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A B S T R A C T

Social distancing as a form of nonpharmaceutical intervention has been enacted in many countries as a form
of mitigating the spread of COVID-19. There has been a large interest in mathematical modeling to aid in the
prediction of both the total infected population and virus-related deaths, as well as to aid government agencies
in decision making. As the virus continues to spread, there are both economic and sociological incentives to
minimize time spent with strict distancing mandates enforced, and/or to adopt periodically relaxed distancing
protocols, which allow for scheduled economic activity. The main objective of this study is to reduce the
disease burden in a population, here measured as the peak of the infected population, while simultaneously
minimizing the length of time the population is socially distanced, utilizing both a single period of social
distancing as well as periodic relaxation. We derive a linear relationship among the optimal start time and
duration of a single interval of social distancing from an approximation of the classic epidemic SIR model.
Furthermore, we see a sharp phase transition region in start times for a single pulse of distancing, where the
peak of the infected population changes rapidly; notably, this transition occurs well before one would intuitively
expect. By numerical investigation of more sophisticated epidemiological models designed specifically to
describe the COVID-19 pandemic, we see that all share remarkably similar dynamic characteristics when
contact rates are subject to periodic or one-shot changes, and hence lead us to conclude that these features
are universal in epidemic models. On the other hand, the nonlinearity of epidemic models leads to non-
monotone behavior of the peak of infected population under periodic relaxation of social distancing policies.
This observation led us to hypothesize that an additional single interval social distancing at a proper time can
significantly decrease the infected peak of periodic policies, and we verified this improvement numerically.
While synchronous quarantine and social distancing mandates across populations effectively minimize the
spread of an epidemic over the world, relaxation decisions should not be enacted at the same time for different
populations.
. Introduction

COVID-19, the disease first identified in Wuhan, China and the
ause of the 2020 pandemic, has infected over 90 million people
orldwide, caused at least 1.9 million deaths (World Health Orga-
ization, 2020), and has resulted in a worldwide economic down-
urn (Coibion, Gorodnichenko, & Weber, 2020). After the shelter-in-
lace ordinances (Wright, Sonin, Driscoll, & Wilson, 2020), social
istancing as a form of Non-Pharmaceutical Intervention (NPI) has
een enacted in the United States (Wolf et al., 2020), and other coun-
ries (Sarin & Sarin, 2020; Thu, Ngoc, Hai, et al., 2020) for reducing
he spread of the virus, as neither herd immunity nor a viable vaccine
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yet existed (McDonnell et al., 2020). Many countries have implemented
strict quarantine, isolation, or social distancing policies early in the
epidemic (Thu et al., 2020), while countries such as Belarus (Gritsenko
et al., 2020) and Sweden (Cho, 2020; Dahlberg et al., 2020) have
taken more lenient approaches at the onset of the outbreak. Under-
standing optimal strategies for social distancing will both ‘‘flatten the
curve’’ and hopefully ease the economic burden experienced due to pro-
longed economic stagnation (Berman, 2020; Courtemanche, Garuccio,
Le, Pinkston, & Yelowitz, 2020; Maloney & Taskin, 2020). The goal
of this manuscript is thus to investigate the response of the disease to
different time-varying social distancing strategies.
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1.1. COVID-19 and social distancing

There has been much recent theoretical work revisiting,
expanding, and studying dynamical and control properties of clas-
sical epidemic models so as to understand the spread of COVID-
19 during quarantine and social distancing (Abuin, Anderson, Fer-
ramosca, Hernandez-Vargas, & Gonzalez, 2020; Ansumali, Kaushal,
Kumar, Prakash, & Vidyasagar, 2020; Hernandez-Vargas et al., 2020;
Hernandez-Vargas & Velasco-Hernandez, 2020; Paré, Beck, & Başar,
2020; Scharbarg, Moog, Mauduit, & Califano, 2020), including studies
of (integral) input to state stability (Ito, 2020), network stability of
epidemic spread (Liu, Cui, Li and Buss, 2020; Tian, Zhang, & Zhang,
2020), and optimal control strategies for meta-population models (Liu,
Ding, An, Hu and Du, 2020). These models have been used to predict
the potential number of infected individuals and virus-related deaths,
as well as to aid government agencies in decision making (Stewart,
Heusden, & Dumont, 2020). Most models are variations on the classical
Susceptible–Infected–Recovered (SIR) model (Albi, Pareschi, & Zanella,
2020; Brauer, Castillo-Chavez, & Feng, 2019; Kermack & McKendrick,
1927) which have been modified to more closely predict the spread of
COVID-19. Some such extensions are listed below:

1. Expanding the SIR model to include additional population com-
partments. Such compartments may describe individuals that are
placed under quarantine and/or in social isolation. Other mod-
els explicitly subdivide populations into both symptomatic and
asymptomatic infected individuals (Etxeberria-Iriondo, De la Sen,
& Alonso-Quesada, 2019; Gaeta, 2020; Gevertz, Greene, Sanchez-
Tapia, & Sontag, 2020; Pang, 2020; Rajabi, Mantzaris, Mutlu, &
Garibay, 2020; Sun & Weng, 2020), as it is currently thought that
COVID-19 is significantly spread through asymptomatic individu-
als (Bai et al., 2020; Hu et al., 2020; Yu & Yang, 2020).

2. Modeling the effects of social distancing for an infection aware
population. This can be done by changing the contact rates be-
tween the compartments, or by modeling the behavior of a pop-
ulation that alters its social interactions because of observed
infections or deaths (Kabir, Kuga, & Tanimoto, 2019; Reluga,
2010). The latter technique has recently been applied to COVID-
19 (Franco, 2020; Ghaffarzadegan & Rahmandad, 2020).

3. Sub-dividing populations into regions, each described by local
parameters. Such regions may be cities, neighborhoods, or com-
munities (Wang, Gou, Guo, Tanaka, & Han, 2020). This frame-
work allows modelers to capture the virus spread and population
mobility geographically (Chinazzi et al., 2020; Darabi & Siami,
2020; Flaxman et al., 2020; San, Wang, & Feng, 2020). These
models have been recently used to understand the spread of
COVID-19 in China (Kraemer et al., 2020), Italy (Gatto et al.,
2020), Netherlands and Belgium (van den Broek-Altenburg &
Atherly, 2020), and India (Banerjee, Pandey, & Adhikari, 2020;
Pujari & Shekatkar, 2020).

Shortening the period of time that populations are socially distanced
s economically advantageous (Andersson, Erlanson, Spiro, & Östling,
020; Arellano, Bai, & Mihalache, 2020; Coibion et al., 2020). The main
bjective of this study is to reduce the disease burden (here measured as
he peak of the infected population) while simultaneously minimizing
he length of time that the population is socially distanced.

.2. Periodic relaxation policies

The timing of one-shot pulses is analyzed in this work, but other
olicies may be preferred economically. For example, we also con-
ider periodically relaxing social distancing mandates, which allow for
cheduled economic activity. We find that the peak of the infected
ompartment is non-monotonic with respect to both the scheduling
427

eriod and the ratio between the time of social distancing and the
period (Bin et al., 2020; Gevertz et al., 2020). Such strategies can
delay the infected peak. Our simulations and analysis suggest that the
peaks of infected populations under periodic relaxation policies can be
significantly reduced (between 30–50%), if they are combined with a
strict single pulse of social distancing at a proper time.

1.3. Outline of this work

In the following section, we begin by giving a mathematical de-
scription for one-shot social distancing policy during an epidemic. We
investigate the overall peak reduction in the infected population of
the classic SIR model and a number of its variants in Section 3. We
numerically discover a near linear optimal trade-off between the social
distancing start time and duration, which seems to be ubiquitous among
all models considered. This behavior can be explained by analytical
considerations, at least for the SIR model. In Section 4, we summarize
the conclusions as well as limitations of the work presented.

2. Mathematical modeling framework

Deterministic population models are commonly used to model the
spread of an epidemic like COVID-19 (Brauer et al., 2019; Gevertz
et al., 2020; Kermack & McKendrick, 1927). Although some assump-
tions (such as population homogeneity) are not precisely accurate, such
frameworks still provide invaluable insight in predicting the spread
of the disease, and can be utilized to inform policy decisions in the
presence of a pandemic.

We note that in epidemic models described by Ordinary Differ-
ential Equations (ODEs) where the recovered population is immune
to reinfection (no transitions from the recovered compartment back
to the susceptible compartment), infections may be eradicated only
asymptotically (see Appendix D); that is, at any finite time, the pro-
portion of infected individuals will be non-zero. Of course, physically
this is unrealistic, and if the proportion of individuals affected is less
than the proportion of a single person, the disease should be deemed
eradicated. We note that this can be implemented via a threshold for
the infected compartment (e.g. a proportion of 10−7), where the disease
is considered eradicated once the infected compartment drops below
this threshold. Alternatively, one may use corresponding stochastic
models that may (with non-zero probability) reach zero in finite time
(e.g. Rajabi et al., 2020).

Obviously, a strict social distancing or quarantine mandate at the
very beginning of an epidemic may significantly impede the infection.
In this case the number of remaining susceptible population (𝑆𝑡→∞) will
be close to the initial susceptible population (𝑆𝑡=0). In other words, the
number of total infected individuals will be limited to 𝐼𝑡=0. However,
this might be difficult to achieve for highly contagious diseases such as
COVID-19.

2.1. Review of SIR model

As a first step, before considering more complex scenarios, we
review the standard SIR model (Kermack & McKendrick, 1927). This
model takes the form of a set of three coupled ODEs as follows:

�̇� = −𝛽𝑆𝐼,

�̇� = 𝛽𝑆𝐼 − 𝛾𝐼,

�̇� = 𝛾𝐼.

(1)

Here 𝛽 is the transmission rate between the susceptible 𝑆 and infected
𝐼 individuals in a well-mixed population, and 𝛾 is the rate of recovery
into the recovered (removed, here immune) 𝑅 compartment. The SIR
model can be used as an approximation to COVID-19 dynamics if
immunity is long-lasting, which seems appropriate given time scales
of the distancing policies considered here (less than one year, see
below). Note that deceased and recovered individuals are combined
into a single removed compartment 𝑅. The initial conditions are fixed
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as (𝑆(0), 𝐼(0), 0) with a small initial value for the infected compartment
(0), and

(0) + 𝐼(0) = 1. (2)

hat is, we have normalized the variables so that all compartments
enote percentages of the population, and not raw population numbers.
e may translate directly to raw population numbers by multiplying

he fractions (𝑆, 𝐼, 𝑅) by the total population.

.2. Single interval social distancing

Social distancing is currently being implemented via a variety of
ifferent techniques. For example, in many locations local and federal
overnments are issuing rules related to quarantine and isolation, as
ell as regulations for wearing masks and avoiding non-essential in-

eractions to reduce contact rates (Kai, Goldstein, Morgunov, Nangalia,
Rotkirch, 2020). In the SIR model discussed in Section 2.1, social

istancing may be mathematically modeled by temporarily reducing
he transmission rate of the disease, i.e. parameter 𝛽.

As an example, consider a single interval of social distancing (a one-
hot pulse), represented mathematically as a time-varying transmission
ate 𝛽(𝑡) in Eq. (3):

(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝛽𝑛, 0 ≤ 𝑡𝑠,
𝛽𝑑 , 𝑡𝑠 ≤ 𝑡 < 𝑡𝑠 + 𝑡𝑑 ,
𝛽𝑛, 𝑡𝑠 + 𝑡𝑑 ≤ 𝑡.

(3)

ere we assume that 𝛽 can be effectively reduced from 𝛽𝑛 (contact rate
uring normal time for non-distanced population) to 𝛽𝑑 (contact rate
uring social distancing) during distancing. Here distancing regulations
re enacted at day 𝑡𝑠, which corresponds to a decrease in the transmis-
ion rate 𝛽𝑛 → 𝛽𝑑 . Regulations are implemented for 𝑡𝑑 days, until day
𝑠+𝑡𝑑 after which they are completely relaxed, i.e. 𝛽𝑑 → 𝛽𝑛. Note that for
ther models, distancing may be implemented differently. For example,
n an infection-aware community, viral transmission may be reduced as
he number of confirmed cases increases during an epidemic (Franco,
020), hence yielding a feedback law governing 𝛽 = 𝛽(𝐼). For a
isualization of (3), see Fig. 1.

We investigate how the start time 𝑡𝑠 and duration 𝑡𝑑 affect the peak
f the infected compartment. Note that prolonged distancing cannot
e enacted without severe economical/sociological consequences, so
hat the timing of an interval of distancing is of great interest. A
igorous analysis has been performed in Federico and Ferrari (2020)
o find the optimal schedule of distancing based on the SIR model
nd cost function that minimizes a combination of the total number of
eaths and the peak of the infected compartment. Indeed, the authors
n Federico and Ferrari (2020) find a distancing policy of the form (3)
s optimal, which motivates us to investigate the precise switching
imes 𝑡𝑠 and 𝑡𝑑 . That is, we are interested in understanding when social
istancing should be implemented, hence called properly timed social
istancing here, for a specific distancing period. In the following we
ill study this problem for a subset of recently proposed models that
ave been introduced to understand the spread of COVID-19.

. Results

In this section, we discover an almost linear relationship between
he start time 𝑡𝑠 and a finite duration of optimal one-shot social dis-
ancing 𝑡𝑑 (see Fig. 1, which represents a simple model of single
nterval social distancing as a one-shot pulse input). We begin with
he SIR model and observe a linear trade off between the start time
nd duration of social distancing. We note a distinctive ‘‘V’’ shaped
attern in the heat maps/contour plots, and analyze this geometry
athematically. Then, we perform similar numerical simulations for

ther epidemic models that have been recently proposed for describing
428

OVID-19. We find that the ‘‘V’’ shaped pattern is consistent among all a
f these models, and we believe it is a universal feature in epidemic
odels.

Lastly, we investigate periodic relaxation policies that have been
ecently proposed by Bin et al. (2020) and Karin et al. (2020); our goal
s to understand their limitations. We also show that a well-timed one-
hot social distancing pulse can significantly reduce the infected peak,
hen applied in conjunction with periodic relaxation strategies.

.1. Single-pulse response

Fig. 2 represents the peak of the infected population in response
o a single interval of social distancing for the SIR model (1). Fig. 2a

represents the maximum of the infected population,

Max(𝐼) ∶= max
𝑡∈[0,∞)

{𝐼(𝑡)}, (4)

s a function of the distancing start time 𝑡𝑠 and duration 𝑡𝑑 . Note that
ark blue color corresponds to high maximum infection, with lighter
olors representing lower values in the peak of the infection. Based on
he model parameters and initial conditions defined in Appendix C.1,
t can be observed that the maximum infection has been reduced by
0% with properly timed distancing. For example: social distancing
t disease onset (𝑡𝑠 = 0) for a duration of 𝑡𝑑 = 50 days would not
e effective in reducing maximum infection (Max(𝐼) = 0.4) as the
nfected peak happens after the social distancing interval; however,
y increasing the length of social distancing to 160 days (𝑡𝑑 = 160),
e observe a reduction in the maximum infection by more than 50%

Max(𝐼) = 0.15). Note that the latter regimen also avoids a second wave
f infection after the social distancing interval. Fig. 2 represents the
nfected peak Max(𝐼), and not the time 𝑡𝑝 at which this peak occurs:

𝑝 ∶= argmax
𝑡∈[0,∞)

{𝐼(𝑡)}. (5)

imilar representations as in Fig. 2 are used for other models considered
n latter sections of the manuscript. For information on parameters used
n this and all subsequent sections, see Appendix C.

The dashed vertical line in Fig. 2a indicates the time at which the
nfected peak under no distancing mandates would peak; we call this
he ‘‘virtual peak’’. Note that implementing social distancing after the
ertical line (a too late start time 𝑡𝑠) has no effect on infected peak
eduction. In general, we observe that there are schedules such that
ne-shot pulses effectively reduce the infected peak up to 50% of the
irtual peak. Specifically, from the left side of the dashed vertical line,
e see that social distancing can be effective if it is implemented early
nough.

We denote the combination of diagonal and vertical sections of the
ontours in Fig. 2b as a characteristic ‘‘V’’ shaped pattern. Intuitively,
e expect a vertical line as the boundary between the blue and white
rea in Fig. 2a, because implementing too late means that distancing
olicies will have little effect on reducing the spread of the disease;
here are already too many infected individuals. Indeed, it is clear that
s we decrease 𝛽 (enact social distancing), the peak of infected popu-
ation decreases, if social distancing is enacted quickly enough. Similarly,
ny social distancing policy initiated after the virtual peak would be
neffective in decreasing the peak (see Section 3.2).

However, we note a large transition region in start times 𝑡𝑠 before
he non-distanced peak actually occurs; that is, distancing must be
mplemented before the occurrence of the peak of the infected pop-
lation under no social distancing mandate, if we are to significantly
nhibit the disease burden. This is non-intuitive, and it is important for
olicy-makers to understand this gap during which one-shot pulses are
ensitive to the start time 𝑡𝑠. This can be explained by sensitivity of
he infected peak to start time, with details provided in Section 3.2.
he infected peak is very sensitive to start times in a narrow band,
ue primarily to sensitivity of the integral curves of the SIR model in

region of the (𝑆, 𝐼) phase-space. In the provided simulations (Fig. 2),
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Fig. 1. Single interval social distancing during an epidemic for the SIR model. Here social distancing starts at day 𝑡𝑠 = 20, and lasts for 𝑡𝑑 = 40 days, after which regulations are
completely relaxed.
Fig. 2. Infected peak, Max(𝐼), under single interval social distancing (SD) policy. Time is measured in days, and the parameters used for the SIR model are 𝛽𝑛 = 0.2, 𝛽𝑑 = 0.1, and
𝛾 = 0.05 (see Eqs. (1) and (3)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the time scales are on the orders of days, but in general depend on
specific parameter values.

The diagonal dashed line in Fig. 2b represents an almost linear
trade-off between the start and the duration of the social distancing.
We can understand this theoretically: we show below that the slope of
this line is given approximately, as a function of the non-distanced and
distanced transition rates and the removal (recovery) rate (𝛽𝑛 𝛽𝑑 , and
𝛾 respectively), by the following formula:

−
𝛽𝑛 − 𝛾
𝛽𝑑 − 𝛾

. (6)

For example, the slope of the diagonal line in Fig. 2b is approximately
−3, with 𝛽𝑑 = 0.1, 𝛽𝑛 = 0.2, and 𝛾 = 0.05.

To derive (6), consider the linear approximation for the infected
population (42), derived in Appendix A.2. For convenience, we provide
the formula below:

𝐼(𝑡) ≈ 𝐼(0) exp ((𝛽 − 𝛾)𝑡). (7)

Hence, if 𝑡𝑝 denotes the time of the peak infected population, we have

𝐼𝑝 ≈ 𝐼(0) exp ((𝛽 − 𝛾)𝑡𝑝). (8)

To understand the dynamics, intuitively one can utilize the above
formula from 𝑡 = 0 to 𝑡 = 𝑡𝑠 with no social distancing enacted, and a
one-shot pulse with duration of 𝑡𝑑 (i.e. from time 𝑡 = 𝑡𝑠 to 𝑡 = 𝑡𝑠 + 𝑡𝑑).
Note that the two formulas are connected via their initial conditions,
which are 𝐼(0) and 𝐼(𝑡𝑠), respectively. Hence, the infected compartment
at time 𝑡 = 𝑡𝑠 + 𝑡𝑑 can be approximated as

𝐼(𝑡 = 𝑡𝑠 + 𝑡𝑑 ) ≈ 𝐼(0) exp ((𝛽𝑛 − 𝛾)𝑡𝑠 + (𝛽𝑑 − 𝛾)𝑡𝑑 ). (9)

If the infected compartment reaches its fixed maximum value at time
𝑡𝑝 = 𝑡𝑠 + 𝑡𝑑 , then Eq. (9) implies that 𝑡𝑠 and 𝑡𝑑 are related by

(𝛽𝑛 − 𝛾)𝑡𝑠 + (𝛽𝑑 − 𝛾)𝑡𝑑 = �̃�. (10)

for a constant �̃�. Here �̃� is a function of 𝐼𝑝, but not 𝑡𝑠 and 𝑡𝑑 .
Hence the contours of constant 𝐼max in Fig. 2b can be approximated

by parallel lines, each with slope given by (6). By observing the
contours of Fig. 2b, we see a similar parallel structure. The diagonal
429
dashed line represents the slope (6), which appears to agree with the
contour lines.

The blue region at the bottom left side of Fig. 2a represents the
social distancing policies with a short duration that start too early.
The higher infected peak indicates that the peak of the infected com-
partment occurs after distancing relaxation; note that such policies
have approximately the same infected peak as if distancing was never
implemented (compare to 𝑡𝑑 = 0 days). Although such policies delay the
infected peak and provide more time for the discovery of new testing
and treatment methods, they are not effective in reducing the infected
peak.

Although it is not the main focus of this manuscript, we note that
social distancing policies can be modeled in combination with mask
mandates through the transmission rate 𝛽 in the SIR model (and hence
by extension, more complicated epidemic models). In general, 𝛽 can
be interpreted as a product of two terms: (a) the rate of meeting
infected individuals, and (b) the probability of contracting the disease
once an infected individual is encountered. Wearing masks reduces
the latter, but does not inherently affect the former. Hence, when a
specific social distancing protocol is implemented, the ratio between
𝛽𝑛 and 𝛽𝑑 is preserved between distancing and relaxation scenarios, as
wearing masks reduces the rates 𝛽𝑛 and 𝛽𝑑 by the same constant factor.
This provides a simple yet intuitive means of modeling the combined
effects of mask mandates and social distancing, and it also allows us
to predict how the ‘‘V’’ shaped pattern seen in Fig. 2 changes if masks
are worn. An example is shown in Fig. 3, where the ratio between 𝛽𝑛
and 𝛽𝑑 remains as in Fig. 2, but smaller individual transmission rates
are assumed due to individuals wearing masks. Note that from (6), a
slightly different characteristic slope appears, but if 𝛾 is small, then this
slope is approximately the same as in the non-masked case.

3.2. A theoretical explanation for the phase transition observed in Fig. 2a

Fig. 2a exhibits a remarkable feature: there is a rather abrupt transi-
tion from effective (white) to ineffective (blue) policies, depending on
the starting time of distancing policies. In this section, we examine if
this observation can be understood theoretically. In other words, can

we estimate the rather narrow region where the transition occurs?



Annual Reviews in Control 51 (2021) 426–440M. Sadeghi et al.
Fig. 3. Infected peak, Max(𝐼), for a single interval of social distancing for both a normal (a) and masked (b) populations in SIR model (1). Both populations have the same ratio
of transmission rates 𝛽𝑛∕𝛽𝑑 = 2. The ranges of the plots are picked so as to highlight the ‘‘𝑉 -shape’’ pattern.
We answer this question as follows. We consider the SIR model,
where social distancing is initiated at time 𝑡𝑠. Note that we are ana-
lyzing the behavior of the model with respect to the horizontal axis in
Fig. 2; in this section we thus ignore the duration of distancing (𝑡𝑑)
and hence assume distancing remains in effect until the end of the
simulation. Here we give a characterization of peak of the infected
population as a function of 𝑡𝑠.

Fix an SIR model with time-varying 𝛽(𝑡), such that

𝛽(𝑡) =
{

𝛽𝑛, 0 ≤ 𝑡 ≤ 𝑡𝑠,
𝛽𝑑 , 𝑡𝑠 < 𝑡 ≤ 𝑡𝑓 .

(11)

We assume that 𝛽𝑛 > 𝛽𝑑 , so that distancing has the effect of reducing
the transmission rate of the disease. Here 𝑡𝑓 is the entire period under
consideration. Our goal is to understand the peak of the infected
population, 𝐼𝑝, as a function of the switching time 𝑡𝑠.

Note that by changing 𝛽𝑛 to 𝛽𝑑 we have effectively reduced the basic
reproduction number 𝑅0:

𝑅0(𝛽) =
𝛽
𝛾
. (12)

From Eq. (34), we see that such a switch then increases the value
𝑆𝑝 = 𝑆𝑝(𝛽), given by

𝑆𝑝(𝛽) =
1

𝑅0(𝛽)
. (13)

the susceptible population at the global maximum value of 𝐼 over the
entire integral curve

𝐼 = 𝑆(𝑡𝑠) + 𝐼(𝑡𝑠) − 𝑆 + 1
𝑅0(𝛽𝑑 )

ln
(

𝑆
𝑆(𝑡𝑠)

)

. (14)

Of course, this global maximum may not be attained by the forward-
time trajectory, and is generally reached if and only if the switching
time 𝑡𝑠 satisfies

𝑆(𝑡𝑠) ≥ 𝑆𝑝(𝛽𝑑 ),

= 1
𝑅0(𝛽𝑑 )

.
(15)

Note that if (15) is violated, the maximum value of 𝐼 along the
trajectory is given simply by 𝐼(𝑡𝑠) (see also Eq. (19) below and the
subsequent discussion).

This then allows us to compute the value of 𝐼𝑝 as a function of
the state (𝑆(𝑡𝑠), 𝐼(𝑡𝑠)), where 𝑡𝑠 is the time at which social distancing
is implemented. We first assume that both 𝛽𝑛 and 𝛽𝑑 are such that

𝑅0(𝛽𝑛), 𝑅0(𝛽𝑑 ) > 1. (16)

The above then implies that the infected population may increase
in both the normal and distanced environments, if the susceptible
population at the distancing time 𝑡𝑠 is large enough (see (19) below).
Note that this matches the parameter values utilized in Fig. 2, where

𝑅0(𝛽𝑛) = 4,
(17)
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𝑅0(𝛽𝑑 ) = 2.
Since 𝑅0 increases as a function of 𝛽, Eq. (13) implies that

𝑆𝑝(𝛽𝑛) < 𝑆𝑝(𝛽𝑑 ). (18)

Assuming (16), we are able to compute the maximum of the infected
population as a function of the susceptible population at the time 𝑡𝑠:

𝐼𝑝 =

⎧

⎪

⎨

⎪

⎩

𝐼(𝑡𝑠) + 𝑆(𝑡𝑠) −
1

𝑅0(𝛽𝑑 )
(1 + log(𝑆(𝑡𝑠)𝑅0(𝛽𝑑 ))), 𝑆𝑝(𝛽𝑑 ) ≤ 𝑆(𝑡𝑠) ≤ 1,

𝐼(𝑡𝑠), 𝑆𝑝(𝛽𝑛) ≤ 𝑆(𝑡𝑠) ≤ 𝑆𝑝(𝛽𝑑 ),
𝑆(0) + 𝐼(0) − 1

𝑅0(𝛽𝑛)
(1 + log(𝑆(0)𝑅0(𝛽𝑛))), 0 ≤ 𝑆(𝑡𝑠) < 𝑆𝑝(𝛽𝑛).

(19)

Eq. (19) can be understood as follows. Recall that 𝑆(0) ≈ 1 and that
𝑆 is decreasing. Hence an early time 𝑡𝑠 corresponds to 𝑆(𝑡𝑠) close to
1, while waiting longer decreases the value 𝑆(𝑡𝑠). Hence left-to-right in
Fig. 2 corresponds to top-to-bottom in Eqs. (19).

The first case occurs if 𝑡𝑠 is less than the time at which the peak
value of the infective state would have been attained, if one had
imposed social distancing from time zero. Note this peak always oc-
curs, as a function of state 𝑆, before the non-distanced peak by (18).
Specifically, 𝐼 was increasing for 𝑡 ∈ [0, 𝑡𝑠] and at 𝑡𝑠 satisfies

lim
𝑡→𝑡−𝑠

𝑑𝐼
𝑑𝑡

(𝑡) ≥ 0,

lim
𝑡→𝑡+𝑠

𝑑𝐼
𝑑𝑡

(𝑡) ≥ 0.
(20)

Thus, 𝐼 is increasing at 𝑡𝑠, and as 𝛽(𝑡) ≡ 𝛽𝑑 for 𝑡 > 𝑡𝑠, the maximum of 𝐼
(for all 𝑡 ∈ [0, 𝑡𝑓 ]) occurs at the peak of the distanced dynamics, which is
given by (37), with new initial conditions (𝑆(𝑡𝑠), 𝐼(𝑡𝑠)) and 𝑅0 = 𝑅0(𝛽𝑑 ).
This is precisely the first formula in (19).

If time 𝑡𝑠 is large enough so that 𝑆𝑝(𝛽𝑛) ≤ 𝑆(𝑡𝑠) ≤ 𝑆𝑝(𝛽𝑑 ), then 𝐼(𝑡)
must satisfy

lim
𝑡→𝑡−𝑠

𝑑𝐼
𝑑𝑡

(𝑡) ≥ 0,

lim
𝑡→𝑡+𝑠

𝑑𝐼
𝑑𝑡

(𝑡) ≤ 0.
(21)

Since 𝐼 was increasing for 0 ≤ 𝑡 ≤ 𝑡𝑠, the maximum of 𝐼 occurs at 𝑡 = 𝑡𝑠,
and hence yields the second formula in (19).

Lastly, if 𝑡𝑠 is long enough so that 𝑆(𝑡𝑠) < 𝑆𝑝(𝛽𝑛), then

lim
𝑡→𝑡−𝑠

𝑑𝐼
𝑑𝑡

(𝑡) ≤ 0,

lim
𝑡→𝑡+𝑠

𝑑𝐼
𝑑𝑡

(𝑡) ≤ 0.
(22)

Thus, the peak of the infected compartment occurred at an earlier time,
before distancing was enacted, with 𝛽 = 𝛽𝑛. This peak value is given
precisely by (37), with 𝛽 = 𝛽𝑛, since the overall peak value is given by
the peak value of the non-distanced dynamics; this corresponds to the
third formula in (19). For a visualization of all three cases, see Fig. 4.
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Fig. 4. Integral curves defined by changing 𝛽 (see Eq. (11). The blue curve corresponds to 𝛽 = 𝛽𝑛 (non-distanced), and the red corresponds to 𝛽 = 𝛽𝑑 (socially distanced). The
time 𝑡𝑠 denotes the time when social distancing is enacted. All cases assume 𝑆(0) ≈ 1. The three figures (left-to-right) denote the three different formulas stated in Eqs. (19) for
𝐼𝑝 (top-to-bottom). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Formula (19) allows us to estimate the differential sensitivity of
𝐼𝑝 with respect to 𝑡𝑠. First note that this sensitivity is approximately
proportional to the differential sensitivity of 𝐼𝑝 with respect to 𝐼(𝑡𝑠),
since (assuming 𝑆(0) ≈ 1 and that 𝑆 is relatively constant on [0, 𝑡𝑠]):

𝐼(𝑡𝑠) ≈ 𝐼(0)𝑒(𝛽𝑛−𝛾)𝑡𝑠 , (23)

or

log(𝐼(𝑡𝑠)) ≈ log(𝐼(0)) + (𝛽𝑛 − 𝛾)𝑡𝑠. (24)

That is, the two differential sensitivities (𝐼𝑝 with respect 𝑡𝑠, and 𝐼𝑝
with respect to 𝐼(𝑡𝑠)) differ by a factor (𝛽𝑛 − 𝛾)𝑡𝑠. In the remainder, we
compute the differential sensitivity of 𝐼𝑝 with respect to 𝐼(𝑡𝑠) as a proxy
for the true sensitivity of 𝐼𝑝 with respect to 𝑡𝑠 (the quantity of interest
from Fig. 2).

We now compute the differential sensitivity of 𝐼𝑝 with respect to
𝐼(𝑡𝑠) using Eq. (19). The following analysis is for all 𝑆(𝑡𝑠) ∈ [0, 1], but
we must first understand where this formula actually defines a function.
𝐼𝑝 is a function of 𝐼(𝑡𝑠) only if the latter’s range is restricted to include
regions where 𝐼(𝑡𝑠) is invertible (with respect to 𝑡𝑠). Since 𝐼(𝑡𝑠) has
a relative maximum at distancing time 𝑡𝑠 such that 𝑆(𝑡𝑠) = 𝑆𝑝(𝛽𝑛),
it is clear that the domain of 𝐼𝑝 must be restricted into two regions:
𝐼(𝑡𝑠) with 𝑆(𝑡𝑠) ∈ [𝑆𝑝(𝛽𝑛), 1] (where 𝐼(𝑡𝑠) is non-decreasing) and 𝐼(𝑡𝑠)
with 𝑆(𝑡𝑠) ∈ [0, 𝑆𝑝(𝛽𝑛)) (where 𝐼(𝑡𝑠) is decreasing). With the above
understanding as to an appropriate domain, we compute the differential
sensitivity of 𝐼𝑝 with respect to 𝐼(𝑡𝑠):

𝑑 log 𝐼𝑝
𝑑 log 𝐼(𝑡𝑠)

=
𝐼(𝑡𝑠)
𝐼𝑝

⋅
𝑑𝐼𝑝

𝑑𝐼(𝑡𝑠)
. (25)

Eq. (19) then allows us to immediately compute the sensitivity if 𝐼(𝑡𝑠)
is such that 𝑆(𝑡𝑠) ∈ [0, 𝑆𝑝(𝛽𝑑 )):

𝑑 log 𝐼𝑝
𝑑 log 𝐼(𝑡𝑠)

=
{

1, 𝑆𝑝(𝛽𝑛) ≤ 𝑆(𝑡𝑠) ≤ 𝑆𝑝(𝛽𝑑 ),
0, 0 ≤ 𝑆(𝑡𝑠) < 𝑆𝑝(𝛽𝑛).

(26)

Note that the above regions correspond to Figs. 4b–4c, and is obtained
by differentiating the second and third formulas in (19). In words, (26)
says that the differential sensitivity is relatively large and constant for 𝑡𝑠
such that 𝑆𝑝(𝛽𝑛) ≤ 𝑆(𝑡𝑠) ≤ 𝑆𝑝(𝛽𝑑 ), and then drops to 0 for larger 𝑡𝑠 (recall
that 𝑆(𝑡𝑠) decreases as a function of 𝑡𝑠). Thus the social distancing start
time should have no effect on 𝐼𝑝 if 𝑆(𝑡𝑠) < 𝑆𝑝(𝛽𝑛), whereas there is a
band of social distancing start times where 𝐼 increases rapidly. Note
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𝑝

for the parameter values utilized in Fig. 2, we compute

𝑆𝑝(𝛽𝑛) = 0.25,

𝑆𝑝(𝛽𝑑 ) = 0.5.
(27)

and simulating we obtain the corresponding critical start time region
(where 𝑆(𝑡𝑠) = 𝑆𝑝(𝛽𝑑 ), 𝑆𝑝(𝛽𝑛)) as

𝑡𝑠 ∈ [45.25, 54.12]days. (28)

This is in close agreement with the region observed in Fig. 2, and hence
describes the vertical transition band numerically computed.

Analyzing the sensitivity at earlier start times (𝑡𝑠 such that 𝑆(𝑡𝑠) ∈
(𝑆𝑝(𝛽𝑑 ), 1)) is more challenging using Eq. (19), since it requires taking
a derivative of 𝑆(𝑡𝑠) with respect to 𝐼(𝑡𝑠). We note that we expect the
sensitivity to be small for sufficiently early distancing times 𝑡𝑠, since
we observe only slight variation in 𝐼𝑝 from Fig. 2 at small 𝑡𝑠 (and large
𝑡𝑑 , as we are not relaxing social distancing in this analysis). Hence we
conjecture that the sensitivity is largest exactly in the band given by (28).

Numerically we compute the differential sensitivity of 𝐼𝑝 for the
first two regions given in (19) (𝑡𝑠 such that 𝑆(𝑡𝑠) ∈ [𝑆𝑝(𝛽𝑛), 1]); see the
blue curve in Fig. 5. The two regions plotted correspond to the times 𝑡𝑠
where 𝐼(𝑡𝑠) is increasing. Note the approximate constant sensitivity of
1, as predicted by the first expression in (26), for 𝑡𝑠 such that 𝑆(𝑡𝑠) ∈
(𝑆𝑝(𝛽𝑛), 𝑆𝑝(𝛽𝑑 )). We further observe a small sensitivity for small 𝐼(𝑡𝑠)
(hence small 𝑡𝑠), which was also expected from Fig. 2. The differential
sensitivity then appears to gradually increase in value, until it reaches
1 near the transition region (𝑆(𝑡𝑠) = 𝑆𝑝(𝛽𝑑 ), and 𝐼(𝑡𝑠) = 0.33). As
computed in (26), the sensitivity is 1 for larger 𝐼(𝑡𝑠). Hence, at least
for parameter values utilized in the above, we find an interval of
critical distancing start times for which the maximum of the infected
population is most sensitive.

Lastly, we approximate the differential sensitivity in the initial re-
gion where 𝑑 log 𝐼𝑝

𝑑 log 𝐼(𝑡𝑠)
increases from 0 to 1 by making the approximation

that

𝑆(𝑡𝑠) + 𝐼(𝑡𝑠) = 1. (29)

in (19). Note that this should be accurate for small 𝑡𝑠, when 𝑅(𝑡𝑠) ≈ 0,
but in general will not be true for larger times. Replacing 𝑆(𝑡𝑠) by
1 − 𝐼(𝑡𝑠) in the first formula of (19) and differentiating with respect
to 𝐼(𝑡𝑠) yields the approximation
𝑑 log 𝐼𝑝 ≈ 1

⋅
1

⋅
𝐼(𝑡𝑠) . (30)
𝑑 log 𝐼(𝑡𝑠) 𝑅0(𝛽𝑑 ) 1 − 𝐼(𝑡𝑠) 𝐼𝑝
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Fig. 5. Differential sensitivity of 𝐼𝑝 with respect to 𝐼(𝑡𝑠). Numerical approximation
of sensitivity is indicated by the blue curve, corresponding to region where 𝐼(𝑡𝑠) is
increasing (first two formulas in (19)). 𝐼(𝑡𝑠) ∈ [0.33, 0.4] is the transition region in (19).
Orange curve is approximation to sensitivity given by Eq. (30). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

where 𝑆𝑝(𝛽𝑑 ) < 𝑆(𝑡𝑠) < 1. This formula is the orange curve in Fig. 5. As
expected, this approximation seems to be accurate initially, but soon
diverges from the numerically computed sensitivity.

We make a final note concerning the above approximation related
to the duration of social distancing, 𝑡𝑑 . Recall that we assumed that 𝑡𝑑
was large, and hence considered a switched system of the form (11),
and thus our analysis focused on two integral curves (corresponding to
𝛽𝑛 and 𝛽𝑑 ; see Fig. 4). It is possible that the reduction in transmission
rate (𝛽𝑛 → 𝛽𝑑) is such that

lim
𝑡→∞

𝑆(𝑡) > 𝑆𝑝(𝛽𝑛). (31)

In this case, 𝑅0(𝛽𝑛) > 1, so that the reintroduction of even one infected
individual into the population will stimulate an epidemic if distancing
mandates are relaxed (𝛽𝑑 → 𝛽𝑛). Hence although the calculations are
completely valid in the case of an infinitely long duration 𝑡𝑑 , the
resulting dynamics in a ‘‘real-world’’ scenario, that is, one in which
social distancing is ceased, may still result in an unstable system at
risk of future outbreaks. This further necessitates the need for a careful
design of single-pulse strategies of social distancing. See Giordano,
Blanchini, Bruno, Colaneri, Di Filippo, Di Matteo, and Colaneri (2020a)
for a further discussion of this phenomenon.

3.3. Are the above dynamic properties universal features of more complex
models?

One may reasonably ask whether the features observed for the
SIR model hold for more complex examples. For example, is the ‘‘𝑉
shape’’ in Fig. 2 a universal property? Perhaps surprisingly, it appears
that the answer is ‘‘yes’’. The SIR model is relatively simple, and
thus its properties are easier to analyze compared to complex multi-
compartment systems. However, we can use simulations for these
models to investigate the universality of the phenomenon (Fig. 6).

We investigated several epidemic models that have been recently
formulated to capture the spread of COVID-19. Each model is simulated
as in Section 3.1, utilizing parameters used in the respective papers and
thought to be appropriate, based on data available at the time, for the
COVID-19 pandemic.

We briefly describe the models simulated in Fig. 6. The SAIR system
is a simple variation of the SIR model that includes an additional
compartment 𝐴 for asymptomatic infected individuals (Grunnill, 2018;
Robinson & Stilianakis, 2013). fSIR is an infection aware population
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model with the same number of compartments as the SIR model with
the additional assumption that the contact rate between individuals
decreases as a function of the infected population (Franco, 2020).
The 6-compartment SIR model is a variation of the SIR model that is
obtained by dividing the susceptible population into two categories:
socially distanced and non-distanced populations (Gevertz et al., 2020).
The SIQR model is also a variation of the SIR model that includes an
additional compartment 𝑄 for the quarantined population (Pedersen
& Meneghini, 2020), and the SIDARTHE model is a more complicated
variation of the SIR model with 8 different compartments proposed to
describe COVID-19 in Italy (Giordano et al., 2020a, 2020b).

The ‘‘V’’ shape pattern observed in Fig. 2 seems to be consistent
among these more complicated epidemic models (Fig. 6) and similar
trade-offs between the start time and duration of social distancing
exist. We conjecture that this behavior is preserved for a large class
SIR-derived models due to the both the similar network structure and
control (effect of social distancing on 𝛽) present in many types of
epidemic models.

Although the range of the infected peak is different among these
models, the reduction in magnitude between the virtual peak and that
under socially distancing is about 50% in every case. Also, the slope of
the diagonal border between the blue (high) and white (low) regions
can be approximated by Eq. (6).

3.4. Periodic relaxation

From an economic perspective, periodic relaxation of social distanc-
ing is favorable to prolonged single interval strategies (Karin et al.,
2020). A policy with regular periods of distancing and relaxation can
significantly delay the time of the peak of the epidemic, while still
allowing limited economic activity (Bin et al., 2020; Gevertz et al.,
2020; Karin et al., 2020).

Fig. 7 provides numerical simulations of the SIR under periodic
relaxation with different periods 𝑇 (shown on the horizontal axis) and
closed business-time ratios 𝑟 (shown on the vertical axis). Here 𝑟 is
defined as the ratio between the duration of social distancing and
the period of distancing. As in the previous section, the maximum
infected population is plotted as a measure of the outcome of different
distancing strategies. For systems that are affine in control (here viewed
as the contact rate in epidemic models), fast switching policies behave
similarly to constant social distancing regimens with transmission rate
𝛽:

𝛽 = 1
𝑇 ∫

𝑇

0
𝛽(𝑡) d𝑡. (32)

Recall that time 𝑇 denotes one period of social distancing and relax-
ation, and hence 𝛽 represents the time-averaged transmission rate (see
Appendix B). Indeed, examining Fig. 7b, we observe that as the period
𝑇 decreases, the infected peak converges to the response corresponding
to a constant 𝛽 which corresponds to the value given in (32). On the
other hand, as the period 𝑇 increases, the infected peak will be less
dependent on the weighted average of the transmission rate. Observe
also that the infected peak is not monotonic with respect to either
the period 𝑇 of the social distancing relaxation policy or the ratio 𝑟
of distancing. In Section 3.5, we argue that this behavior is due to
‘‘mistiming’’ the social distancing mandate. This behavior has been also
observed in Bin et al. (2020) and Gevertz et al. (2020).

The limitation of such policies is that the peak of the infected
population is a function of both 𝛽𝑛 and 𝛽𝑑 , while the peak of the infected
population with a single interval of social distancing at a proper time
will only be dependent on the social distancing transmission rate 𝛽𝑑 .
This can be seen in Fig. 9, where we observe that the peak of the
infected population during a single interval social distancing strategy is
almost identical to the infected peak for a population that is indefinitely
distanced (compare the maximums of the solid blue and black curves).
In what follows, we propose a combination of a single-pulse and
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Fig. 6. Recent models proposed to capture the COVID-19 behavior show the ‘‘V’’ pattern. Models and their parameters are fully presented in Appendix C. The ratio between
transmission rates of normal and socially distanced populations (𝛽𝑛∕𝛽𝑑 ) is fixed at 2 for all models. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 7. Infected peak Max(𝐼) of SIR model (1) under various periodic distancing policies with different period 𝑇 and ratio of social distancing 𝑟. See Fig. 2 for parameter values.
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Fig. 8. Effect of periodic relaxation policy in combination with a single interval social distancing for SIR model with parameters 𝛽𝑛 = 0.2, 𝛽𝑑 = 0.1, and 𝛾 = 0.05. The dashed
orange line, which represents the infected compartment peak time without single interval social distancing policy (virtual peak), is represented at 𝑡𝑠 = 93.78, 𝑡𝑠 = 94.0, 𝑡𝑠 = 91.0,
and 𝑡𝑠 = 98.0 in Figs. 8b, 8c, 8d, and 8e, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
periodic social distancing policy as an approach that optimally reduces
the infected peak while both allowing periodic economic activity and
delaying the onset of the infected peak.

3.5. Periodic relaxation combined with a single interval of social distancing

The peak of infected population depends non-monotonically on
both the period 𝑇 and ratio 𝑟 of periodic policies. A periodic social
distancing relaxation policy with a large period time 𝑇 may lead to
high transmission rates at the critical time of an epidemic (e.g. at
the potential peak of the infected population). Or it may lead to a
well-timed strategy and hence significantly reduce the infected peak.
To address this uncertainty, we propose combining single-pulse social
distancing with periodic relaxation (Fig. 8).

Fig. 8 illustrates the effect of combining a single pulse of social
distancing and periodic relaxation policies for different periods 𝑇 in
the SIR model. The transmission rate used as an input for the pulsed
strategy is visualized in Fig. 8a. This representation is for periodic social
distancing with period of one week (𝑇 = 7 days), with two days of
relaxation and five days of distancing enacted, i.e. 𝑟 = 5∕7. The single-
pulsed strategy with different start time 𝑡 and duration 𝑡 is simulated
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𝑠 𝑑
in combination with a weighted average transmission rate (Fig. 8b) and
periodic pulsed strategies with different periods of 𝑇 = 1 day, 𝑇 = 7
days, and 𝑇 = 14 days in Figs. 8c, 8d, and 8e, respectively. Note that for
small period 𝑇 = 1, the periodic relaxation policy is well-approximated
by the average transmission rate as discussed in Section 3.4; compare
Figs. 8b and 8c. However, for larger 𝑇 , the corresponding simulations
differ significantly (e.g. Figs. 8b and 8e).

We first note that the single interval of strict social distancing may
generally be delayed for mandates which include periodic relaxation;
compare the horizontal axes (𝑡𝑠) in Figs. 2 and 8. This is advantageous,
as it allows for a longer amount of time for medical professionals and
policy-makers to prepare for the peak of the epidemic. Furthermore,
the amplitude of the infected peak is lower when a periodic relaxation
policy is combined with a single interval social distancing. By com-
paring the dark blue (high) and white (low) regions in Fig. 8 it can
be observed that the infected peak can be reduced by 30% percent
with just one additional single-pulse social distancing at an appropriate
time. The ‘‘V’’ shape pattern is still consistent for the combination
of periodic relaxation and signal interval social distancing policies.
Such policies are feasible to implement during an epidemic, and still
provide opportunities for limited economic activity. Hence a well-timed
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Fig. 9. Optimal social distancing and quarantine period during an epidemic based on different models: (a) The SIR model (1), (b) the SAIR model presented in Appendix C.2,
(c) the six-compartment SIR model with social distancing from Gevertz et al. (2020) presented in Appendix C.4, (d) the fSIR (Franco, 2020) presented in Appendix C.3, (e) the
SIQR model (Pedersen & Meneghini, 2020) presented in Appendix C.5, and (f) and the SIDARTHE model (Giordano et al., 2020a) presented in Appendix C.6. Dashed line shows
the input 𝛽(𝑡) applied in each model as a social distancing control. The black line represents the infected compartment with limited time social distancing, the red line shows the
dynamics of the infected compartment with 𝛽(𝑡) = 𝛽𝑛 (no social distancing), and the blue line represents the scenario of having the social distancing during an entire epidemic
with 𝛽(𝑡) = 𝛽𝑑 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
additional single-pulse of strict social distancing utilized in conjunction
with periodic relaxation may provide an appealing response to an
epidemic.

4. Conclusions and discussion

The white area of the ‘‘V’’ shaped graphs shown in Figs. 2a and 6
represents a linear trade-off between the start time 𝑡𝑠 and the duration
𝑡𝑑 of social distancing. This phenomenon has been illustrated for several
different epidemic models, some of which were recently proposed for
COVID-19. A single interval social distancing would not be effective
in the reduction of the infected peak if the start time is too late (blue
region on the right side of vertical line), or too early (the blue area on
the bottom left side of the diagonal line). On the other hand, a single
interval of social distancing enacted at a proper time can significantly re-
duce the infected peak. Combining such a single interval with periodic
relaxation also appears to significantly reduce the peak of the infected
population, while simultaneously delaying the necessary start time of
the strict distancing period, and hence provides an appealing option for
policy-makers.

4.1. Comparison of optimal single shot and complete social distancing
strategies

Fig. 9 is an example of how well-timed social distancing can reduce
disease burden for each of the investigated models. The dashed black
line is the time-varying transmission rate 𝛽(𝑡), defined by (3), modeling
a single interval of social distancing. The solid black curves represents
the response of the infected compartment to this 𝛽(𝑡), while the red
and blue curves show the response to no and full social distancing,
respectively. That is, comparing to (3), the red curves correspond to a
system with 𝛽(𝑡) ≡ 𝛽𝑛, while the blue curves correspond to 𝛽(𝑡) ≡ 𝛽𝑑 . We
see that the values of the peaks of the black and blue lines are similar,
implying that properly timing a single pulse of social distancing can
have a significant impact on the infected peak; indeed, the response to
such regimen appears to approximate the response to a fully isolated
distancing policy (blue curves).
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Based on Figs. 6 and 2, the start time 𝑡𝑠 and the duration 𝑡𝑑 of a
single interval of social distancing which minimize the infected peak
are not unique. Different values of 𝑡𝑠 and 𝑡𝑑 that correspond to the
white color in the heat maps/contour plots will reduce the infected
peak to approximately the same degree. Furthermore, if we define the
optimal interval of social distancing start time based on a given social
distancing duration, then the range of acceptable social distancing start
times increases as the social distancing duration increases. For example,
examining Fig. 2a, we see that a social distancing policy with a duration
of 𝑡𝑑 = 75 days should be commenced at approximately 𝑡𝑠 ∈ [25, 30],
while a distancing policy with a longer duration of 𝑡𝑑 = 100 days should
be commenced at approximately 𝑡𝑠 ∈ [20, 30]. This latter observation
is important from an implementation perspective, as a larger range
of start times implies less precision is necessary for designing social
distancing strategies. As parameter estimation is difficult, especially in
an evolving pandemic (e.g. March 2020), more robust protocols may
be desirable.

4.2. Robustness of ‘‘V’’ shape pattern

The ratio between transmission rates, 𝛽𝑛∕𝛽𝑑 , is set to 2 for the
simulations represented in Figs. 2, 6, 7, 8, and 9. This ratio is seen to be
approximately proportional in magnitude to the slope of the diagonal
border between the blue and white regions of Fig. 2 in Section 3.1
(see (6) for a more precise expression). By increasing the transmission
rate ratio 𝛽𝑛∕𝛽𝑑 , i.e. by introducing a more draconian social distancing
policy, the magnitude of the slope of the diagonal line increases. Fig. 10
shows the heat map of the normalized infected peak of the investigated
models when, instead, 𝛽𝑛∕𝛽𝑑 = 10. Note that 𝛽𝑛 is the same for the
investigated models in Figs. 6 and 10. It can be observed that social
distancing pulses that take place at an early time of an epidemic will
not be effective in diminishing the peak of the infected population.
Intuitively, the blue area on the left side of vertical white region is for
the scenarios when the infected peak occurs after the social distancing
time interval. But, if a social distancing is imposed from the white
region based on the suggested start time 𝑡𝑠 and duration 𝑡𝑑 of social
distancing, then it will be very effective in inhibiting the peak of the
infected population. The persistence of the characteristic ‘‘V’’ shape
and its close agreement with the predictions presented in Sections 3.1
and 3.2 show that our analysis is robust with respect to parameter

variations.
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Fig. 10. Maximum of the infected compartment for a selection of models introduced to capture the dynamics of the COVID-19 pandemic. Models and their parameters are fully
presented in Appendix C. The ratio between transmission rates in the single-pulse strategy is 𝛽𝑛∕𝛽𝑑 = 10 (see Eq. (3)). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
4.3. Discussion

In this work we have investigated the response of epidemic models
to social distancing as a control strategy. We have analyzed the basic
features of the classical SIR model with respect to a single interval
of social distancing both computationally and theoretically. We have
shown, via computations, how the basic response structure of the SIR
model is preserved for a number of more complex (but related) epi-
demic models. Importantly, although a strict social distancing mandate
enacted early on in an epidemic will delay and potentially reduce the
peak of the infection, too early relaxation may inhibit a significant
reduction. Similarly, waiting too long to implement distancing will also
be ineffective as a mitigation strategy, but importantly, this critical
delay occurs earlier than expected, and can be quantified.

More precisely, we have introduced a trade-off between the start
time and the duration of social distancing effects on the peak of the
infected population. A ‘‘V’’ shape pattern has been observed for the SIR
model. This pattern can be understood mathematically in the special
case of the SIR model and is verified through simulation for more
complex models recently proposed for COVID-19. A single pulse of
social distancing is shown to be most effective if it happens at a proper
time. Moreover, the infected peak for economically preferable strategies
like periodic social distancing relaxation can be reduced by a single
pulse of social distancing.

Computational resources

The numerical simulations and plots are done with the Differen-
tialEquations package (Rackauckas & Nie, 2017) of Julia programming
language (Bezanson, Edelman, Karpinski, & Shah, 2017), and the analy-
sis notebook are available on https://github.com/sontaglab/epidemics
repository.
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Appendix A. SIR model

A.1. Peak of the infected compartment

The peak of the infected compartment for the simple SIR model
can be characterized at the time when �̇�(𝑡) = 0, from Eq. (1). This is
the time when the rates at which populations are being infected and
recovered (or removed) from the infected compartment balance out.
We will denote the peak of 𝐼(𝑡) by 𝐼𝑝, and the corresponding susceptible
population by 𝑆𝑝 and we write

𝑅0 ∶=
𝛽
𝛾
. (33)

for the basic reproduction number of the SIR model. Provided that
𝑆(0) > 𝑅−1

0 , one has:

𝑆𝑝 = 𝛾∕𝛽 = 𝑅−1
0 ,

𝐼𝑝 = 𝐼(0) + 𝑆(0) − 𝑅−1
0 (1 + ln(𝑆(0)𝑅0)).

(34)

Note that the maximum of the infected compartment is only a
function of the basic reproduction number 𝑅0. The formula for 𝑆𝑝 is
immediate from �̇�(𝑡) = 0. The formula for 𝐼𝑝 can be derived as follows.
We have the following implicit formula between the susceptible 𝑆 and
infected 𝐼 compartments:

�̇� = −�̇� + 𝑅−1
0

(

�̇�
𝑆

)

. (35)

which implies

𝐼 − 𝐼(0) = −(𝑆 − 𝑆(0)) + 𝑅−1
0 ln 𝑆

𝑆(0)
. (36)

Here 𝑆(0) and 𝐼(0) are the initial values of the susceptible and infected
compartments at the beginning of the epidemic. Therefore, the peak of

https://github.com/sontaglab/epidemics
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the infected compartment is:

𝐼𝑝 = 𝐼(0) + 𝑆(0) − 𝑆𝑝 + 𝑅−1
0 ln

𝑆𝑝

𝑆(0)
,

= 𝐼(0) + 𝑆(0) − 𝑅−1
0

(

1 + ln (𝑅0𝑆(0))
)

.
(37)

At the start of the epidemic, 𝑆(0) ≈ 1 and 𝐼(0) ≈ 0, so the expression
for the infected peak is simplified to:

𝐼𝑝 ≈ 1 − 𝑅−1
0

(

1 + ln (𝑅0)
)

. (38)

A.2. Change of variables for SIR model

To gain a better understanding of the infected compartment peak
time 𝑡𝑝, we can reparametrize the time 𝑡 by 𝜏 in the form of d𝜏∕d𝑡 = 𝐼(𝑡)
with initial time 𝑡0 = 𝜏0 = 0 as suggested by Cadoni (2020), the SIR
model (1), under this change of time scale, is now linear:
d𝑆
d𝜏

= −𝛽𝑆,

d𝐼
d𝜏

= 𝛽𝑆 − 𝛾,

d𝑅
d𝜏

= 𝛾.

(39)

We remark that his transformed system evolves from 𝜏 = 0 to
𝜏 = ∫ ∞

0 𝐼(𝑠)d𝑠 < ∞. The solution of the linearized model can be written
in the following form

𝑆 = 𝑆(0) exp(−𝛽𝜏),

𝐼 = 𝐼(0) + 𝑆(0) − 𝑆(0) exp(−𝛽𝜏) − 𝛾𝜏,

𝑅 = 𝑅(0) + 𝛾𝜏,

𝑡 = ∫

𝜏

0

d𝜏′
𝐼(0) + 𝑆(0) − 𝑆(0) exp(−𝛽𝜏′) − 𝛾𝜏′

.

(40)

The infected peak and its corresponding time can be written analyt-
cally as follows:

𝑆𝑝 = 𝛾∕𝛽 = 𝑅−1
0 ,

𝜏𝑝 = ln(𝑅0𝑆(0))∕𝛽,

𝐼𝑝 = 𝐼(0) + 𝑆(0) − 𝑅−1
0 (1 + ln(𝑅0𝑆(0))),

𝑡𝑝 = ∫

𝜏𝑝

0

d𝜏′
𝐼(0) + 𝑆(0) − exp(−𝛽𝜏′) − 𝛾𝜏′

.

(41)

It can be observed that the maximum of the infected compartment is
only a function of the basic reproduction number 𝑅0, while the time of
the peak 𝜏𝑝 is dependent on 𝑅0 and 𝛽. We remark that a different time
scaling and shifting have been used by Kim (2020) to show statistical
similarities of the COVID-19 spread in different countries.

A.3. Linear approximation

The integral in Eq. (40) is hard to compute explicitly. To obtain an
intuitive approximation for small times for 𝐼(𝑡) from Eq. (39), we will
consider 𝑆(𝑡) to be constant, and therefore equal to its initial value 𝑆(0).
That gives:

�̇� ≈ (𝛽𝑆(0) − 𝛾)𝐼.

→ 𝐼(𝑡) ≈ 𝐼(0) exp((𝛽𝑆(0) − 𝛾)𝑡),

≈ 𝐼(0) exp((𝛽 − 𝛾)𝑡).

(42)

This approximation is reasonable for the beginning of the spread of
the virus, when 𝑆(𝑡) is close to one, the total population. We used this
approximation in Section 3.1.

Appendix B. Fast switching policies

Consider a general system affine in controls (Sontag, 1998):

̇ (𝑡) = 𝑓0[𝑥(𝑡)] +
𝑚
∑

𝛽𝑖(𝑡)𝑓𝑖[𝑥(𝑡)]. (43)
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𝑖=1
(

We justify here the fast-switching remark made earlier. We use
the general system affine in controls formalism in Eq. (43). Let us
suppose that the inputs 𝛽𝑖(𝑡) are periodic with period 𝑇 , and consider
the constant control obtained by averaging the 𝛽𝑖 over a period:

𝛽𝑖 ∶=
1
𝑇 ∫

𝑇

0
𝛽𝑖(𝑡)d𝑡. (44)

It can be proved that, if the frequency of 𝛽(𝑡) = (𝛽1(𝑡),… , 𝛽𝑚(𝑡)) goes to
nfinity, meaning that the switching time approaches 0, then solutions
pproach those for the average 𝛽. This follows from standard averaging
esults for systems that are affine in controls. Specifically, (1) the map
rom controls on an interval [0, 𝑇 ] to trajectories on [0, 𝑇 ] is continuous

with respect to the weak∗ topology in 𝐿1 and the uniform topology on
continuous functions, respectively (see, e.g. Sontag, 1998, Theorem 1),
and (2) for a periodic input 𝑢(𝑡), the input 𝑢(𝜔𝑡) converges weakly to
the average of 𝑢 as 𝜔 → ∞. An alternative proof can be found in Khalil
2002) (Section 10.2) (changing time scale in the statement of Theorem
0.4, by 𝑥(𝑡) = 𝑥(𝑡∕𝜖)). (This fact was also observed in Bin et al. (2020).)

ppendix C. State space representation of several epidemic mod-
ls

In order to describe several epidemic models that have recently
roposed for COVID-19, we use the standard control theory state space
ormalism (e.g. Sontag, 1998) for systems that are affine in controls 𝛽𝑖(𝑡)

of Eq. (43). When there is just one control (𝑚 = 1), we write simply 𝛽
nstead of 𝛽1.

.1. SIR model

The SIR model represented in (1) can expressed, using the state
= (𝑆, 𝐼, 𝑅), in the following form:

0(𝑥) =
⎛

⎜

⎜

⎝

0
−𝛾𝑥2
𝛾𝑥2

⎞

⎟

⎟

⎠

, 𝑓1(𝑥) =
⎛

⎜

⎜

⎝

−𝑥1𝑥2
𝑥1𝑥2
0

⎞

⎟

⎟

⎠

. (45)

he transmission rate 𝛽 and recovery rate 𝛾 are dependent on the nature
f the epidemic disease, and medical resources available at the com-
unity (Bhapkar, Mahalle, Dey, & Santosh, 2020; Chowell, Ammon,
engartner, & Hyman, 2006; Simha, Prasad, & Narayana, 2020). From

he acceptable range of parameters we used (𝛽, 𝛾) = (0.2, 0.05) and
nitial conditions of (𝑆, 𝐼, 𝑅)𝑡=0 = (1 − 10−3, 10−3, 0) in all numerical
imulations. The value of 𝛽𝑑 used for the social distancing intervals of
igs. 2, 7, 8, and 9 is 0.1, and 0.02 for Fig. 10a.

.2. SAIR model

The SAIR model as a simple extension of the SIR model with
n asymptomatic 𝐴 compartment in the population (Grunnill, 2018;
obinson & Stilianakis, 2013). The state space representation in terms
f the state 𝑥 = (𝑆,𝐴, 𝐼, 𝑅) is:

0(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎝

0
−(𝛿 + 𝛾𝐴)𝑥2
𝛿𝑥2 − 𝛾𝐼𝑥3
𝛾𝐴𝑥2 + 𝛾𝐼𝑥3

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑓1(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎝

−𝑥1𝑥2
𝑥1𝑥2
0
0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑓2(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎝

−𝑥1𝑥3
𝑥1𝑥3
0
0

⎞

⎟

⎟

⎟

⎟

⎠

. (46)

We use the parameters (𝛽1, 𝛽2, 𝛿, 𝛾𝐴, 𝛾𝐼 ) = (0.3, 0.2, 0.1, 0.09, 0.05)
adopted from Grunnill (2018)) with initial conditions of
𝑆,𝐴, 𝐼, 𝑅)𝑡=0 = (1 − 1.1 × 10−3, 10−3, 10−4, 0). The values of 𝛽1(𝑡) and
2(𝑡) used for the social distancing intervals of Figs. 6a and 10b are half

𝛽𝑛∕𝛽𝑑 = 2), and 10% (𝛽𝑛∕𝛽𝑑 = 10) of their original value respectively.
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C.3. fSIR model

An ‘‘infection aware’’ distancing model has been recently introduced
by Franco (2020), in order to account for how individuals practice
enhanced social distancing as the number of infections increases. This
model has an additional term of the form 1∕(1 + 𝑘𝐼) in comparison
with the simple SIR model (1) where 𝑘 is the feedback gain of the
statistical social awareness effect on disease spread. The state variable
is 𝑥 = (𝑆, 𝐼, 𝑅) and the state space representation is as follows:

𝑓0(𝑥) =
⎛

⎜

⎜

⎝

0
−𝛾𝑥2
𝛾𝑥2

⎞

⎟

⎟

⎠

, 𝑓1(𝑥) =
⎛

⎜

⎜

⎝

−𝑥1𝑥2∕(1 + 𝑘𝑥2)
𝑥1𝑥2∕(1 + 𝑘𝑥2)

0

⎞

⎟

⎟

⎠

. (47)

We use the parameters (𝛽, 𝛾, 𝑘) = (0.2, 0.05, 10) (adopted from the
acceptable range of parameters defined by Franco (2020)) with initial
conditions are (𝑆, 𝐼, 𝑅)𝑡=0 = (1 − 10−3, 10−3, 0). The values of 𝛽(𝑡) used
for the social distancing intervals of Figs. 6b and 10c are 0.1, and 0.02
respectively.

C.4. Six-compartment SIR model

The 6 compartment SIR model (Gevertz et al., 2020) with state
variable 𝑥 = (𝑆𝐷, 𝑆𝑁 , 𝐴𝐷, 𝐴𝑁 , 𝐼𝐷, 𝐼𝑁 , 𝑅) is:

0(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−ℎ1𝑥1 + ℎ2𝑥2
ℎ1𝑥1 − ℎ2𝑥2

−𝛾𝐴𝐼𝑥3 + ℎ2𝑥4 − ℎ1𝑥3
−𝛾𝐴𝐼𝑥4 − ℎ2𝑥4 + ℎ1𝑥3

𝑓𝛾𝐴𝐼 (𝑥3 + 𝑥4) − 𝛿𝑥5 − 𝛾𝐼𝑅𝑥5
(1 − 𝑓 )𝛾𝐴𝐼 (𝑥3 + 𝑥4) + 𝛾𝐼𝑅𝑥5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝑓1(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝜖𝑆𝑥1𝑥5
−𝑥2𝑥5
𝜖𝑆𝑥1𝑥5
𝑥2𝑥5
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝑓2(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝜖𝑆 (𝑥4 + 𝜖𝐴𝑥3)𝑥1
−(𝑥4 + 𝜖𝐴𝑥3)𝑥2
𝜖𝑆 (𝑥4 + 𝜖𝐴𝑥3)𝑥1
(𝑥4 + 𝜖𝐴𝑥3)𝑥2

0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (48)

The parameters (𝛽𝐴, 𝜖𝐴, 𝜖𝑆 , 𝛽𝐼 , ℎ2, 𝛾𝐴𝐼 , 𝛾𝐴𝑅, 𝑓 , 𝛿) = (1.4, 0.12, 0.12,
0.336, 0, 0.296, 0.048, 0.65, 0.0024) and initial conditions (𝑆𝐷, 𝑆𝑁 , 𝐴𝐷,
𝐴𝑁 , 𝐼𝐷, 𝐼𝑁 , 𝑅)𝑡=0 = (0, 1 − 10−5, 0, 0, 10−5, 0), are used in our numerical
simulations (as suggested by the authors Gevertz et al., 2020). The
values of 𝛽1(𝑡) = 𝛽𝐴(𝑡) and 𝛽2(𝑡) = 𝛽𝐼 (2) used for the social distancing
intervals of Figs. 6c and 10d are half (𝛽𝑛∕𝛽𝑑 = 2), and 10% (𝛽𝑛∕𝛽𝑑 = 10)
of their original value respectively.

C.5. SIQR model

The SIQR model (Bin et al., 2020; Pedersen & Meneghini, 2020)
with state variable 𝑥 = (𝑆, 𝐼,𝑄,𝑅) is:

𝑓0(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎝

0
−(𝛼 + 𝜂)𝑥2
−𝛿𝑥3 + 𝜂𝑥2

𝛼𝑥2

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑓1(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎝

−𝑥1𝑥2
𝑥1𝑥2
0
0

⎞

⎟

⎟

⎟

⎟

⎠

. (49)

The parameters (𝛽, 𝛼, 𝜂, 𝛿,𝑁) = (0.373, 0.067, 0.067, 0.036, 107) and
initial conditions (𝑆, 𝐼, 𝑅)𝑡=0 = (107 −83.333, 83.333, 0, 0) are used based
on the authors suggestion (Bin et al., 2020). The value of 𝛽(𝑡) = 𝑞𝛽 used
for the social distancing intervals of Figs. 6d and 10e is half (𝛽𝑛∕𝛽𝑑 = 2),
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and 10% (𝛽𝑛∕𝛽𝑑 = 10) of their original value respectively. s
C.6. SIDARTHE model

The SIDARTHE model (Bin et al., 2020; Giordano et al., 2020a,
2020b) with state variable 𝑥 = (𝑆, 𝐼,𝐷,𝐴,𝑅, 𝑇 ,𝐻,𝐸) is:

𝑓0(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
−(𝑝5 + 𝑝6 + 𝑝7)𝑥2
𝑝5𝑥2 − (𝑝8 + 𝑝9)𝑥3

𝑝6𝑥2 − (𝑝10 + 𝑝11 + 𝑝12)𝑥4
𝑝8𝑥3 + 𝑝10𝑥4 − (𝑝13 + 𝑝14)𝑥5
𝑝11𝑥4 + 𝑝13𝑥5 − (𝑝13 + 𝑝14)𝑥6

𝑝7𝑥2 + 𝑝9𝑥3 + 𝑝12𝑥4 + 𝑝14𝑥5 + 𝑝15𝑥6
𝑝16𝑥6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝑓1(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝑥1(𝑝1𝑥2 + 𝑝2𝑥3 + 𝑝3𝑥4 + 𝑝4𝑥5)
𝑥1(𝑝1𝑥2 + 𝑝2𝑥3 + 𝑝3𝑥4 + 𝑝4𝑥5)

0
0
0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (50)

The parameters are 𝑁 = 107 and the 𝑝𝑖 represented in the following
and initial conditions (𝑆, 𝐼,𝐷,𝐴,𝑅, 𝑇 ,𝐻,𝐸)𝑡=0 = (107−83.333, 83.333, 0,
0, 0, 0, 0, 0) are used for the numerical simulations based on Bin et al.
(2020). The value of 𝛽(𝑡) = 𝑞𝛽 used for the social distancing intervals
of Figs. 6d and 10e are half (𝛽𝑛∕𝛽𝑑 = 2), and 10% (𝛽𝑛∕𝛽𝑑 = 10) of
their original value respectively. The parameters 𝑝𝑖 are the entries of
the following vector 𝑝:

𝑝 = (0.570, 0.011, 0.456, 0.011, 0.171, 0.371, 0.125, 0.125, 0.012, 0.027,

0.003, 0.034, 0.034, 0.017, 0.017, 0.017).

Appendix D. Infections approach zero asymptotically

We remark that, in all the models discussed, the infective compart-
ments approach zero as time 𝑡 → ∞. For epidemics models with no
controls, this simple fact is typically established by appealing to the
LaSalle Invariance Principle. However, the LaSalle principle does not
apply to time-varying systems, which are the focus of this paper, so a
slightly more complicated argument is needed. We illustrate with the
six-compartment SIR model from Gevertz et al. (2020), discussed in
Appendix C.4, which we repeat here for convenience:
𝑑𝑆𝐷
𝑑𝑡

= −𝜖𝑆𝛽𝐼𝑆𝐷𝐼 − 𝜖𝑆𝛽𝐴
(

𝐴𝑁 + 𝜖𝐴𝐴𝐷
)

𝑆𝐷 − ℎ1𝑆𝐷 + ℎ2𝑆𝑁 ,

𝑑𝑆𝑁
𝑑𝑡

= −𝛽𝐼𝑆𝑁𝐼 − 𝛽𝐴
(

𝐴𝑁 + 𝜖𝐴𝐴𝐷
)

𝑆𝑁 + ℎ1𝑆𝐷 − ℎ2𝑆𝑁 ,

𝑑𝐴𝐷
𝑑𝑡

= 𝜖𝑆𝛽𝐼𝑆𝐷𝐼 + 𝜖𝑆𝛽𝐴
(

𝐴𝑁 + 𝜖𝐴𝐴𝐷
)

𝑆𝐷 + ℎ2𝐴𝑁 − 𝛾𝐴𝐼𝐴𝐷 − ℎ1𝐴𝐷,

𝑑𝐴𝑁
𝑑𝑡

= 𝛽𝐼𝑆𝑁𝐼 + 𝛽𝐴
(

𝐴𝑁 + 𝜖𝐴𝐴𝐷
)

𝑆𝑁 + ℎ1𝐴𝐷 − 𝛾𝐴𝐼𝐴𝑁 − ℎ2𝐴𝑁 ,

𝑑𝐼
𝑑𝑡

= 𝑓𝛾𝐴𝐼 (𝐴𝐷 + 𝐴𝑁 ) − 𝛿𝐼 − 𝛾𝐼𝑅𝐼,

𝑑𝑅
𝑑𝑡

= (1 − 𝑓 )𝛾𝐴𝐼
(

𝐴𝐷 + 𝐴𝑁
)

+ 𝛾𝐼𝑅𝐼.

We assume that the inputs (𝛽 functions) are Lebesgue measurable and
essentially bounded, which is a very mild assumption and covers all
piecewise continuous bounded inputs. An important remark, which
will be applied in the proof, is as follows. For any system 𝑑𝑥∕𝑑𝑡 =
𝑓 (𝑥(𝑡), 𝑢(𝑡)) for which inputs are bounded, and for trajectories that stay
n a compact set (our variables are nonnegative and add to ≤ 1), the
olution 𝑥(𝑡) is uniformly continuous. (Assuming that 𝑓 is continuous.)
his is proved as follows. In general, trajectories of control systems are

ocally absolutely continuous (see for example Appendix C in Sontag
1998)). Thus, they have derivatives almost everywhere, and satisfy
(𝑡) = 𝑥(0) + ∫ 𝑡

0 𝑓 (𝑥(𝜏), 𝑢(𝜏)) 𝑑𝜏 for all 𝑡. Therefore, the norm of the
olution satisfies |𝑥(𝑡) − 𝑥(𝑠)| ≤ 𝑐|𝑡 − 𝑠|, where 𝑐 is an upper bound on
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|𝑓 (𝑥(𝑡), 𝑢(𝑡))|. This proves that 𝑥 is globally Lipschitz, and thus in par-
icular uniformly continuous. In particular, of course, each coordinate
f 𝑥 is also uniformly continuous.

We will show that all the infective populations, 𝐴𝑁 (𝑡), 𝐴𝐷(𝑡), and
(𝑡) converge to zero as 𝑡 → ∞. The paper (Gevertz et al., 2020) does the
roof in the case of constant inputs. As there, we start by considering
he total population fraction 𝑁 defined by 𝑁 ∶= 𝑆𝐷 +𝑆𝑁 +𝐴𝐷 +𝐴𝑁 +
+ 𝑅 and observe that 𝑑𝑁∕𝑑𝑡 = −𝛿𝐼 ≤ 0.

The function 𝑁 is non-increasing (because 𝐼 is nonnegative) and
thus converges monotonically to some limit. Since 𝑑𝑁∕𝑑𝑡 is a constant
multiple of 𝐼 , which is uniformly continuous (see previous remark),
also 𝑑𝑁∕𝑑𝑡 is uniformly continuous. Barbarat’s Lemma (Khalil, 2002)
says that a differentiable function (in this case, 𝑁) with a limit as
𝑡 → ∞, and whose derivative is uniformly continuous, has a derivative
that converges to zero. Therefore 𝐼 = (1∕𝛿)𝑑𝑁∕𝑑𝑡 also converges to
zero.

Next we want to prove that the remaining infective compartments
also tend to zero. If we prove that 𝑑𝐼∕𝑑𝑡 converges to zero, then since
𝐼 converges to zero and 𝑓𝛾𝐴𝐼 (𝐴𝐷 +𝐴𝑁 ) = 𝑑𝐼∕𝑑𝑡+ (𝛿 + 𝛾𝐼𝑅)𝐼 and since
both 𝐴𝐷 and 𝐴𝑁 are nonnegative, we can conclude that both 𝐴𝐷(𝑡)
and 𝐴𝑁 (𝑡) converge to zero, as claimed. It remains to prove that 𝑑𝐼∕𝑑𝑡
converges to zero. For this, we will again apply Barbalat’s Lemma, this
time to 𝐼(𝑡). We already know that 𝐼(𝑡) converges, so all that remains
to check is that its derivative is uniformly continuous, which follows,
again because 𝑑𝐼∕𝑑𝑡 = 𝑓𝛾𝐴𝐼 (𝐴𝐷 + 𝐴𝑁 ) − 𝛿𝐼 − 𝛾𝐼𝑅𝐼 , from the fact that
both 𝐴𝐷 and 𝐴𝑁 are uniformly continuous. This completes the proof.
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