of the distinct hormonally controlled developmental transitions in the insect life 

cycle, resulting in a wealth of molecular information about steroid hormones and their 

physiologically relevant NRs and transcriptional responses.

3. Ecdysone signaling as a model for cell-cell communication via nuclear 

receptors

Perhaps the best characterized hormones in insects are the ecdysteroids, a group of 

polyhydroxylated steroids essential for development, growth, behavior, and reproduction. 

Drosophila synthesize the predominant hormone, ecdysone, from diet derived cholesterol 

and other plant sterols (Fig. 1C) (Gilbert, 2004; Gilbert & Warren, 2005; Igarashi, Ogihara, 

Iga, & Kataoka, 2018; Miller, 2008; Truman, 2019). Loss of the ability to convert 

cholesterol, such as in flies harboring genetic mutations in the without children (woc) locus, 

is lethal but can be rescued with the addition of the cholesterol derivative 7-

dehydrocholesterol (Wismar et al., 2000; Warren, Wismar, Subrahmanyam, & Gilbert, 

2001). In larvae, ecdysone is synthesized when the neuropeptide prothoracicotropic hormone 

signals to a specialized organ in the brain, known as the prothoracic gland (McBrayer et al., 

2007; Rewitz, Yamanaka, Gilbert, & O’Connor, 2009). Ecdysone is secreted into the 

hemolymph, where it is converted into its active form, 20-hydroxyecdysone (20E), which is 

functionally and structurally analogous to mammalian hormones estrogen, progesterone, and 

thyroid hormone (Fig. 1C) (Gilbert, Rybczynski, & Warren, 2002; Hoffmeister, 

Grützmacher, & Dünnebeil, 1967; Mangelsdorf et al., 1995; Petryk et al., 2003; Uryu, 

Ameku, & Niwa, 2015). Although the prothoracic glands degenerate after metamorphosis, 

ecdysone is prevalent in adults, albeit at lower titer than in larval stages (Dai, Henrich, & 

Gilbert, 1991; Richards, 1981; Schwartz, Kelly, Imberski, & Rubenstein, 1985). In adults, 

ecdysone can be detected in all three body segments and in specific tissues, including the 

gut, malphigian tubules, testes, and ovaries (Bownes, 1982; Handler, 1982; Schwartz et al., 

1985).

3.1 Ecdysone promotes developmental transitions and adult reproductive physiology

Ecdysone was initially identified as a regulator of molting and metamorphosis in arthropods. 

Pulses of ecdysone precede developmental transitions between life stages and promote 

critical physiological changes, including germ band retraction and head involution during 

the first larval instar, larval cuticle development, and programmed cell death and cell 

remodeling in imaginal discs during metamorphosis (Andres, Fletcher, Karim, & Thummel, 

1993; Apple & Fristrom, 1991; Braquart, Bouhin, Quennedey, & Delachambre, 1996; 
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Charles, 2010; Jiang, Baehrecke, & Thummel, 1997; Karlson, 2003; Kozlova & Thummel, 

2003; Li & Bender, 2000; Robertson, 1936; Warren et al., 2006). Embryos lacking ecdysone 

biosynthetic enzymes proceed through embryogenesis due to the availability of maternally 

deposited transcripts, but fail to make a larval cuticle, yielding a unique ghost-like 

phenotype (Chavez et al., 2000; Niwa & Niwa, 2014; Uryu et al., 2015). Identification of 

mutants in large-scale screens sharing this phenotype provided reagents necessary to identify 

ecdysone biosynthetic enzymes, which were collectively referred to as the “Halloween 

Genes” (Gilbert, 2004; Niwa & Niwa, 2014).

While the ovary appears to be a major source of ecdysone synthesis in adult females, 

ecdysone levels in female Drosophila are highly dependent on physiological status. Genetic 

mutant strains that lack ovaries have reduced ecdysone titer in their hemolymph, suggesting 

that the ovary contributes to the overall ecdysone levels in females (Bainbridge & Bownes, 

1988; Tu, Yin, & Tatar, 2002). Ecdysone biosynthesis enzymes, including those encoded by 

defective in the avoidance of repellents (dare) and the Halloween genes, are highly 

expressed in ovarian follicles, suggesting that the ovary is a source of ecdysone in adult 

Drosophila (Freeman, Dobritsa, Gaines, Segraves, & Carlson, 1999; Niwa et al., 2004; Ono 

et al., 2006; Warren et al., 2004). Ecdysone titer increases in females post-mating in 

response to the male Sex Peptide protein, transferred via seminal fluid during mating, 

resulting in higher levels of ecdysone in female than in males (Ameku & Niwa, 2016; 

Ameku, Yoshinari, Fukuda, & Niwa, 2017; Avila, Sirot, LaFlamme, Rubinstein, & Wolfner, 

2011; Carmel, Tram, & Heifetz, 2016; Feng, Palfreyman, Hasemeyer, Talsma, & Dickson, 

2014; Hasemeyer, Yapici, Heberlein, & Dickson, 2009; Sieber & Spradling, 2015). 

Additionally, because ecdysone is synthesized from dietary cholesterol, the nutritional status 

of the fly greatly impacts ecdysone titer. Ecdysone titer increases 24–48h after eclosion in 

well-fed flies, and adult females starved after eclosion fail to accumulate significant levels of 

ecdysone (Handler, 1982; Terashima, Takaki, Sakurai, & Bownes, 2005). Interestingly, 

phenotypes seen in ecdysone biosynthesis mutants do not always mimic the phenotypes seen 

in nutrient deprived flies, suggesting that loss of adequate nutrition does not completely 

abolish ecdysone titer, but instead significantly lowers it (Carvalho-Santos & Ribeiro, 2018; 

Terashima et al., 2005).

3.2 Ecdysone exerts cellular effects via conserved nuclear receptors EcR and Usp

Ecdysone functions as a transcriptional regulator by binding to a heterodimeric receptor 

complex (Fig. 1C) (Billas & Moras, 2005; Thomas, Stunnenberg, & Stewart, 1993; Yao et 

al., 1993). In Drosophila, the receptor complex is encoded by two nuclear receptors: 

Ecdysone Receptor (EcR), an ortholog of mammalian farnesoid X and liver X receptors; and 

ultraspiracle (usp), an ortholog of mammalian retinoid X receptors (Henrich et al., 1994; 

King-Jones & Thummel, 2005; Koelle et al., 1991; Oro, McKeown, & Evans, 1990; Yao et 

al., 1993). Without Usp, EcR can neither bind ecdysone nor its target DNA sequences (Hill, 

Billas, Bonneton, Graham, & Lawrence, 2013; Yao et al., 1993). Upon forming a 

heterodimer, the EcR/Usp complex (henceforth referred to as EcR) regulates transcription of 

target genes via ecdysone response elements (EcREs). In the absence of ecdysone, EcR 

represses transcription and is bound by co-repressors, including Alien (a COP9 signalosome 

subunit) and SMRT-related and Ecdysone Receptor Interacting Protein (SMRTER) (Dressel 
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et al., 1999; Heck et al., 2012; Huang, Lu, Wu, Chien, & Pi, 2014; Schubiger & Truman, 

2000). In the presence of ecdysone, cells actively transport ecdysone into the cytoplasm via 

a membrane-resident transporter belonging to the solute carrier organic anion superfamily 

(Okamoto et al., 2018). Binding of ecdysone to EcR promotes a conformational change in 

EcR in which the ligand binding region is internalized into the three-dimensional structure 

of the protein (Billas et al., 2003; Hu, Cherbas, & Cherbas, 2003; Schubiger, Carré, 

Antoniewski, & Truman, 2005). Exposure of a new protein surface allows for release of co-

repressor proteins and recruitment of transcriptional co-activators, such as the highly 

conserved Taiman (Tai) and Absent, small, or homeotic discs 2 (Ash2) (Bai, Uehara, & 

Montell, 2000; Carbonell, Mazo, Serras, & Corominas, 2013; Zhang et al., 2015). 

Coordinated activity of EcR with nucleosome remodeling complexes, including Putzig, 

ISWI/NURF, and Kismet, further constrains transcriptional activity at target genes by 

regulating chromatin accessibility (Badenhorst et al., 2005; Kreher et al., 2017; Kugler, 

Gehring, Wallkamm, Kruger, & Nagel, 2011; Latcheva, Viveiros, & Marenda, 2019; 

Uyehara et al., 2017).

Signaling via EcR is required to regulate gene expression in a wide variety of tissues in a 

spatiotemporally specific manner (Beckstead, Lam, & Thummel, 2005; Gauhar et al., 2009; 

Gonsalves, Neal, Kehoe, & Westwood, 2011; Li & White, 2003; Shlyueva et al., 2014; 

Stoiber, Celniker, Cherbas, Brown, & Cherbas, 2016; Uyehara & McKay, 2019). The range 

of EcR-dependent cellular activities is due, at least in part, to the expression of multiple 

protein isoforms. The EcR locus contains the prototypical genetic structure of the NR 

superfamily, including conserved ligand-binding and zinc-finger-like DNA-binding domains 

(Koelle et al., 1991). Although there are seven putative transcripts of EcR, there are only 

three functional protein isoforms, denoted as EcR-A, EcR-B1, and EcR-B2 (Talbot, Swyryd, 

& Hogness, 1993). Alternative promoter usage results in unique spatiotemporal expression 

of the three isoforms. Despite the conservation in DNA-binding domains, the EcR isoforms 

do not appear to be functionally redundant. Each isoform can bind a specific nucleotide 

sequence, and carefully controlled rescue and mis-expression experiments demonstrated 

tissue-specificity among the three protein isoforms (Cherbas, Hu, Zhimulev, Belyaeva, & 

Cherbas, 2003; Davis, Carney, Robertson, & Bender, 2005; Schauer, Callender, Henrich, & 

Spindler-Barth, 2011; Schubiger, Tomita, Sung, Robinow, & Truman, 2003). In vivo, EcR-A 

appears to function predominantly as a strong repressor, while both B class isoforms are 

strong activators (Braun, Azoitei, & Spindler-Barth, 2009; Dobens, Rudolph, & Berger, 

1991; Hu et al., 2003). Unique N-termini of the isoforms also permit differential binding by 

co-activators and co-repressors to the EcR/Usp complex.

Spatiotemporal specificity of the ecdysone response is also mediated through the 

transcriptional targets of EcR and Usp. Many of these loci were initially identified more than 

45 years ago based on the unique transcriptionally regulated “puffing” of larval salivary 

polytene chromosomes in response to ecdysone (Ashburner, Chihara, Meltzer, & Richards, 

1974; Hill et al., 2013). Initial experiments, followed by more recent whole-genome 

attempts to catalog the transcriptional response to ecdysone, support a hierarchical model of 

ecdysone signaling, wherein EcR activation promotes the rapid expression of a small 

number of targets (Ashburner et al., 1974; Beckstead et al., 2005; Gauhar et al., 2009; 

Gonsalves et al., 2011; Hill et al., 2013; Li & White, 2003; Shlyueva et al., 2014; Stoiber et 
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al., 2016; Uyehara & McKay, 2019). These so-called early-response genes, including a core 

group of genes such as Ecdysone-induced protein 74EF (E74), Ecdysone-induced protein 
75B (E75), and broad (br), encode transcription factors. These activate a tissue-specific 

response to ecdysone by regulating a second set of targets (late-response genes). Although 

EcR and Usp mediate the majority of ecdysone-dependent transcriptional responses, at least 

six other NR genes are themselves ecdysone-responsive: Hormone receptor 3 (Hr3, also 

called Hr46), Hormone receptor 4 (Hr4), Hormone receptor-like in 39 (Hr39), E75, 

Ecdysone-induced protein 78C (E78), and ftz transcription factor 1 (ftz-f1) (King-Jones & 

Thummel, 2005). Intriguingly, while expression of most of these genes is induced by 

ecdysone, expression of ftz-f1 is repressed by ecdysone, likely in a feedback loop with 

ecdysone biosynthesis genes (Parvy et al., 2005; Woodard, Baehrecke, & Thummel, 1994; 

Yamada et al., 2000). Moreover, some NRs exhibit their own unique ligand activation and 

can promote cross-regulation between receptors. For example, Ftz-f1 can promote 

transcriptional activation in the absence of a ligand, but requires Hr3 for full activation 

(Lam, Jiang, & Thummel, 1997; Lu, Anderson, Zhang, Feng, & Pick, 2013; Musille, Pathak, 

Lauer, Griffin, & Ortlund, 2013; Yoo et al., 2011). Similarly, while E75 is a classic early 

response factor, it can also be regulated by small molecules such as nitric oxide (Cáceres et 

al., 2011; Marvin et al., 2009; Reinking et al., 2005). NRs are dynamically expressed in 

Drosophila tissues and are regulated by a complex web of interactions, placing them in a 

unique mechanistic position to fine-tune reproduction with metabolic and environmental 

cues (Fig. 1D) (Palanker et al., 2006; Wilk, Hu, & Krause, 2013).

4. Drosophila oogenesis is fueled by stem cells

The development of a viable oocyte requires a coordinated network of somatic and germ 

cells functioning in unison to support oocyte differentiation, meiotic maturation, and the 

deposition of maternal mRNA, proteins, and nutrients necessary to sustain embryogenesis 

post-fertilization. In Drosophila, oogenesis begins in the most anterior region of the ovariole, 

called the germarium (McLaughlin & Bratu, 2015) (Fig. 1B and D). Here, two stem cell 

populations divide continuously in adult flies to form the cellular precursors of the germline 

and somatic cells that will ultimately comprise the oocyte. Germline stem cells (GSCs) are 

housed at the anterior of the germarium and divide asymmetrically to self-renew and 

produce a differentiating daughter cell called a cystoblast (Hinnant et al., 2020). Following 

four rounds of mitotic division with incomplete cytokinesis, the cystoblast ultimately 

differentiates into a 16-cell cyst, wherein one cell becomes the oocyte and the other 15 cells 

adopt a nurse cell fate. Follicle stem cells (FSCs) reside in the middle of the germarium and 

produce pre-follicle cells that encapsulate the developing germ cells (Rust & Nystul, 2020). 

Pre-follicle cells further differentiate into specialized follicle cell populations outside of the 

germarium, ultimately forming the eggshell, chorion, and associated structures. The 

differentiated cell daughters of both stem cell populations are essential to form an oocyte 

that is ready for fertilization, as loss or malfunction of GSCs or FSCs leads to loss of fertility 

(Lin & Spradling, 1993; Margolis & Spradling, 1995).

While nascent egg chambers are formed in the germarium, oocyte development continues 

through 14 distinct stages in the vitellarium (Fig. 1A and D) (McLaughlin & Bratu, 2015). 

Egg chambers bud from the germarium connected by specialized follicle cells called stalk 
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cells. In stages 2–7, egg chambers undergo rapid growth, in part due to developmentally 

programmed nurse cell endocycling which increases nurse cell DNA content. Follicle cells 

complete four to five rounds of mitotic divisions to cover the growing germline cyst in an 

epithelial monolayer, differentiate into a variety of specialized cell types, and switch to 

endocycling at stage 5 (Duhart, Parsons, & Raftery, 2017). Movement of the follicle cells 

and subtle rotation of the egg chamber promote elongation (Cetera & Horne-Badovinac, 

2015). Stage 8 follicles undergo vitellogenesis, as yolk proteins produced by the fat body 

and ovarian tissues are loaded into the oocyte (Brennan, Weiner, Goralski, & Mahowald, 

1982). Beginning at stage 9, a group of 6–10 follicle cells, called border cells, delaminate 

from the follicle cell epithelium and migrate between the nurse cells to form the oocyte 

anterior margin (Peercy & Starz-Gaiano, 2020). At stage 11, concomitant with continued 

oocyte growth, nurse cells undergo apoptosis and dump their cytoplasmic contents into the 

oocyte (Quinlan, 2016). During the final stages of egg chamber development, the follicle 

cells secrete chorion and other proteins necessary to form different layers of the eggshell, 

helping to protect the oocyte once it is deposited (Osterfield, Berg, & Shvartsman, 2017). At 

stage 14, the egg chamber is fully developed and ready to be fertilized and deposited 

(Mahowald & Kambysellis, 1980).

Ovarian stem cells and their differentiating daughters rely on paracrine and endocrine 

signaling for their development (Ables, Laws, & Drummond-Barbosa, 2012; Armstrong, 

2020; Drummond-Barbosa, 2019; Laws & Drummond-Barbosa, 2017). This is perhaps best 

illustrated by the complex signaling network that guides GSC self-renewal and cystoblast 

differentiation. GSCs reside in a stem cell niche, composed of adjacent cap cells and escort 

cells, that provides short range signals required to balance GSC self-renewal vs 

differentiation (Figs. 1B and 2) (Drummond-Barbosa, 2019; Kahney, Snedeker, & Chen, 

2019). GSCs are physically anchored to the cap cells and secrete Bone Morphogenetic 

Protein (BMP) ligands that regulate GSC self-renewal (Fig. 2) (Song, Zhu, Doan, & Xie, 

2002; Wilcockson & Ashe, 2019; Xie & Spradling, 1998). To maintain the undifferentiated 

fate, GSCs express RNA-binding proteins that promote self-renewal by repressing 

transcription of the differentiation factor Bag of Marbles (Bam) (D. Chen & McKearin, 

2003; Forbes & Lehmann, 1998; Jin et al., 2008; Song et al., 2004; Szakmary, Cox, Wang, & 

Lin, 2005; Wang & Lin, 2004). Germ cell differentiation and cyst division are thus initiated 

by the derepression of bam transcription. Bam appears to promote differentiation by limiting 

the production of self-renewal and adhesion factors, and stabilizing CycA expression (Chen, 

Wang, et al., 2009; Ji et al., 2017; Li, Minor, Park, McKearin, & Maines, 2009; Liu et al., 

2017; Perinthottathil & Kim, 2011; Shen, Weng, Yu, & Xie, 2009; Tiwari, Zeitler, Meister, 

& Wodarz, 2019). Somatic escort cells surrounding the dividing cysts form a second 

signaling center that promotes germ cell differentiation, posterior movement of the cysts, 

and follicle cell encapsulation (Banisch, Maimon, Dadosh, & Gilboa, 2017; Decotto & 

Spradling, 2005; Kirilly, Wang, & Xie, 2011; Morris & Spradling, 2011). Escort cells line 

the outside of the anterior germarium (regions 1–2) and send long, thin cellular protrusions 

into the center of the germarium, around the dividing germ cells (Fig. 1B and D) (Banisch et 

al., 2017; Kirilly et al., 2011; Morris & Spradling, 2011). Escort cells secrete a variety of 

signaling molecules that promote germ cell differentiation. These signals act to sustain the 
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cytoskeletal structure and dynamics of escort cell protrusions and limit the range of BMP 

signals emanating from cap cells (Antel & Inaba, 2020; Gao et al., 2019).

5. Multifaceted roles of NR signaling in oogenesis

Like its mammalian nuclear receptor counterparts, signaling through EcR provides a crucial 

link between maternal diet and oogenesis (Ables et al., 2012; Chen, Breen, & Pepling, 2009; 

Dallel et al., 2018; Drummond et al., 2002; Griswold & Hogarth, 2018; Gu et al., 2015; 

Martinot et al., 2017; Pepling, 2012). Females produce ecdysone in response to mating and 

dietary cues, and the ovary is the predominant source of systemic ecdysone in adults 

(Ahmed et al., 2020; Ameku & Niwa, 2016; Ameku et al., 2017; Harshman, Loeb, & 

Johnson, 1999; Mirth et al., 2019; Sieber & Spradling, 2015). In the absence of ecdysone or 

EcR, oogenesis arrests at four critical developmental processes: germline stem cell (GSC) 

function, germ cell proliferation, follicle survival, and yolk uptake (Fig. 1D). Here, we 

highlight the lines of evidence suggesting that Drosophila oogenesis is regulated not only by 

ecdysone signaling, but by a larger network of nutritionally regulated NRs working in both 

ovarian cells and in peripheral tissues to stimulate oocyte production in response to nutrient 

availability.

5.1 GSC maintenance and proliferation are both directly and indirectly controlled by EcR 
signaling

Prior to adulthood, nutritional input guides ovary development and germline stem cell 

establishment. During early larval development, EcR and Usp repress the differentiation of 

primordial germ cells and somatic gonadal precursor cells, permitting their proliferation 

(Gancz, Lengil, & Gilboa, 2011; Hitrik et al., 2016). Later, pulses of ecdysone (likely from 

the prothoracic gland) promote EcR and Usp activation, providing a timing cue for the 

formation of stacks of gonadal somatic precursor cells. These so-called terminal filaments 

will become individual ovarioles in adults (Gancz et al., 2011; Hodin & Riddiford, 1998; 

Mendes & Mirth, 2016). EcR also promotes allocation of primordial germ cells into nascent 

somatic niches within the terminal filaments, thereby establishing the number of GSCs in 

each ovariole at eclosion (Gancz et al., 2011; König, Yatsenko, Weiss, & Shcherbata, 2011; 

Yatsenko & Shcherbata, 2018). The EcR co-activator Tai is likely involved in larval/pupal 

ovary development, as loss of tai leads to expanded numbers of cap cells and GSCs in newly 

eclosed females (König et al., 2011). Although most of the targets of EcR/Usp have not been 

identified in the developing gonad, the ecdysone early gene br is necessary for the effects of 

EcR signaling in this context (Gancz et al., 2011; Hitrik et al., 2016). Additionally, the 

Drosophila NR encoded by E78 (most similar to vertebrate REV-ERB receptors) is 

necessary in cap cells prior to adulthood to establish the proper number of GSCs (Ables, 

Bois, Garcia, & Drummond-Barbosa, 2015). Although other NRs have not been described in 

ovary development, recent annotation of gene expression profiles for all cell types in the 

developing ovary will likely aid future experiments geared toward understanding how NRs 

guide ovary development in response to nutritional cues (Slaidina, Banisch, Gupta, & 

Lehmann, 2020).
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In adult females, EcR signaling is necessary in GSCs for their self-renewal and proliferation 

(Figs. 2 and 3). Mutants in which ecdysone production (such as the temperature sensitive 

ecdysoneless mutants) or ecdysone reception (such as loss of function of EcR) display rapid 

GSC loss upon switching to a restrictive temperature (Ables & Drummond-Barbosa, 2010; 

König et al., 2011; Morris & Spradling, 2012). Moreover, a pulse of ecdysone biosynthesis 

at mating promotes an initial surge of symmetric GSC division, resulting in an overall 

increased number of GSCs per ovariole (Ameku & Niwa, 2016). While the phenotypes 

resulting from global loss of ecdysone function are likely a cumulative effect of disrupted 

signaling in multiple ovarian or peripheral cell types, several lines of evidence suggest that 

ecdysone is required cell autonomously in the GSCs for self-renewal (Fig. 2) (Ables & 

Drummond-Barbosa, 2010; Ahmed et al., 2020; Ameku & Niwa, 2016; Ameku et al., 2017; 

König et al., 2011; Morris & Spradling, 2012; Sieber & Spradling, 2015). GSCs lacking 

functional usp or the early gene E74 exhibit reduced proliferation and fail to self-renew, 

likely due to modulation of BMP signaling (Ables & Drummond-Barbosa, 2010; König et 

al., 2011). Ecdysone also functions with the chromatin remodeling factor ISWI/NURF, an 

EcR co-activator, to regulate GSC self-renewal, suggesting cell autonomous regulation of 

GSCs (Ables & Drummond-Barbosa, 2010; Badenhorst et al., 2005). Although E74 is the 

only ecdysone early gene known to be required to promote GSC self-renewal and 

proliferation, other transcriptional targets are likely to promote these processes downstream 

of EcR (Ables, Hwang, Finger, Hinnant, & Drummond-Barbosa, 2016). Elucidating 

EcR/Usp and E74 transcriptional targets is a key future direction necessary for 

understanding how ecdysone directly modulates GSCs.

Ecdysone signaling also regulates GSC self-renewal non-autonomously via somatic escort 

cells and cap cells (Fig. 3). EcR, Usp, and Taiman are highly expressed in cap and escort 

cells, and ligand-binding reporters for EcR and Usp indicate that ecdysone signaling is 

active in these cells (König et al., 2011; Morris & Spradling, 2012). Ecdysone-responsive 

enhancers in several gene loci, including E75, ftz-f1, and br are also active in cap and escort 

cells, suggesting a complex signaling network guides escort cell function (McDonald et al., 

2019). Loss of EcR, usp, or E75 specifically in escort cells results in decreased GSC number 

(Morris & Spradling, 2012). In contrast, loss of EcR or taiman in cap cells expanded the 

number of cap cells, resulting in more GSCs (König et al., 2011). Since escort cells 

participate non-autonomously in germ cell differentiation by limiting the range of BMP 

signals (König & Shcherbata, 2015; Luo, Wang, Fan, Liu, & Cai, 2015; Mottier-Pavie, 

Palacios, Eliazer, Scoggin, & Buszczak, 2016), ecdysone signaling may modulate one of the 

many paracrine signaling ligands produced by escort cells. Two possible candidates may be 

Wnt/Wg and/or Epidermal Growth Factor Receptor (EGFR) signaling. In the absence of 

ecdysone signaling, GSCs do not properly receive BMP signals, EGFR activity is increased, 

and cell adhesion between germ cells and escort cells is altered (König & Shcherbata, 2015). 

It is unclear, however, whether these are direct or indirect effects of EcR transcription in 

escort cells. Additional experiments testing how ecdysone signaling modulates paracrine 

signals in escort cells are necessary to resolve the molecular mechanism of action.
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5.2 Ecdysone signaling mediates germline differentiation, follicle formation and 
encapsulation

Following separation of the cystoblast from the GSC, the cystoblast progresses through four 

rounds of mitotic division forming an interconnected cyst, while simultaneously initiating 

oocyte selection and differentiation (Fig. 1B and D) (Hinnant et al., 2020). Concurrent with 

oocyte differentiation, individual cysts are packaged into discrete egg chambers, 

encapsulated by follicle cells. These processes are inextricably intertwined, and include 

molecular mechanisms maintaining the self-renewal and proliferation of FSCs and their 

immediate daughters (Rust & Nystul, 2020). A variety of experiments have suggested that 

ecdysone signaling impacts these processes, perhaps via molecular mechanisms independent 

of germ cell differentiation. First, loss of ecdysone ligand (ecdysoneless mutants) results in 

fewer dividing cysts and fewer 16-cell cysts, indicating a block to germ cell differentiation 

(König et al., 2011; Morris & Spradling, 2012). Although inactivation of E74 in germ cells 

blocks cyst division, in part due to increased apoptosis, tai depletion from escort cells causes 

a block in cyst differentiation and division, leading to excess single germ cells (Ables & 

Drummond-Barbosa, 2010; König et al., 2011). The EcR repressor Abrupt regulates this 

process through a feedback loop with ecdysone (Fig. 3) (König & Shcherbata, 2015; König 

et al., 2011). Abrupt blocks the ability of Tai to bind to EcR. The ecdysone responsive 

miRNA, let-7, targets abrupt transcripts, allowing Tai to bind EcR and increasing ecdysone 

signaling strength (König & Shcherbata, 2015). Unlike bam mutants, which completely 

block differentiation, loss of EcR signaling leads to a delay of differentiation, accompanied 

by a change in chromatin state (König et al., 2011; Ohlstein & McKearin, 1997). Ecdysone 

mutants lack the monoubiquitination of the histone H2B (H2Bub1) modification, which is 

required for the change from a GSC state to a differentiation state (Karpiuk et al., 2012; 

König & Shcherbata, 2015). These cells become temporarily stuck between GSC and 

cystoblast fates, indicating that ecdysone signaling is required in somatic cells for the 

committed germ cell differentiation fate.

Loss of ecdysone signaling in escort cells also abrogates cyst formation and encapsulation 

(Ables & Drummond-Barbosa, 2010; König et al., 2011; Morris & Spradling, 2012). Knock-

down of usp, EcR, or E75, or overexpression of the EcR repressor Abrupt, in escort cells and 

follicle cells resulted in abnormally shaped escort cells and a decrease or absence of 

membrane extensions (König & Shcherbata, 2015; König et al., 2011; Morris & Spradling, 

2012). It is unclear, however, exactly how ecdysone signaling modulates escort cell shape 

and function, and whether and how this impacts EGFR signaling. Given the unique 

spatiotemporal specificity of ecdysone signaling, it is also formally possible that ecdysone 

signaling promotes unique cell activities in posterior escort cells, FSCs, and pre-follicle cells 

(Fig. 3) (Ables et al., 2016). This could be due to unique combinations of EcR 

transcriptional targets, or perhaps due to differential availability of the ecdysone ligand. 

Indeed, knock-down of the ecdysteroidogenic enzymes encoded by neverland, diembodied, 

or spook in escort cells (under the control of the Gal4 driver c587-Gal4), is sufficient to 

block the initial surge of ecdysone production following mating and steroid-dependent 

midgut growth (Ahmed et al., 2020; Ameku & Niwa, 2016). These results warrant new 

investigation as to which ovarian cells produce and import ecdysone. Recent characterization 

of specific reagents for UAS/Gal4-mediated CRISPR and RNAi, and ovarian cell 
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transcriptomic signatures, may help distinguish potential roles of ecdysone signaling in these 

somatic cell types (Hartman et al., 2015; Huang, Sahai-Hernandez, et al., 2014; Jevitt et al., 

2020; McDonald et al., 2019; Port et al., 2020; Slaidina et al., 2020).

5.3 Ecdysone is required for continued egg chamber development, survival, and 
vitellogenesis during mid- and late-stages of oogenesis

The first observed phenotype associated with ecdysone mutants was the loss of vitellogenic 

egg chambers (Audit-Lamour & Busson, 1981; Buszczak et al., 1999; Carney & Bender, 

2000). The few eggs that were laid by females had very thin eggshells with misshapen 

appendages (Audit-Lamour & Busson, 1981; Hackney, Pucci, Naes, & Dobens, 2007; Oro, 

McKeown, & Evans, 1992). While injection of ecdysone lead to loss of vitellogenic egg 

chambers, reduction of ecdysone signaling also abrogated egg chamber development, 

suggesting that the amount of ecdysone is critical for vitellogenesis. These phenotypes 

foreshadowed a variety of molecular mechanisms by which ecdysone signaling promotes 

continued oocyte development outside of the germarium.

After cysts are fully encapsulated, they move outside the germarium as individual egg 

chambers (Fig. 1A and D). As egg chambers pinch away from the germarium, follicle cells 

differentiate into stalk cells, pole cells, and main body follicle cells through Notch/Delta and 

Jak/Stat signaling (Duhart et al., 2017; Osterfield et al., 2017). This establishes egg chamber 

polarity and subsequent oocyte polarity as the oocyte continues to grow. During 

vitellogenesis, follicle cells proliferate, grow in size, differentiate, and migrate to specific 

locations around the oocyte to form the eggshell and exterior structures of the egg chamber, 

including the micropyle (which allows for sperm to enter the egg), dorsal appendages (which 

allow for gas exchange), and the operculum (the region from which the larvae emerges at 

hatching, post-fertilization). Concurrently, the oocyte is loaded with yolk proteins and lipids, 

especially triacylglycerol (Parra-Peralbo & Culi, 2011; Sieber & Spradling, 2015; Ziegler & 

Van Antwerpen, 2006). Because oogenesis is closely tied to nutritional status of the female 

fly, developing egg chambers must bypass a nutritional checkpoint at stage 8 prior to the 

switch to vitellogenesis. This either allows the egg chamber to proceed to undergo the 

metabolically demanding process of vitellogenesis or breakdown if nutrients are not 

favorable for subsequent embryo development (Peterson, Timmons, Mondragon, & McCall, 

2015). Insufficient nutrients cause apoptosis and reabsorption of middle stage egg chambers 

(8–13) and withholding of stage 14 follicles, blocking ovulation.

EcR and several ecdysone responsive genes are highly expressed in both germline and 

somatic cells during the vitellogenic stages of oocyte development (Ables et al., 2016; 

Buszczak et al., 1999; McDonald et al., 2019). Loss of EcR, E74, E75, or E78 all result in 

egg chamber death, suggesting important roles for ecdysone signaling during early 

vitellogenesis (Ables et al., 2015; Ables & Drummond-Barbosa, 2010; Ables et al., 2016; 

Audit-Lamour & Busson, 1981; Buszczak et al., 1999; Carney & Bender, 2000). Ecdysone 

levels are also the highest during vitellogenic stages, and several ecdysone biosynthesis 

genes are expressed (Buszczak et al., 1999; Ono et al., 2006; Petryk et al., 2003; Uryu et al., 

2015). Interestingly, injection of 20E leads to increased apoptosis of nurse cells in stage 8 

follicles and loss of all vitellogenic stages, indicating that the amount of ecdysone is very 
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important for regulation of apoptosis (Soller, Bownes, & Kubli, 1999; Terashima et al., 

2005). The ecdysone early genes br and E75 appear to regulate this nutritional checkpoint. 

When females are nutritionally deprived, br isoforms Z2 and Z3 are up-regulated, leading to 

expression of E75A which induces apoptosis of cysts, while simultaneously suppressing 

E75B, which is required to inhibit apoptosis (Terashima & Bownes, 2006).

Impairment of EcR and Usp signaling specifically in follicle cells during vitellogenesis 

results in reduced egg size, thinner eggshell, and malformed dorsal appendages and 

operculum (Hackney et al., 2007). These phenotypes can be attributed to a variety of 

molecular mechanisms. First, EcR-B1 in follicle cells promotes epithelial integrity, 

microvilli formation, and follicle cell shape (Fig. 4) (Hackney et al., 2007; Romani et al., 

2009; Romani, Gargiulo, & Cavaliere, 2016). EcR-B1 regulates expression of adherens and 

basolateral junction proteins to maintain the connections between follicle cells, and between 

the follicle cells and germ cells (Fig. 4) (Romani et al., 2009). EcR also promotes follicle 

cell endocycling and expression of eggshell proteins (Bernardi, Romani, Tzertzinis, 

Gargiulo, & Cavaliere, 2009; Sun, Smith, Armento, & Deng, 2008). Second, follicle cell 

migration is driven by the interplay of EcR signaling with Jak/Stat signaling (Fig. 5) (Peercy 

& Starz-Gaiano, 2020). In this context, cell migration occurs in direct response to a pulse of 

ecdysone synthesis, which dislodges the ecdysone co-repressor Abrupt (Bai et al., 2000; 

Buszczak et al., 1999; Jang, Chang, Bai, & Montell, 2009). This allows EcR-A, EcR-B, and 

Usp to be activated by Tai in border cells, which promotes turnover of the cell adhesion 

proteins E-cadherin and β-catenin (Bai et al., 2000; Jang et al., 2009) and delamination from 

the follicle cell epithelium. Border cells then continue to migrate through the nurse cells, 

sending out projections until they reach the anterior border of the oocyte at stage 10 (Peercy 

& Starz-Gaiano, 2020). Overexpression of ecdysone signaling leads to early migration of 

border cells while decreased ecdysone delays migration, indicating that ecdysone helps to 

regulate timing (Bai et al., 2000; Cherbas et al., 2003; Domanitskaya, Anllo, & Schüpbach, 

2014; Jang et al., 2009). At least four other NRs (E75, Hr3, Hr4, and Ftz-f1) also regulate 

border cell migration (Manning et al., 2017; McDonald et al., 2019; Wang et al., 2020). It is 

unclear however, whether these NRs functions independently of EcR/Usp, or together in an 

elaborate transcriptional network. Lastly, Usp and Br are required for dorsal appendage 

formation and amplification of chorionic genes (Deng & Bownes, 1997; Oro et al., 1992; 

Osterfield et al., 2017; Tzolovsky, Deng, Schlitt, & Bownes, 1999). In stage 6, Br is 

expressed in all follicle cells but becomes progressively restricted to two groups of dorsal-

lateral-anterior follicle cells that become the cells of the dorsal appendage. Ecdysone 

signaling and the NR Ftz-f1 are also required for ovulation and reproductive tract 

development (Knapp, Li, Singh, & Sun, 2020; Knapp & Sun, 2017; Sun & Spradling, 2012).

6. Signaling from peripheral tissues promotes GSC maintenance

Although NRs acting in the ovary are crucial for fertility, a developing area of interest in the 

field is how NRs located in other tissues can influence oogenesis. Reproduction is 

energetically costly to females; thus, the maternal metabolic physiology must be tailored to 

turn specific dietary nutrients into the lipids and proteins necessary to sustain egg 

development (Armstrong, 2020; Mirth et al., 2019; Sieber & Spradling, 2017). As in 

humans, maintenance of a maternal physiology capable of sustaining egg production relies 
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on several interrelated organs, including the brain, the fat body (analogous to human liver), 

and the gut (Droujinine & Perrimon, 2016; Rajan & Perrimon, 2011). Recent studies reveal 

that a complex interorgan communication network not only links these organs to oogenesis, 

but also utilize ecdysone produced from the ovary to modulate organ maintenance and 

function (Ahmed et al., 2020; Ameku & Niwa, 2016; Matsuoka, Armstrong, Sampson, 

Laws, & Drummond-Barbosa, 2017; Sieber & Spradling, 2015; Weaver & Drummond-

Barbosa, 2019).

The fat body, an organ which helps to maintain maternal metabolism, is particularly 

appealing as a candidate tissue that influences oogenesis. The fat body is composed of adult 

adipocytes, which store lipids, and oenocytes, the hepatocyte-like cells of insects that 

produce lipids and other macromolecules (Armstrong, 2020; Arrese & Soulages, 2010). 

Yolk proteins and the yolk storage protein vitellogenin are produced by the fat body and 

transported to the oocyte; both of these processes are influenced by ecdysone signaling 

(Gilbert, Serafin, Watkins, & Richard, 1998; Jowett & Postlethwait, 1980; Schonbaum, 

Perrino, & Mahowald, 2000; Sieber & Spradling, 2015; Yan & Postlethwait, 1990). EcR 

promotes the female metabolic state by promoting high levels of whole-body triglycerides 

and glycogen, likely via effects on the fat body (Sieber & Spradling, 2015). The NR encoded 

by seven up (svp), most closely related to mammalian COUP-TFII, is also expressed in 

adipocytes and essential in adipocytes and oenocytes for ovarian GSC self-renewal and egg 

chamber survival, respectively (Weaver & Drummond-Barbosa, 2019). Intriguingly, other 

endocrine signals are also produced by the fat body that regulate oogenesis, notably insulin 

signaling (Armstrong & Drummond-Barbosa, 2018; Armstrong, Laws, & Drummond-

Barbosa, 2014; Matsuoka et al., 2017). These results suggest that peripherally located NRs 

may act in concert with other endocrine signaling pathways to fine-tune oogenesis in 

response to maternal diet.

7. Conclusions and open questions

NRs are key regulators of many aspects of development, reproduction, and metabolism. A 

comprehensive understanding of NR target genes, signaling mechanisms in and between cell 

types, and communication between organs can provide insight into possible conserved 

mechanisms between Drosophila and humans. Yet many questions remain for future studies. 

First, what are the specific transcriptional targets of ecdysone signaling in oogenesis, and 

how are these regulated in a precise spatiotemporal manner? Although ecdysone-mediated 

processes are well-understood, we are only just beginning to understand how ecdysone 

biosynthesis, transport, and reception by EcR are achieved in ovarian cells. Addressing this 

complex question will require sophisticated genetic manipulation in cell-specific studies. 

Recent transcriptomic profiling of ovarian cells by single cell RNA sequencing may be a 

tremendous step forward in this area (Jevitt et al., 2020). Second, how does ecdysone 

signaling promote egg chamber viability and progression into vitellogenesis? Several 

ecdysone-responsive NRs are clearly expressed in nurse cells during these stages and 

required for egg chamber survival, but it is unclear whether they may promote an as-yet 

undescribed nutritional checkpoint in early oogenesis or promote cyst growth. Lastly, are 

roles of EcR or other NRs unique to female reproduction? Although the role of ecdysone in 

germline stem cell maintenance has been most commonly associated with oogenesis, recent 
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studies have demonstrated a potential contribution of ecdysone to spermatogenesis in 

Drosophila (Li, Ma, Cherry, & Matunis, 2014). The effects of obesity, metabolic 

dysfunction, and diabetes on reproductive tissues are not unique to females, and NRs also 

regulate many aspects of spermatogenesis in both Drosophila and humans. Future studies 

analyzing the role of nutritionally regulated NRs in spermatogenesis are also warranted.

Determining the mechanisms by which hormone signaling facilitates crosstalk between 

germline and somatic cells could provide valuable insight into possible conserved 

mechanisms with other species, such as humans. In Drosophila, signals from the germline 

greatly influence follicle cell function and vice versa. It has been well-established that 

ecdysone signaling in the escort cells influences GSC self-renewal, germ cell differentiation, 

and follicle cell encapsulation and movement. It is less clear, however, whether ecdysone 

signaling in germ cells might influence the overlying somatic tissue. Given the parallels 

between steroid hormone signaling in Drosophila and humans, future studies investigating 

how ecdysone facilitates germline-soma communication could provide a better 

understanding of the mechanisms of hormone signaling in human oogenesis.
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Fig. 1. 
Ecdysone signaling regulates Drosophila melanogaster oogenesis. (A) Maximum intensity 

projection image of a Drosophila ovariole, labeled with anti-Vasa (green; germ cells), anti-

Hts (red; fusomes and follicle cell membranes), anti-LamC (red; nuclear envelope of cap 

cells) and DAPI (blue, DNA). (B) Optical cross section of the Drosophila germarium 

showing GSCs (solid white line) anchored to cap cells (dashed pink line), which make up 

the GSC niche. Germ cells are characterized by the presence of a fusome (orange), which 

extends as germ cells divide. Escort cells (yellow dashed line) signal to GSCs to promote 

differentiation. Follicle stem cells (FSC; purple dashed line) create pre-follicle cells that 

surround the 16-cell cyst, giving rise to an egg chamber or follicle that leaves the 
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germarium. (C) Schematic of the ecdysone signaling pathway. (D) Summary of ecdysone-

regulated processes in the ovariole and germarium. Scale bar = 10μm.
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Fig. 2. 
Signaling pathways that intrinsically regulate GSC self-renewal and cystoblast 

differentiation. Ecdysone levels are increased due to sex peptide, which is deposited during 

mating and made in later stage follicles. Ecdysone is received in cap cells (pink) and GSCs 

(dark green). Terminal filament cells (purple) secrete the ligand Unpaired (Upd) to cap cells 

to stimulate the Jak/Stat pathway. The Jak/Stat pathway and ecdysone signaling regulate 

BMP signaling. EcR/Usp binds to Tai to control cap cell function. EcR regulates the BMP 

signaling pathway to regulate GSC self-renewal. The BMP ligands Gbb and Dpp are 

secreted from cap cells to the receptors on GSCs. This phosphorylates Mad, which will 

dimerize with Med and repress bam transcription. Ecdysone targets are intrinsically required 

to maintain GSC self-renewal. In differentiating CBs (light green) bam is transcribed and 

represses E-cadherin and Nos thereby committing the cell to differentiation.
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Fig. 3. 
Ecdysone is required in somatic cells for early germline processes. In the escort cells 

(yellow), EcR binds to the co-activator Tai to regulate GSC (dark green) self-renewal. 

Ecdysone functions in a feedback loop with the miRNA let-7 and the repressor Abrupt. 

Ecdysone regulates the monoubiquitination of the histone H2B (H2Bub1) modification 

which allows for cysts (light green) to differentiate. Ecdysone signaling in the FSCs (dark 

purple) and follicle cells (light purple) drives formation and encapsulation of 16 cell cysts.
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Fig. 4. 
Follicle cell polarity in mid-stages is driven by ecdysone signaling. EcR-B1 regulates F-actin 

(maroon) expression, and localization of the adherens junction proteins Arm and E-Cad 

(red), the septate junction proteins Dlg and Scrib (gray), and aPKC (blue), in mid-stage 

follicle cells (purple).

Finger et al. Page 31

Vitam Horm. Author manuscript; available in PMC 2021 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Ecdysone signaling regulates the timing of border cell movement. Upd ligand in polar cells 

(orange) establishes future border cells (blue) from follicle cells (light purple). In stage 8 

follicles, Abrupt binds Tai and prevents its binding to EcR. This blocks turnover of the 

cohesion proteins E-cadherin and β-catenin (arm). In stage 9 border cells, ecdysone inhibits 

Abrupt, allowing Tai to bind to EcR. Tai/EcR creates turnover of E-cadherin and β-catenin, 

promoting border cell migration.
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