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Abstract

Comparative gene identification-58 (CGI-58), also known as α/β-hydrolase domain-containing 5 

(ABHD5), is a member of a large family of proteins containing an α/β-hydrolase-fold. CGI-58 is 

well-known as the co-activator of adipose triglyceride lipase (ATGL), which is a key enzyme 

initiating cytosolic lipid droplet lipolysis. Mutations in either the human CGI-58 or ATGL gene 

cause an autosomal recessive neutral lipid storage disease, characterized by the excessive 

accumulation of triglyceride (TAG)-rich lipid droplets in the cytoplasm of almost all cell types. 

CGI-58, however, has ATGL-independent functions. Distinct phenotypes associated with CGI-58 

deficiency commonly include ichthyosis (scaly dry skin), nonalcoholic steatohepatitis, and hepatic 

fibrosis. Through regulated interactions with multiple protein families, CGI-58 controls many 

metabolic and signaling pathways, such as lipid and glucose metabolism, energy balance, insulin 

signaling, inflammatory responses, and thermogenesis. Recent studies have shown that CGI-58 

regulates the pathogenesis of common metabolic diseases in a tissue-specific manner. Future 

studies are needed to molecularly define ATGL-independent functions of CGI-58, including the 

newly identified serine protease activity of CGI-58. Elucidation of these versatile functions of 

CGI-58 may uncover fundamental cellular processes governing lipid and energy homeostasis, 

which may help develop novel approaches that counter against obesity and its associated 

metabolic sequelae.
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13.1 Introduction

The human comparative gene identification-58 (CGI-58) gene was identified through 

comparative gene identification studies using the Caenorhabditis elegans proteome and 

human expressed sequence tag (EST) nucleotide database [109]. Human CGI-58 gene is 

located at the chromosome 3p21.33 locus, spanning about 32kb and producing several splice 

variants. The full-length human CGI-58 cDNA is transcribed from seven exons and encodes 

a 349 amino acid protein of ~39 kDa (Fig. 13.1a). CGI-58 is also known as α/β hydrolase 

domain-containing 5 (ABHD5). The ABHD subfamily belongs to a large protein family 

defined by an α/β hydrolase fold [146, 258]. The α/β hydrolase fold has a highly conserved 

catalytic triad containing a nucleophile (serine, cysteine, or aspartic acid), an acidic residue, 

and histidine that are close in 3D structure, though apart from each other in sequence [116, 

258]. The ABHD subfamily has a total of 19 members in humans and 15 members in mice 

[128, 202], yet the functions of most remain unknown. CGI-58 differs from other members 

in this subfamily in that the critical serine in the catalytic triad is substituted by asparagine 

[116].

Mutations in the human CGI-58 gene were identified as the cause of Chanarin-Dorfman 

syndrome (CDS, OMIM 275630) (Fig. 13.1), an autosomal recessive neutral lipid storage 

disease (NLSD) with ichthyosis (thickened dry skin) [58, 116]. CDS is characterized by the 

accumulation of triglyceride (TAG)-rich cytoplasmic lipid droplets (LDs) in most cell types, 

including leukocytes (Jordans’ anomaly) [96], hepatocytes, myocytes, and cells in the 

epidermis, dermis, and intestinal mucosa [33, 46, 183, 205]. Patients with CDS often 

manifest hepatomegaly (hepatic steatosis and steatohepatitis), myopathy, micro-cephaly, 

cataracts, hearing loss, ataxia, mild mental retardation, and short stature [33, 46, 90, 183]. 

Since the initial description of the disease by Dorfman and Chanarin [33, 46], about 130 

cases with more than 40 different mutations spanning the entire protein sequence have been 

reported worldwide [7, 49]. Types of mutations include deletion, insertion, missense, 

nonsense, and frameshift mutations (Fig. 13.1b) [1, 3, 5, 7, 9, 12, 22–24, 49, 52, 54, 89, 92, 

116, 130, 150, 151, 169, 174, 181, 187, 192, 208, 219, 224, 243, 255]. While loss-of-

function mutations cause CDS (Fig. 13.1), it is currently unknown whether gain-of-function 

exists for CGI-58 gene.

CGI-58 is ubiquitously expressed in mammals [18, 112, 211]. It is predicted to be cytosolic 

[116]. Interest in the scientific community regarding the functions of CGI-58 started in the 

early 2000s when three laboratories simultaneously reported that CGI-58 localizes at 

cytosolic LDs [121, 211, 244]. This was the time when biomedical scientists started to 

appreciate the cytosolic LD as an organelle that dynamically regulates energy storage and 

mobilization, rather than as an inert liposome-like structure that passively stores excess 

energy. The conceptual innovation placed cytosolic LDs at the center of cellular energy 

metabolism whose dysregulation is a hallmark of metabolic diseases, such as obesity, insulin 

resistance, type II diabetes, fatty liver, and cardiovascular disease. It was believed that 

excessive deposition of cytosolic lipid droplets would cause lipotoxicity, a biochemical 

mechanism that was widely used to explain impairments of cellular metabolism, cell 

signaling transduction, and redox imbalance associated with overnutrition-driven metabolic 

diseases [221]. Mutations in the human CGI-58 gene were known to cause LD deposition in 
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almost all cell types examined, which provided the biomedical research community an 

excellent opportunity to test how LD accumulation promotes lipotoxicity. Over the past 15 

years, we have learned a great deal about the pros and cons of cytosolic LDs by studying the 

biochemistry, cell biology, and tissue-specific pathophysiology of CGI-58. This chapter 

summarizes the current knowledge about the role of CGI-58 in LD lipolysis (i.e., hydrolysis 

of TAGs stored in cytosolic LDs) and discusses how CGI-58-dependent metabolic and 

signaling pathways regulate the pathogenesis of common metabolic diseases.

13.2 CGI-58 Interacts with Lipolysis-Regulatory Proteins

13.2.1 The PAT (Perilipin, Adipophilin, TIP47) Protein Family

Biochemical and cell biology studies have demonstrated that CGI-58 binds to cytosolic LDs 

and interacts with perilipin 1 (PLIN1), adipose differentiation-related protein (ADRP, also 

known as adipophilin or PLIN2), TIP47 (PLIN3), and muscle LD protein (MldP or PLIN5) 

[18, 63, 121, 161, 211, 244, 245]. These are members of the PAT (perilipin, adipophilin, 

TIP47) family that also includes S3–12 (or PLIN4) [105, 126, 133, 236]. The PAT family 

proteins share a highly conserved N-terminal structure. They localize at the surface of 

intracellular LDs of different lipid compositions and sizes, regulating energy storage and 

mobilization in response to nutritional fluctuations and various stimuli [126]. Using the two 

frame shift mutants (Leu-404fs and Val-398fs) that cause partial lipodystrophy in humans, 

Savage and associates have shown that the C-terminal region of human PLIN1 is essential 

for binding to CGI-58, and this interaction stabilizes CGI-58 localization on the LDs [63].

13.2.2 The PNPLA (Patatin-Like Phospholipase Domain Containing) Protein Family

The process that mobilizes the energy (mainly as TAGs) stored in intracellular LDs for 

utilization is called intracellular lipolysis (Fig. 13.2) [253]. During LD lipolysis, the three 

fatty acyl chains in a TAG molecule are sequentially cleaved into diacylglycerol (DAG), 

monoacylglycerol (MAG), and glycerol, releasing a fatty acid molecule at each step. The 

first enzyme that was discovered to catalyze hydrolysis of cytosolic LD-embedded TAGs is 

hormone-sensitive lipase (HSL) [86, 111, 177, 223]. The substrate spectrum of HSL appears 

to be quite broad, including DAGs, TAGs, MAGs, cholesteryl esters, and retinyl esters [40, 

113, 234]. Monoacylglycerol lipase (MAGL) was reported, shortly after HSL, as a lipase 

that specifically hydrolyzes MAGs [98, 223]. Both HSL and MGL belong to the α/β-

hydrolase fold family. For years, HSL was thought to be responsible for hydrolyzing TAGs 

in adipocyte LDs. However, HSL-null mice showed the accumulation of DAGs rather than 

TAGs in multiple tissues [77, 157, 179, 227], indicating that other enzyme(s) are involved in 

the TAG hydrolysis. In 2004, three groups independently reported a new lipase possessing 

abundant TAG hydrolase activity, and the enzyme was named calcium-independent 

phospholipase A2ζ (iPLA2ζ), desnutrin, or adipose triglyceride lipase (ATGL), respectively 

[95, 226, 264]. This newly discovered lipase turned out to be the rate-limiting enzyme of 

cytosolic LD lipolysis (Fig. 13.2), and, thus, the name ATGL became more popular than the 

other names. ATGL is also known as patatin-like phospholipase domain containing 2 

(PNPLA2). The PNPLA protein family consists of a total of nine members, including 

PNPLA1 through PNPLA9, all of which seem to be implicated in lipid metabolism through 

their phospholipase or lipase activities, or other functions [104, 144]. Comparative studies of 
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ATGL and CGI-58 in the context of adipose lipolysis have resulted in a major breakthrough 

regarding the biochemical function of CGI-58. In 2016, Dr. Rudolf Zechner and associates 

reported that CGI-58 functions as a coactivator of ATGL to promote in vitro TAG hydrolysis 

[112]. Subsequent studies were consistent with this original finding [70, 71, 161, 228, 233, 

250]. Furthermore, CGI-58 was shown to release from perilipin proteins following lipolytic 

stimulation, which allowed CGI-58 to interact with ATGL and activate TAG hydrolysis [70, 

71, 211, 228]. In this scenario, the interaction of CGI-58 and with perilipins functions as a 

brake of lipolysis (Fig. 13.2), though its efficiency may be cell-type specific due to distinct 

perilipin compositions and the different abilities of individual perilipins in sequestering 

CGI-58 in various cell types [161].

Although CGI-58 activates ATGL’s TAG hydrolase activity [112], mutations in CGI-58 and 

ATGL cause distinct phenotypes in humans and mice [58, 65, 75, 78, 116, 135, 172, 237]. 

For example, human CGI-58 mutations cause NLSD with ichthyosis [33, 46, 90, 116, 183], 

whereas human ATGL mutations cause NSLD without skin defects but with mild myopathy 

[58]. Global CGI-58 knockout mice die ~16h after birth due to a skin barrier defect [172], 

yet global ATGL knockout mice are viable [78]. These phenotypic differences associated 

with mutations of the two genes indicate that CGI-58 must have ATGL-independent 

functions. Recently, CGI-58 was shown to interact with PNPLA1, another member of the 

PNPLA protein family, to stimulate PNPLA1-mediated ω-O-acylceramide production in 

skin [102, 154], providing a potential mechanism for skin barrier defect seen in patients with 

CDS. CGI-58 was also shown to functionally interact with the wild-type PNPLA3, the fatty 

liver-promoting PNPLA3(I148M) variant [180], and a lipase dead PNPLA3 mutant [32], 

suggesting that CGI-58 may coordinate with PNPLA3 and other lipases to regulate LD 

turnover independently of PNPLA3’s lipase activity. Consistent with this scenario, two 

laboratories reported that PNPLA3, the fatty liver-causing PNPLA3(I148M) variant, in 

particular, competes with ATGL (PNPLA2) to bind with CGI-58, reducing TAG hydrolysis 

in the liver and brown adipocytes [233, 250]. These observations provided a mechanism for 

how the PNPLA3 (I148M) variant promotes fat deposition. However, such observations 

cannot explain why PNPLA3, including PNPLA3(I148M) but not a lipase dead mutant, 

retains its ability to reduce LD sizes when co-expressed with CGI-58 in the absence of 

ATGL [32]. It remains possible that PNPLA3 displays an in vivo lipase or transacylase 

activity toward specific substrates under some pathophysiological or nutritional conditions. 

In addition to PNPLA1–3, other members of PNPLA protein family may also interact with 

CGI-58 to fulfill unique functions under specific pathophysiological and nutritional 

conditions.

13.2.3 The Fatty Acid-Binding Protein (FABP) Family

Another group of proteins that interact with CGI-58 is the fatty acid binding protein (FABP) 

family members [85]. It was hypothesized that FABP interacts with CGI-58 to promote 

ATGL-mediated intracellular lipolysis by serving as an acceptor of free fatty acids released 

from TAG hydrolysis [85]. This was an important finding because it provided a mechanism 

for the handling of lipolytic products. Intriguingly, the lipolytic product long-chain acyl CoA 

was shown to bind CGI-58 and promote CGI-58 interactions with perilipins to suppress 

lipolysis [188]. This phenomenon seems to be an end-product feedback mechanism that 
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fine-tunes hydrolysis of TAGs stored in intracellular LDs. The interactions of CGI-58 with 

LD coat proteins, lipases, and lipids suggest that CGI-58 likely play a key role in organizing 

major components of LD lipolysis into a functional “lipolysome” [85].

13.3 CGI-58 as a Serine Protease

The latest member of the CGI-58 interactome is histone deacetylase 4 (HDAC4). Backs and 

associates reported that CGI-58 functions in vitro and in vivo as a serine protease that 

cleaves HDAC4 in the heart in response to catecholamine stimulation, generating an N-

terminal polypeptide of HDAC4 (HDAC4-NT) to protect cardiac functions [94]. This study 

was conceptually paradigm shifting, because it was the first to demonstrate that CGI-58 can 

function as a serine protease. CGI-58 was previously shown to function as a coactivator of a 

lipase that promotes lipolysis, and it was never thought to be a protease that promotes 

proteolysis. Perhaps, CGI-58 is a protein of dual function that promotes both lipolysis and 

proteolysis. This novel function of CGI-58 raises many new and exciting questions regarding 

the core function of the protein. For example, does CGI-58 cleave other proteins interacting 

with it? If yes, is this proteolytic function required for CGI-58 to activate LD lipolysis? Does 

a lipase require proteolytic cleavage prior to digesting a lipid molecule? Answers to these 

questions are expected to provide fundamental insights into the molecular and biochemical 

bases of lipolysis and its potential crosstalk with proteolysis.

13.4 Molecular Basis for CGI-58 Activation of ATGL-Dependent Lipolysis

The cellular, structural, and biochemical bases for CGI-58 and ATGL interaction to promote 

TAG hydrolysis remain incompletely understood. The N-terminal amino acids 1–30 of 

mouse CGI-58 were shown to form a lipophilic tryptophan-rich stretch, which is essential 

for CGI-58 to localize at the LD and activate ATGL in cultured cells [74]. This tryptophan-

rich stretch appears to anchor CGI-58 to the LD surface through its three tryptophan 

residues serving as the left and right anchor arms [16]. A comparative study of mouse 

ABHD5 (CGI-58) and ABHD4, an ABHD family member that is closely related to ABHD5 

but does not activate ATGL, identified R299 and G328 as essential residues for activating 

ATGL’s TAG hydrolase activity. However, these two amino acids of ABHD5 did not affect 

ATGL translocation to LDs or ABHD5 binding to PLIN1 [189]. These studies collectively 

suggest that the LD localization is a prerequisite for a functional CGI-58 to activate ATGL in 

vivo.

Studies with ATGL mutants associated with NLSD have showed that the mutations result in 

the expression of either enzymatically inactive proteins localizing to LDs or active TAG 

hydrolase lacking LD localization [196]. Whereas CGI-58 was identified as a coactivator of 

ATGL [112], G0/G1 switch gene 2 (G0S2) was subsequently discovered as an inhibitor of 

ATGL function [246, 247]. It was further demonstrated that G0S2 and CGI-58 do not appear 

to compete with each other for binding to ATGL in cultured cells transfected with tag-

proteins [131]. The 254 N-terminal amino acids of mouse ATGL were reported to be the 

minimal domain that can be activated by CGI-58 and inhibited by G0S2 [41]. Interestingly, 

deleting ~220 amino acids from the C-terminus of human ATGL protein increases its 

interaction and activation by CGI-58 in vitro in the test tube, despite defective LD 
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localization in vivo in cultured cells [196]. This finding indicates that the C-terminal region 

of ATGL is required for its targeting to LDs and plays a regulatory role in ATGL activation 

by CGI-58. Considering the newly identified protease function of CGI-58 [94], it would be 

interesting to test whether CGI-58 activates ATGL by a two-step process. In the first step, 

CGI-58 may cleave ATGL to release the suppressive role of ATGL’s C-terminal region on 

its enzymatic activity, which would be consistent with the observation that ATGL protein 

levels are often increased in the absence of CGI-58 [75, 242, 263]. The second step may 

involve conformational changes of the two proteins, resulting in tight interactions and 

correct positioning of “lipolysome” components on the surface of LD for hydrolysis of TAG 

in vivo.

13.5 CGI-58 Regulation of Autophagy and Lipophagy

The role of CGI-58 as the coactivator of ATGL to promote intracellular lipolysis has been 

established and reproduced in a series of in vitro and in vivo studies. ATGL is a cytosolic 

neutral lipase that initiates cytosolic/neutral lipolysis by cleaving a fatty acyl chain from a 

TAG molecule stored in cytosolic LDs, thus playing a critical role in intracellular lipolysis 

[95, 226, 257, 264]. Recently, the lipid-specific macroautophagy (lipophagy) was shown to 

also digest cytosolic LDs by delivering LD-associated fat to lysosomes for degradation by 

lysosomal acidic lipase (lysosomal/acidic lipolysis) [203]. Autophagy refers to the “self-

eating” of a cell in response to starvation or nutrient deprivation for generating energy 

essential for its survival [155]. It is also a catabolic pathway for recycling of excessive or 

damaged organelles, such as mitochondria (mitophagy) [217]. In humans, insulin resistance 

suppresses CGI-58 mRNA expression in liver [99]. The nutritional and hormonal regulations 

of “neutral” lipolysis and lipophagy (“acidic” lipolysis) are strikingly similar. Both are 

induced by nutrient deprivation [45], and both are activated by glucagon or inhibited by 

insulin [45, 57]. It is currently unknown if CGI-58 promotes fat lipolysis by mediating 

lipophagy in addition to activating ATGL. It was demonstrated that ATGL, a lipase target of 

CGI-58, promotes autophagy and lipophagy in a sirtuin 1 (SIRT1)-dependent manner and 

that lipophagy is required for ATGL to promote LD catabolism and associated fatty acid 

oxidation in hepatocytes [190]. The crosstalk between ATGL-dependent lipolysis and 

autophagy was also seen in macrophages, though this crosstalk may be indirect or 

compensatory [66]. Some studies appear to suggest a role of CGI-58 in regulating autophagy 

and lipophagy. For example, in C2C12 muscle cells, CGI-58 overexpression increases, 

whereas CGI-58 knockdown decreases, autophagy and mitophagy through regulation of 

AMPK and mTORC1 signaling pathways [259]. CGI-58 was shown to bind Beclin1, a 

major regulator of autophagy [159, 163]. Many autophagy components can localize to LDs 

under some conditions [48, 51, 100, 160, 200, 203], though it is not known whether they 

interact with CGI-58 or other LD proteins to specifically regulate lipophagy. PLIN2, a major 

LD coat protein interacting with CGI-58 [244, 245], also binds the heat shock cognate 

protein of 70 kDa (Hsc70) for degradation via chaperone-mediated autophagy (CMA) [100]. 

The inhibition of CMA reduces both neutral and acidic lipolysis [100]. Hepatic CMA 

deficiency, like CGI-58 deletion, induces severe hepatic steatosis with liver damage and 

inflammation [220]. More studies are needed before the direct role of CGI-58 in the 

mediation of autophagy and lipophagy can be established.

Yu et al. Page 6

Adv Exp Med Biol. Author manuscript; available in PMC 2021 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13.6 Tissue-Specific Roles of CGI-58 in Energy and Lipid Metabolism

13.6.1 Adipose CGI-58 in Thermoregulation and Metabolic Health

CGI-58 is ubiquitously expressed in mammals, with the highest expression in adipose tissue. 

Adipose tissue is classically divided into white adipose tissue (WAT) and brown adipose 

tissue (BAT) that have distinct locations and opposite functions in energy balance. In 

general, WAT stores excess energy as TAGs in the large unilocular LD of white adipocytes, 

whereas BAT dissipates metabolic energy as heat for adaptive nonshivering thermogenesis in 

multilocular LD-containing brown adipocytes.

During prolonged fasting or increased energy demand, such as exercise and inflammation, 

the stored energy in WAT is mobilized via adipose LD lipolysis for utilization by cell types 

and pathways critical in sustaining life, meeting energetic demand, clearing infectious 

agents, or resolving inflammation. This process is generally defined as the stimulated 

adipose lipolysis, because it involves activation of a cell membrane receptor and its 

downstream signal transduction by neural and humoral factors in response to various stimuli 

[47, 108, 213, 253]. The classical signal-stimulating adipose lipolysis is the activation of β-

adrenergic receptors by catecholamines released from the sympathetic nerves innervating 

adipose tissue. Binding of a catecholamine to the β receptor activates adenylate cyclase, 

which is an enzyme that uses ATP as the substrate to produce cAMP [55]. Elevation in 

cellular cAMP activates protein kinase A (PKA), which then phosphorylates several lipolytic 

components, such as PLIN1 and HSL, to stimulate lipolysis (Fig. 13.2) [213]. Thus, any 

stimulus that activates PKA or increases cellular cAMP levels is thus expected to stimulate 

adipose lipolysis. Phosphorylation of a perilipin, perhaps together with phosphorylation of 

CGI-58 on S239 [185], causes CGI-58 disassociation from the perilipin for CGI-58 to 

interact with ATGL (Fig. 13.2) [70, 71, 211, 213, 244, 251]. It was shown that the in vitro 

TAG hydrolase activity of ATGL can be increased up to 20-fold with CGI-58 interaction 

[112]. The in vivo significance of CGI-58 as an essential mediator of the stimulated lipolysis 

was demonstrated in a study showing that adipose-specific inactivation of CGI-58 abolishes 

the isoproterenol-stimulated increase in plasma levels of free fatty acids in mice [201].

The nonshivering thermogenesis in BAT is mainly mediated by uncoupling protein 1 

(UCP-1), which resides in the inner membrane of a mitochondrion, uncoupling chemical 

energy from ATP synthesis and dissipating the energy as heat [27]. Under some 

environmental and pathophysiological conditions, such as cold exposure and β-adrenergic 

receptor activation, a cell type with features of both white and brown adipocytes appears in 

the classically white fat depots. This type of adipocytes is named brite or beige adipocytes 

that often express UCP-1 and produce heat [165, 238]. The process that drives the 

appearance of brite/beige adipocytes in WAT is called WAT browning or beigeing [97]. The 

origin of beige adipocytes may include mature white adipocyte transdifferentiation and/or de 

novo adipogenesis, depending on the condition that induces WAT browning [39, 83, 114, 

115, 182, 229, 230].

Cytosolic LD lipolysis was thought to be central in nonshivering thermogenesis [27]. 

Several animal and human studies suggested the essential role of brown fat lipolysis in 

thermogenesis, though the genetic or pharmacological manipulation of adipose lipolysis 
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employed in the studies inhibited intracellular lipolysis in both BAT and WAT [4, 15, 44, 78, 

107]. We created mice deficient in CGI-58 in UCP1-positive brown and beige adipocytes 

(BAT-KO mice) and mice lacking CGI-58 in all adipocytes (FAT-KO mice), which allowed 

us to directly test the role of brown adipocyte LD lipolysis in thermoregulation. To our 

surprise, BAT-KO mice were not cold sensitive even when food was unavailable [201]. The 

mice became cold sensitive only when the following two conditions were met 

simultaneously: (1) deletion of CGI-58 in both WAT and BAT and (2) removal of food. 

Similar phenotypes were observed in mice lacking ATGL in BAT or the total adipose tissue 

[195]. When CGI-58 or ATGL was deleted in the total adipose tissue in mice, the in vivo 

lipolysis (fatty acid release from the tissue to the blood circulation) stimulated by 

isoproterenol, a β-adrenergic receptor agonist, was completely abolished in mice [195, 201]. 

The results demonstrated the indispensable role of CGI-58 or ATGL in mediating the 

stimulated lipolysis in the whole animal. These two animal studies also demonstrated a key 

role of WAT in regulating adaptive nonshivering thermogenesis, likely by providing the heat-

producing cells with the metabolic fuels and/or by exposing the temperature sensors in the 

body to the thermogenically important adipokines or signaling molecules. It is currently 

unclear how food rescues the cold sensitivity of mice lacking CGI-58 or ATGL in the total 

adipose tissue [195, 201]. A simple explanation is that food serves as another source of 

metabolic fuels that may energize the heat-generating cells with glucose, fatty acids, and/or 

amino acids. However, we observed that only gastric gavage, but not intraperitoneal 

injections, of glucose can efficiently slow down hypothermia in mice lacking CGI-58 in both 

WAT and BAT (Wang H et al. unpublished data). This finding strongly supports a critical 

role of the gastrointestinal track in regulating the diet-induced thermogenesis. The 

gastrointestinal track is abundantly innervated and has special endocrine cells that secrete 

various incretins, which are important in local environment sensing and whole-body energy 

metabolism. Interestingly, secretin, a gut hormone that is derived from the S cells in the 

duodenum and jejunum of small intestine, was shown to mediate postprandial thermogenesis 

by activating its receptor in brown adipocytes to stimulate lipolysis and energy expenditure 

and to subsequently suppress satiation through the brain [119]. However, mice lacking 

CGI-58 or ATGL in BAT are defective in brown adipocyte lipolysis, yet they are capable of 

producing heat after a meal, suggesting that either other gastrointestinal factors or non-

lipolytic pathways also mediate the postprandial thermogenesis. Nonetheless, it would be 

interesting to test whether secretin mediates postprandial heat production in mice lacking 

CGI-58 or ATGL in BAT and, if not, what other gastrointestinal factors are involved.

CGI-58 deletion in UCP1-positive cells in mice increases sympathetic innervation in both 

BAT and WAT. The animals also exhibit enhanced WAT browning, especially after cold 

exposure or β3-adrenergic receptor activation [201]. This observation implies that some 

signals and/or BATokines (factors secreted by BAT) are generated as a result of BAT CGI-58 

deficiency. These signals and batokines can somehow be sensed by the central nervous 

system in the brain, thereby increasing the sympathetic outflow to activate compensatory 

thermogenic mechanisms. It is currently unknown what these signals and batokines are and 

whether they work locally or remotely or must be secreted into the blood circulation, which 

represents an important area for future research in BAT biology. It is important to note that 

BAT lipolysis deficiency induced by ATGL deletion in UCP1-positive cells does not 
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increase WAT browning as evidenced by unaltered expression levels of UCP-1 protein in the 

inguinal subcutaneous fat [195], suggesting that deficiency of CGI-58’s ATGL-independent 

functions in BAT promotes browning in WAT.

Genetic deletion of BAT CGI-58 in mice improves several fat-induced metabolic disorders, 

such as glucose intolerance, insulin resistance, and hepatic steatosis [201]. This 

improvement is more profound when CGI-58 is deleted in both BAT and WAT (our 

unpublished data). ATGL deletion in whole body or adipose tissue also protects mice from 

fat-induced metabolic abnormalities [4, 87, 194, 239]. These observations indicate that 

inhibiting adipose lipolysis may improve whole-body glucose handling as a result of failed 

mobilization of fatty acids for utilization, which would be consistent with the glucose fatty 

acid cycle (or the Randle cycle) theory [173].

13.6.2 Epidermis CGI-58 and Skin Barrier Function

A major phenotypic distinction of human patients with CGI-58 mutations from those with 

ATGL mutations is ichthyosis (scaly dry skin) [58, 116]. In mice, whole body ablation of 

CGI-58, but not ATGL, causes skin barrier defects [78, 172]. Using whole body and cell 

type-specific transgenic and knockout mouse models, it was shown that CGI-58 promotes 

the biosynthesis of the skin barrier lipids, ω-O-acylceramides, locally in the keratinocytes of 

suprabasal epidermal layers, and such function is ATGL independent [73]. It was further 

shown that CGI-58 interacts directly with PNPLA1 and recruits PNPLA1 to LDs where it 

functions as the coactivator of PNPLA1 for the biosynthesis of ω-O-acylceramides [102, 

154]. Like CGI-58, PNPLA1 mutations in humans also cause ichthyosis [69]. Using 

biochemical approaches, cell cultures, and tissue-specific PNPLA1 knockout mice, several 

groups have demonstrated that PNPLA1 has transacylase or acyltransferase activity, which 

utilizes TAGs as an acyl donor and catalyzes the esterification of ω-hydroxy ceramides with 

linoleic acid to synthesize ω-O-acylceramides [73, 84, 102, 153]. Collectively, these studies 

strongly suggest that the defective activation of PNPLA1 is the molecular mechanism 

underlying CGI-58 mutation-induced ichthyosis in humans.

13.6.3 Muscle CGI-58 in Cardiomyopathy and Insulin Sensitivity

Patients with CDS accumulate neutral lipids in their skeletal muscle [138]. Heart murmurs, 

muscle weakness, and mild myopathy were reported in some CDS patients [90, 138, 235]. 

Two laboratories have generated muscle-specific CGI-58 knockout mice using MCK-cre 

transgenic mice [242, 263]. MCK-cre transgenic mice express cre recombinase in both 

skeletal and cardiac muscles, thereby deleting a loxP-floxed gene in both tissues [21]. 

Muscle CGI-58 knockout mice display intramyocellular deposition of neutral lipids in both 

cardiac and oxidative skeletal muscles [242, 263], implying that muscle fat deposition in 

human patients with CDS likely results from local CGI-58 deficiency in muscle. Neutral 

lipid deposition was not detected in the glycolytic skeletal muscle fibers in these animals 

[242]. The restriction of LD accumulation to the cardiac and oxidative (soleus) muscles 

highlights an essential role of CGI-58 in fatty acid oxidation in oxidative muscle types, 

which is consistent with other studies [10, 72].
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CGI-58 deficiency in all muscles induces cardiac fibrosis, cardiac remodeling, and heart 

failure. The similar phenotypes were observed in muscle ATGL knockout mice [79]. In 

cardiac and oxidative skeletal muscles, CGI-58 interacts with PLIN3 and PLIN5, and this 

interaction regulates its association with ATGL [132, 167, 228]. These observations 

collectively suggest that CGI-58 may function through ATGL, promoting intracellular TAG 

hydrolysis in the muscle fibers. It was shown that cardiac ATGL-dependent TAG hydrolysis 

sustains mitochondrial functions by activating the PPAR-α pathway through the generation 

of endogenous ligands for PPAR-α [79]. CGI-58 may facilitate this pathway by activating 

ATGL in the cardiac muscle. Interestingly, CGI-58 was recently shown to function as a 

serine protease to protect heart failure by generating an N-terminal polypeptide from histone 

deacetylase 4 (HDAC4) through proteolysis [94]. The cardiac protective role of the 

HDAC4’s N-terminal polypeptide generated by CGI-58 was not associated with reduction in 

cardiac TAG content. Although it is currently unclear whether similar mechanisms operate 

in other cell types, this study nonetheless uncovered a completely novel function of CGI-58 

and emphasized a future direction for CGI-58 research.

Intramyocellular fat deposition in skeletal muscle is often associated with systemic insulin 

resistance due to accumulation of insulin signaling-suppressing lipids, such as 

diacylglycerols and ceramides that cause lipotoxicity [186, 222]. Despite intramyocellular 

accumulation of neutral lipids, mice lacking CGI-58 or ATGL in muscle are not glucose 

intolerant or insulin resistant [103, 204, 242]. This dissociation of cellular lipid deposition 

from insulin resistance suggests that how versus how much lipids are accumulated may be 

more important in driving tissue insulin resistance, which may be due to the differences in 

the molecular species of lipids deposited. Alternatively, cytosolic LD deposition, if not 

extremely excessive, may sequester insulin signaling-suppressing metabolites, protecting 

cells against lipotoxicity. Such scenario would be consistent with an observation that 

unsaturated fatty acids promote TAG accumulation, yet protect cells against lipotoxicity 

[120]. In addition, lipid deposition in different skeletal muscle fiber types may lead to 

different metabolic consequences [118, 123]. Mice overexpressing diacylglycerol 

acyltransferase 2 (DGAT2) in glycolytic (type II) muscle accumulate TAG in muscle and are 

insulin resistant [118]. However, mice overexpressing diacylglycerol acyltransferase 1 

(DGAT1), another TG synthesis enzyme, in muscle accumulate TAG in the soleus, and these 

animals are not insulin resistant [122]. Endurance-trained athletes display increased fat 

content in their skeletal muscle, and they have enhanced insulin sensitivity (“athlete 

paradox”) [67]. It seems that fat deposition in the glycolytic muscle is more problematic 

than in the oxidative muscle.

13.6.4 Liver CGI-58 in Nonalcoholic Fatty Liver Disease

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the United 

States and worldwide [254]. Patients with CDS (CGI-58 mutations) almost always display 

characteristics of advanced NAFLD, including severe hepatic steatosis, NASH, fibrosis, and 

cirrhosis [3, 24, 38, 76, 90, 139, 181, 205, 208, 215]. The CDS-causative mutations span the 

entire human CGI-58 protein sequence (Fig. 13.1). Interestingly, monoallelic mutations in 

the human CGI-58 gene are also associated with NAFLD (Fig. 13.1b). The prevalence of 

CGI-58 monoallelic mutations that are associated NAFLD was estimated to be 1 in 1,131 
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individuals in a normal population [255]. This study highlights an important role of CGI-58 

in the pathogenesis of NAFLD in the general population. More importantly it was recently 

demonstrated that CGI-58 interacts with PNPLA3 [233, 250], a variant (I148M) of which is 

a major risk factor for fatty liver disease in all populations examined [149, 180, 207, 216]. 

CGI-58’s association with PNPLA3 interferes with its ATGL interaction, thus inhibiting LD 

lipolysis [11, 233, 250]. CGI-58 is required for wildtype PNPLA3 and the PNPLA3(148M) 

variant to localize to hepatic LDs and for the overexpressed PNPLA3(148M) to promote 

hepatic steatosis [233]. It was shown that PNPLA3 accumulation on LDs, not its catalytic 

activity, is responsible for PNPLA3(148M)-induced hepatic steatosis [11]. While these 

studies provided an important mechanism for how CGI-58 coordinates with PNPLA3 and 

PNPLA2 (ATGL) to control cytosolic LD turnover, more research on the PNPLA3/CGI-58 

interaction is needed to address why PNPLA3, including the PNPLA3(I148M) variant but 

not a lipase dead mutant, can substantially reduce LD size when co-expressed with CGI-58 

in the absence of ATGL [32].

Antisense oligonucleotide (ASO)-mediated knockdown of CGI-58 in adult mice induced 

severe hepatic steatosis, though this study cannot establish a causal relationship between 

hepatic CGI-58 and fatty liver disease due to knockdown of CGI-58 in multiple tissues, 

including liver, adipose tissue, and macrophages [19, 28, 127, 129]. Selective inactivation of 

CGI-58 or ATGL in the liver of mice causes hepatic steatosis [75, 237], implying that fatty 

liver disease seen in patients with NLSD induced by CGI-58 or ATGL mutations is likely a 

local effect of hepatic CGI-58 or ATGL deficiency. These studies unequivocally 

demonstrated an important role of LD lipolysis in controlling lipid homeostasis in the liver. 

Besides TAGs, other species of lipids, such as DAGs, are also accumulated in mouse livers 

lacking CGI-58, especially when a high fat diet is used [19, 28, 75]. Although hepatic 

steatosis is often associated with insulin resistance and DAG accumulation is well-known to 

suppress insulin signaling [186], liver CGI-58 deficiency-induced hepatic steatosis and DAG 

accumulation are not associated with insulin resistance in mice [19, 28, 75]. One study 

demonstrated that this dissociation results from the sequestration of DAGs to LDs and ER, 

rather than the cell membrane, which prevented PKCε translocation to the plasma 

membrane to inhibit insulin-receptor kinase activity [28]. The dissociation of hepatic 

steatosis and insulin resistance is not restricted to the CGI-58 deficiency-induced fatty liver. 

For instance, hepatic overexpression of DGAT2 or liver-specific deletion of histone 

deacetylase 3 (HDAC3) in mice induces severe hepatic accumulation of lipids including 

TAGs, DAGs, and ceramides without causing insulin resistance [141, 212]. In humans, a 

genetic variant (I148M) of PNPLA3 confers susceptibility to NAFLD in multiple 

populations without affecting the index of insulin resistance [149, 180, 207, 216]. African-

American descendants have significantly less hepatic steatosis despite a relatively high 

prevalence of obesity and diabetes, while Hispanic-American descendants are the opposite 

[175, 193]. The variation in correlation between hepatic steatosis and insulin resistance 

among ethnicities suggests that other factors should also be considered. It should be 

emphasized that clinical studies of NAFLD only found the association between insulin 

resistance and hepatic steatosis whereas the relationship between insulin resistance and other 

liver pathologies, such as NASH and hepatic fibrosis, has yet to be established.
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It is currently unknown how liver CGI-58 deficiency induces NASH and hepatic fibrosis in 

addition to hepatic steatosis. The albumin-cre transgenic mice (Stock #: 003574; The 

Jackson Laboratory) used for liver-specific inactivation of CGI-58 and ATGL can delete a 

gene floxed by loxP sites in hepatocytes, biliary epithelial cells (cholangiocytes), and hepatic 

stellate cells [50, 64, 148, 168, 171, 184, 206, 214]. Each of these cell types has distinct 

physiological and pathological functions. For instance, injuries of hepatocytes and other 

liver cells stimulate inflammatory responses, causing NASH [20, 60]. Liver damage and 

inflammation often trigger ductular reaction (increases in the number of small biliary 

ductules lined by cholangiocytes) that may contribute to hepatic fibrogenesis to some extent 

[59, 176, 191]. Hepatic stellate cells increase collagen production after activation by various 

liver injuries, and this cell type is well accepted to be the major source of hepatic fibrosis 

[81, 82, 142]. Given that liver ATGL deficiency induced by the same albumin-cre transgenic 

mouse line does not cause these advanced pathological changes in liver [237], the 

mechanism underlying liver CGI-58 deficiency-induced NASH and hepatic fibrosis cannot 

be the inhibition of ATGL-mediated LD lipolysis in hepatocytes, cholangiocytes, or hepatic 

stellate cells. Consistently, patients with ATGL mutations do not develop NASH and hepatic 

fibrosis [6, 25, 58, 166, 197]. CGI-58, therefore, must have ATGL-independent functions in 

the liver. One of such functions may be its interaction with PNPLA3 [233, 250]. Like 

CGI-58 mutations, the PNPLA3(I148M) variant is also associated with NASH [180]. 

Another distinct function of CGI-58 is its interactions with almost all perilipins. This 

interaction may be needed for cellular processes, such as autophagy and lipophagy, besides 

activation of ATGL. Perilipins are coat proteins of cytosolic LDs. They are required for the 

biogenesis and turnover of cytosolic LDs. It has been shown that perilipins play an important 

role in the pathogenesis of hepatic steatosis, NASH, and hepatic fibrosis [29, 30, 34, 35, 61, 

88, 91, 145, 162, 231]. Patients with NAFLD accumulate perilipins in the liver [61, 162, 

209]. While perilipins may passively accumulate in the steatotic liver due to increased LDs, 

they may also actively increase to protect cells against lipotoxicity of free lipids. Other 

CGI-58 functions, such as its newly identified serine protease activity in the heart [94], may 

also exist in the liver and other tissues. This protease activity of CGI-58, like its lipase 

coactivator function, may target multiple proteins to regulate a variety of cellular processes 

important in lipid and energy metabolism.

Liver CGI-58 knockout mice on a regular low-energy chow diet develop a full spectrum of 

pathologies observed in human patients with advanced NAFLD [75]. The progression of 

these pathologies can be substantially facilitated by challenging the animals with a typical 

Western-type diet alone or in combination with fructose in drinking water (our unpublished 

data). Future studies are needed to discern whether CGI-58 needs to be deleted 

simultaneously in hepatocytes, cholangiocytes, and stellate cells or in a specific cell type to 

trigger NASH and fibrosis in liver. Studies are also needed to identify CGI-58’s ATGL-

independent mechanisms responsible for fatty liver progression, including testing the known 

ATGL-independent functions of CGI-58. Detailed comparative studies of liver CGI-58 and 

ATGL knockout mice may reveal mechanisms important in the etiology of NASH and 

hepatic fibrosis in general and shed light on novel drug targets against NAFLD progression.
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13.6.5 Myeloid CGI-58 in Insulin Resistance, Inflammation, and Atherosclerosis

CGI-58 protein is expressed in mouse and human macrophages [13, 134]. It has been shown 

that myeloid cell-specific deletion of CGI-58 in mice worsens fat-induced tissue/systemic 

inflammation, proinflammatory activation of adipose tissue macrophages, glucose 

intolerance, and insulin resistance [134]. CGI-58-deficient macrophages accumulate 

cytosolic LDs and show reduced PPAR-γ signaling [134, 248]. Although the underlying 

mechanism remains unknown, sequestration of free fatty acids in cytosolic LDs may prevent 

these endogenous PPAR ligands from activating PPAR signaling as seen in ATGL-null 

cardiomyocytes [79]. As a result of PPARγ signaling suppression, CGI-58-null 

macrophages show mitochondrial dysfunction and accumulate reactive oxygen species, 

which activates NLRP3 inflammasome to promote secretion of proinflammatory cytokines 

[134]. Consistently, overexpression of CGI-58 in macrophages reduces inflammation in vitro 

and in vivo [241, 248]. The proinflammatory (M1-like) phenotype of CGI-58-null 

macrophages was also observed in other studies [65, 135]. In contrast, ATGL-deficient 

macrophages were shown to display the anti-inflammatory M2-like phenotype [2, 65, 110]. 

These collective observations indicate that CGI-58 also has ATGL-independent functions in 

myeloid cells, including macrophages.

The anti-inflammatory role of macrophage CGI-58 is expected to protect against 

atherosclerosis. One study with CGI-58 overexpression in macrophages did show such an 

atheroprotective role through the promotion of the PPAR/LXR-dependent cholesterol efflux 

without altering blood cholesterol levels [241]. However, the deletion of CGI-58 in myeloid 

cells of apoE knockout mice, or simultaneous knockdown of CGI-58 in multiple cell types 

including hepatocytes, adipocytes, and macrophages in LDLR-KO mice, does not worsen 

atherosclerosis or alter plasma cholesterol levels [65]. It is difficult to assess atherosclerosis 

risk in patients with CGI-58 mutations due to the rarity of disease, existence of other 

abnormalities, and relatively young subjects reported. The role of macrophage CGI-58 in 

atherogenesis has yet to be clarified. Macrophage CGI-58 deficiency causes foam cell 

formation [134]. Lipopolysaccharide (LPS) and saturated fatty acids downregulate CGI-58 

expression in macrophages [134]. LPS and fatty acids are atherosclerosis risk factors, and 

many studies have shown that they promote foam cell formation and atherosclerosis [8, 14, 

53, 56, 62, 101, 117, 137, 143, 156, 170]. Oxidized (ox)-LDL, a common atherosclerosis 

risk factor, inhibits CGI-58 expression in THP1 human macrophages (our unpublished data). 

These findings suggest a potential role of CGI-58 in modulating atherosclerosis risk factor-

induced atherogenesis.

13.6.6 Intestine CGI-58 in Fat Absorption and Turnover

A major function of the small intestine is the absorption of nutrients including fats. Fat 

absorption occurs mainly in duodenum and jejunum. After digestion by pancreatic lipases, 

in the intestinal lumen, fat (mainly TAGs) becomes free fatty acids and monoacylglycerols 

(MAGs), which then enter the absorptive enterocytes and travel to the endoplasmic 

reticulum (ER) for re-esterification into TAGs for packaging into chylomicrons. Intestinal fat 

absorption is a very efficient process. Chylomicrons are quickly secreted into the lymphatic 

system heading to the blood circulation. Some of absorbed fat may be temporarily stored in 

the cytosolic LDs, especially after ingestion of a high fat diet [31, 164, 178, 262]. The TAGs 
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stored in the cytosolic LDs have to be hydrolyzed before they can be assembled into 

primordial chylomicron particles in the ER lumen. CGI-58 and ATGL are expressed in the 

enterocytes. Genetic deletion of CGI-58 in these cells in mice induced the accumulation of 

cytosolic LDs predominantly in the nutrient absorptive segment of small intestine, regardless 

of dietary compositions and nutritional conditions [106, 240]. These observations 

demonstrated an important role of intestinal CGI-58 in mobilizing intestinal LDs for local 

and/or systemic utilization. Consistently, hepatic steatosis is attenuated in the intestine 

CGI-58 single or CGI-58/ATGL double knockout mice [106, 240]. Using intestine-specific 

CGI-58 knockout mice fed a synthetic diet containing 40% energy from lard and 0.2% 

(w/w) cholesterol, our laboratory has shown that intestinal absorption of total fat and long-

chain fatty acids is significantly reduced, which is associated with reduced postprandial TAG 

section into the blood circulation and increased plasma concentrations of free and esterified 

cholesterol [240]. For reasons currently unknown, another group did not find similar 

changes in their intestine CGI-58 and ATGL single or double knockout mice fed a diet 

containing 60% energy from fat [34% (w/w) crude fat] and 1% (w/w) cholesterol. They 

instead showed a role of intestinal CGI-58 and ATGL in the turnover of lipids derived from 

the basolateral side of the absorptive enterocytes [106, 152]. More studies are clearly needed 

to address these controversial findings.

13.7 CGI-58 and Cancer

Cancer cells often accumulate LDs in the cytoplasm [17, 210]. The underlying mechanisms 

remain elusive. Sequestration of lipids in cytosolic LDs may protect cancer cells from 

lipotoxic stress [93]. Mutations in CGI-58 cause LD deposition in cells, which led to the first 

study exploring the role of CGI-58 in colorectal cancer development [158]. It was shown 

that CGI-58 deficiency promotes the epithelial-mesenchymal transition (EMT) and 

invasiveness of colorectal cancer cells by increasing aerobic glycolysis (the Warburg Effect) 

[158]. The increase in aerobic glycolysis in CGI-58-deficient cells may result from limited 

availability of fatty acids due to defective LD lipolysis. In addition, CGI-58 was shown to 

promote colorectal tumorigenesis by impairing Beclin1-mediated autophagy [163]. A 

subsequent study with prostate cancer cells was consistent with the tumor suppressor role of 

CGI-58 [37]. However, another group using the same prostate cancer cell line found that 

CGI-58 sustains cancer cell growth by inhibiting cell apoptosis and death [140]. CGI-58 was 

recently shown to be oncogenic in endometrial cancer [261]. It was reported that CGI-58 in 

tumor-associated macrophages indirectly promotes colorectal cancer growth by suppressing 

spermidine synthesis [136]. The same group also reported that CGI-58 suppresses NFκB-

dependent metalloproteinase production in macrophages to indirectly inhibit colorectal 

cancer cell metastasis [199]. Besides regulating tumorigenesis directly and indirectly, 

CGI-58 was reported to inhibit the sensitivity of colorectal cancer cells to the chemo-therapy 

drug fluorouracil [159]. CGI-58 expression patterns and levels may serve as markers for 

differentiating benign and malignant tumors in some tissues [36, 158]. DNA methylation 

and deletion may influence CGI-58 expression in some cancer types, such as cervical cancer 

[198]. CGI-58 is not the only LD-associated protein that is implicated in cancer development 

and progression. It was shown that ATGL mediates cancer-associated cachexia [42], 

correlates with the risk of pancreatic ductal adenocarcinoma [68], and promotes 
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malignancies of breast cancer and hepatocellular carcinoma [43, 124, 125, 232, 249]. It was 

reported that ATGL deletion is linked to the aggressiveness of A549 lung carcinoma cells 

[218]. Inhibition of ATGL by the lipolysis suppressor protein G0S2 or a small molecule 

Atglistatin was found to attenuate the growth of cancer cells [256]. G0S2 was also observed 

to suppress oncogenic transformation of immortalized mouse embryonic fibroblasts [252]. 

Interestingly, inhibition of ATGL by hypoxia-inducible gene 2 (HIG2), unlike G0S2, was 

demonstrated to promote survival of colorectal cancer and renal cell carcinoma cell lines in 

hypoxia [260]. The role of LD-associated proteins CGI-58, ATGL, G0S2, and HIG2 in 

tumorigenesis may be cell type-specific, depending on how each cell type handles energy 

metabolism and signal transduction under different pathophysiological conditions.

13.8 CGI-58 and HCV Infection

A large proportion of patients chronically infected with hepatitis C virus (HCV) manifest 

LD deposition in the liver in the absence of other steatotic factors [147]. It was shown that 

the HCV nucleocapsid core, which is the major structural component of HCV virions, 

localizes at the surface of LDs to inhibit LD turnover in cultured cells and mouse livers [80]. 

The same group further showed that the HCV core inhibits ATGL-dependent LD lipolysis, 

but it unexpectedly enhances ATGL interaction with CGI-58 and the recruitment of the 

ATGL/CGI-58 complex to LDs [26]. Interestingly, an siRNA-based screen identified CGI-58 

as a host factor that assists HCV assembly and release without affecting virus entry and 

replication [225]. They showed that several CDS-causing mutants of CGI-58 fail to localize 

at the surface of LDs, and those mutants are unable to support HCV production. Moreover, 

they identified a tribasic motif (KRK233–235) that is required for CGI-58 to promote 

lipolysis and HCV production, though not essential for CGI-58 localization to LDs. While 

this study may suggest that it is its lipase coactivator function that mediates HCV assembly 

and release, it remains unknown whether the newly identified serine protease function of 

CGI-58 is implicated in HCV production [94].

13.9 Concluding Remarks

Patients with CDS accumulate TAG-rich LDs in all cell types examined. Since the discovery 

of CGI-58 gene mutations as the cause of CDS in 2001, enormous interest on the function of 

CGI-58 has been generated in the scientific community of lipid and energy metabolism. It 

has been well established that CGI-58 is a LD-associated protein that promotes intracellular 

LD lipolysis by activating ATGL’s TAG hydro-lase activity. In addition to ATGL, CGI-58 

interacts with many other proteins and regulates LD dynamics and functions in a cell type-

specific manner. Such broad protein-protein interactions of CGI-58 have provided important 

insights into the biochemical basis for its ATGL-independent functions. Future studies are 

needed to dissect the molecular itineraries of these interactions in regulation of intracellular 

LD biogenesis and turnover. As a versatile regulator of intracellular LD homeostasis, 

CGI-58 plays a central role in governing cellular and whole-body energy balance. Genetic 

deletion of CGI-58 in mice has uncovered distinct effects of LD deposition in different cell 

types on the pathogenesis of metabolic disease. CGI-58 was recently identified to possess 

the serine protease activity in the heart. It is unknown if CGI-58 has this protease activity in 

other tissue. If yes, what are the substrates and functional significance? Is the serine protease 
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activity of CGI-58 coordinate with its lipase coactivator function to activate intracellular 

lipolysis? Clearly, more studies are needed to answer these exciting new questions.
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Fig. 13.1. 
(a) The amino acid sequence of human CGI-58 protein. The amino acids in red circles 

highlight those mutated in patients with CDS. Some altered splice donor or acceptor sites are 

not highlighted. According to the two studies using the mouse CGI-58 protein [16, 74], the 

amino acids 16–30 in the human CGI-58 protein are likely required for LD anchoring. (b) 

CGI-58 mutations reported in humans before March 2020. Biallelic mutations in red color 

are associated with the full phenotypes of CDS, biallelic mutations in blue color are 

associated with the partial phenotypes (no ichthyosis) of CDS, and those in black color 

denote monoallelic mutations associated with nonalcoholic fatty liver disease
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Fig. 13.2. 
Proposed model for CGI-58 regulation of cytosolic lipid droplet lipolysis. Lipolysis 

regulation differs between basal and stimulated conditions. Under the basal conditions, 

CGI-58 binds to PLIN1 in adipocytes or PLIN5 in oxidative nonadipocytes, preventing its 

interaction with ATGL. Thus, the lipolytic activity of ATGL is limited. After stimulation, 

perilipins are phosphorylated, resulting in the dissociation of CGI-58 from perilipins. 

CGI-58 then interacts with ATGL and substantially activates ATGL’s TAG hydrolase 

activity to stimulate lipolysis, producing DAGs and fatty acids (FAs). The DAGs are then 

hydrolyzed to produce MAGs and FAs by HSL that was phosphorylated and recruited to the 

LDs during the lipolytic stimulation. Finally, the MAGs are hydrolyzed by MAGL to release 

the last fatty acyl chain from the glycerol backbone of a TAG molecule
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