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Abstract

Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies 

for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate 

physicians regarding differences in pharmacology and mechanisms of action between 

amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants 

and their use in managing individuals with ADHD who may have comorbid psychiatric 

conditions. A systematic literature review of PubMed was conducted in April 2017, focusing on 

cellular- and brain system–level effects of amphetamine and methylphenidate. The primary 

pharmacologic effect of both amphetamine and methylphenidate is to increase central dopamine 

and norepinephrine activity, which impacts executive and attentional function. Amphetamine 

actions include dopamine and norepinephrine transporter inhibition, vesicular monoamine 

transporter 2 (VMAT-2) inhibition, and monoamine oxidase activity inhibition. Methylphenidate 

actions include dopamine and norepinephrine transporter inhibition, agonist activity at the 

serotonin type 1A receptor, and redistribution of the VMAT-2. There is also evidence for 

interactions with glutamate and opioid systems. Clinical implications of these actions in 

individuals with ADHD with comorbid depression, anxiety, substance use disorder, and sleep 

disturbances are discussed.
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1.0 Introduction

Attention-deficit/hyperactivity disorder (ADHD) was initially identified in children (1) but is 

now understood to persist into adulthood in about two thirds of cases (2-4). In a 2007 meta-

analysis that included more than 100 studies, the estimated worldwide prevalence of ADHD 

in individuals <18 years old was 5.29% (5). The estimated prevalence in adults was 4.4% in 

a national survey in the United States (6), 3.4% in a 10-nation survey (7), and 2.5% in a 

meta-regression analysis of 6 studies (8).

A large body of evidence suggests that multiple neurotransmitters and brain structures play a 

role in ADHD (9-11). Although a substantial amount of research has focused on dopamine 

(DA) and norepinephrine (NE), ADHD has also been linked to dysfunction in serotonin (5-

hydroxytryptamine [5-HT]), acetylcholine (ACH), opioid, and glutamate (GLU) pathways 

(10, 12-15). The alterations in these neurotransmitter systems affect the function of brain 

structures that moderate executive function, working memory, emotional regulation, and 

reward processing (Figure 1) (11).

Individuals with ADHD are often diagnosed with additional psychiatric comorbidities, 

including anxiety, mood, substance use, sleep disturbances, and antisocial personality 

disorders (16-18). Importantly, the neurobiological substrates that mediate behaviors 

associated with ADHD share commonalities to some extent with those involved in these 

comorbid disorders (19-21). Genetic studies have also identified shared genetic risk factors 

between ADHD and associated comorbid disorders (22, 23). As such, comorbidities need to 

be taken into account when considering pharmacotherapy in an individual with ADHD.

Although stimulants (including amphetamine [AMP]–based and methylphenidate [MPH]–

based agents) and nonstimulants (eg, atomoxetine, clonidine, and guanfacine) are approved 

for the treatment of ADHD (24), stimulants are considered first-line therapy in children, 

adolescents, and adults with ADHD because of their greater efficacy (25-30). AMP and 

MPH have been shown to exhibit comparable efficacy in 2 meta-analyses (31, 32), with 

other analyses reporting that AMP has moderately greater effects than MPH (33-35). The 

tolerability and safety profiles of AMP and MPH in terms of adverse events, treatment 

discontinuation, and cardiovascular effects are also generally comparable (36-38), although 

weight loss and insomnia have been reported to be more common with AMP than with MPH 

(32). Additional work is planned that will further compare the efficacy, tolerability, and 

safety profiles of different pharmacologic interventions in children, adolescents, and adults 

with ADHD (39).

Although increased synaptic availability of DA and NE is a key result of exposure to both 

AMP and MPH (40, 41), differences in the specific cellular mechanisms of action of AMP 

and MPH may influence their effects on the neurobiological substrates of ADHD and 

response to treatment in individuals with ADHD as well as their effects on common 

comorbidities, such as depression and anxiety.

The objective of this review is to educate physicians about the mechanisms of action of 

AMP and MPH and the implications of these actions on the management of ADHD and its 

comorbidities. To achieve this goal, a systematic review of the published literature was 

Faraone Page 2

Neurosci Biobehav Rev. Author manuscript; available in PMC 2021 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conducted to obtain articles describing the cellular- and brain system–level effects of AMP 

and MPH. The results of relevant studies are described and interpreted in the context of the 

treatment of ADHD and in light of the comorbidities associated with ADHD.

2.0 Methods

A systematic literature review of PubMed was conducted on April 24, 2017; no limits were 

included for publication year or the language of publication. The search consisted of titles 

and abstracts and used the following search string: (amphetamine [MESH term] OR 

methylphenidate [MESH term]) AND (cellular OR receptor binding OR neuroimaging OR 

FMRI OR SPECT OR PET OR positron emission tomography OR magnetic resonance OR 

tomography OR spectroscopy) AND (dopamine OR serotonin OR norepinephrine OR 

acetylcholine OR glutamate OR opioid OR opiate) NOT (methamphetamine OR MDMA 

OR ecstasy OR addiction OR abuse). The literature search included both animal and human 

studies.

Additional articles of interest were obtained via an assessment of the relevant articles 

obtained through the literature review and based on author knowledge. A publication was 

excluded if it did not specifically focus on the mechanism of action or pharmacologic effects 

of AMP or MPH or if it was an imaging study in individuals who were other than healthy 

(ie, studies in those with psychiatric disorders were not included).

3.0 Results

The literature search yielded 673 articles (Figure 2). Of these, 137 were considered relevant 

to the topic of this review. Additional articles (n=13) were identified based on author 

knowledge and assessment of the reference sections of relevant citations. The articles 

included in this review are summarized in Table 1 (42-191).

3.1 Preclinical Studies

3.1.1 Amphetamine—The main mechanism of action of AMP is to increase synaptic 

extracellular DA and NE levels (44, 52, 59, 60, 67, 68, 71, 78, 80, 85, 87, 94, 105, 107, 128). 

This effect is mediated by inhibition of DA transporters (DAT) and NE transporters (NET) 

(44, 52, 58), which reduces the reuptake of these molecules from the synapse. In wild-type 

mice, AMP initially increases surface trafficking of DAT and DA uptake, but continued 

AMP exposure results in decreased surface expression of the DAT and decreases in DA 

uptake (49). In a dose-dependent and region-specific manner, AMP also increases vesicular 

DA release via inhibition of the vesicular monoamine transporter 2 (VMAT-2), which 

releases DA from vesicular storage, and the concomitant release of cytosolic DA via reverse 

transport by the DAT (58, 88, 99). Furthermore, AMP inhibits monoamine oxidase (MAO) 

activity (79, 90), which decreases cytosolic monoamine breakdown. A wide array of studies 

using positron emission tomography (PET) or single-photon emission computed tomography 

(SPECT) have demonstrated that AMP produced reductions in the binding potential of 

ligands for DA receptors (42, 46, 47, 51, 53, 55, 61, 62, 65, 74-76, 80, 82, 91, 94, 95, 

101-104) and NE receptors (59, 73), which is an indirect indicator of increased competition 

for binding sites resulting from increased extracellular DA or NE. The striatum, which 
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contains most of the DATs in the brain (192, 193), appears to be a principal site of action of 

AMP (44, 194), but direct effects in the cortex and the ventral tegmental area have also been 

reported (85, 87, 195). The effects of AMP extend to and are modulated by other 

neurotransmitter systems (50, 56, 66, 70, 77, 85, 86, 89, 96, 98, 106, 108), including ACH, 

5-HT, opioid, and GLU, either directly through enhanced release from presynaptic terminals 

or via downstream effects.

In other studies, AMP has been shown to produce changes at a more global level. In studies 

of cerebral blood flow (CBF), AMP increased whole brain CBF in rats and baboons (48, 69, 

84, 92), with changes in CBF being correlated with striatal DA concentration (69). In a 

functional magnetic resonance imaging (fMRI) study in rats, AMP caused widespread 

increases in blood-oxygen-level–dependent (BOLD) signal intensity in subcortical structures 

with rich DA innervation and with decreases in BOLD signal in the superficial layers of the 

cortex (54). In another fMRI study in rats, AMP reduced BOLD signal intensity in the 

nucleus accumbens and prefrontal cortex and increased signal intensity in the motor cortex 

of rats, with signal intensity changes in the nucleus accumbens and caudate (but not in the 

motor cortex) being attenuated by pretreatment with a tyrosine-free amino acid mixture (83).

3.1.2 Methylphenidate—The direct effects of MPH include inhibition of the DAT and 

NET (113, 114, 118, 120, 123, 128), an affinity for and agonist activity at the 5-HT1A 

receptor (119, 120), and redistribution of VMAT-2 (88, 125). As a consequence of these 

interactions, MPH elevates extracellular DA and NE levels (58, 71, 94, 107). The enhanced 

efflux of DA and NE associated with MPH exposure results in increased availability of DA 

and NE to bind to their respective transporters (ie, the DAT or NET) or to DA or NE 

receptors, as evidenced by reductions in ligand binding in PET and SPECT studies (112, 

113, 117, 122-124, 127).

Although increases in extracellular levels of striatal DA in rats measured using microdialysis 

are less pronounced with MPH than with AMP, both compounds have been shown to exhibit 

similar magnitude of effects with regard to reductions in DA binding potential as measured 

by PET in rodents and nonhuman primates (94). Multiple studies have demonstrated that 

MPH also directly interacts with adrenergic receptors (109, 115, 119, 120). Through 

activation of α2 adrenergic receptors, MPH has been demonstrated to stimulate cortical 

excitability (109). Further evidence for the interaction of MPH with α2 adrenergic receptors 

comes from data indicating that the procognitive effects of MPH in a working memory task 

are blocked by the α2 adrenergic antagonist idazoxan (115). The effects of MPH on α2 

adrenergic receptors are notable given that two α2 adrenergic receptor agonist drugs 

(extended-release forms of guanfacine and clonidine) are indicated for the treatment of 

ADHD (196).

3.2 Human Neuroimaging Studies

3.2.1 Amphetamine—Reductions in ligand binding in PET (130-132, 134, 136, 

144-146, 148-154, 157, 159, 161, 162, 164) and SPECT (140, 142, 143, 156) studies in 

healthy humans indicate that AMP increases DA release across multiple brain regions, 

including the dorsal and ventral striatum, substantia nigra, and regions of the cortex. AMP 
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also has been shown to alter regional CBF to areas of the brain with DA innervation, 

including the striatum, anterior cingulate cortex, prefrontal and parietal cortex, inferior 

orbital cortex, thalamus, cerebellum, and amygdala (135, 155, 156, 160, 163). The effects of 

AMP on regional CBF appear to be dependent on the dose, with lower doses decreasing 

rates of blood flow in the frontal and temporal cortices and in the striatum (163) and higher 

doses increasing blood flow in the anterior cingulate cortex, caudate nucleus, putamen, and 

thalamus (160). In fMRI studies in healthy adults, AMP increased BOLD signal variability 

(137) and exerted an “equalizing” effect on ventral striatum activity during incentive 

processing (141). In addition, AMP was shown to strengthen amygdalar responses during 

the processing of angry and fearful facial expressions (139).

Changes in neuronal activity have been shown to correlate with various behavioral traits 

(131, 136, 144, 164). In PET studies, changes in the binding potential of [11C]raclopride (a 

D2 receptor antagonist) in regions of the ventral striatum of healthy adults associated with 

AMP binding have been reported to be negatively correlated with changes in AMP-

associated euphoria (136) and with increases in drug wanting and novelty seeking (144).

3.2.2 Methylphenidate—Methylphenidate has also been shown to increase striatal DA 

availability, as measured by reductions in ligand binding potential in PET studies (165, 166, 

170, 178, 179, 181, 182, 187, 190, 191), with evidence to indicate that this effect is related to 

binding to the DAT (185, 186, 188). MPH-induced reductions in striatal [11C]raclopride 

binding were associated with MPH-induced changes in euphoria and anxiety and were 

correlated to age (181, 182). In addition, NE systems have been implicated as key targets for 

MPH, with MPH dose-dependently blocking the NET in the thalamus and other NET-rich 

regions; the estimated occupancy of the NET at therapeutic doses of 0.35 to 0.55 mg/kg 

MPH is 70% to 80% (168).

Assessments of functional activity using fMRI have provided evidence for the widespread 

functional effects of MPH (167, 171-173, 177, 180). Using fMRI, it has been shown that 

MPH increases activation of the parietal and prefrontal cortices and increases deactivation of 

the insula and posterior cingulate cortex during visual attention and working memory tasks 

(180). Another fMRI study reported MPH-induced activation in the putamen during a go/no-

go task when a response inhibition error occurred but not when a response was successfully 

inhibited (167), suggesting that the effects of MPH are context dependent. Furthermore, 

MPH exposure altered connectivity strength across various cortical and subcortical networks 

(172) and shifted brain activation under conditions of uncertainty to higher levels of 

activation in left and right parahippocampal regions and cerebellar regions (177). Lastly, 

MPH-associated decreases in task-related errors on the Stroop color-word task were 

associated with concurrent decreases in anterior cingulate cortex activity (171). MPH has 

also been shown to reduce regional CBF in the prefrontal cortex and increase regional CBF 

in the thalamus and precentral gyrus (176). In another study that used functional near-

infrared spectroscopy, MPH-associated improvements in the performance of a working 

memory task corresponded with decreased oxy-hemoglobin levels in the right lateral 

prefrontal cortex, which is a surrogate for decreased neural activation (174).
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4.0 Discussion

Although their mechanisms of action differ, the primary central nervous system effects of 

AMP and MPH within the brain include increased catecholamine availability in striatal and 

cortical regions, as evidenced in preclinical (44, 52, 58-60, 67, 68, 71, 78, 80, 85, 87, 94, 

105, 107, 128) and human (130-132, 134, 136, 140, 142-146, 148-154, 156, 157, 159, 161, 

162, 164-166, 170, 178, 179, 181, 182, 187, 190, 191) studies. These increases in DA and 

NE availability affect corticostriatal systems that subserve behaviors related to cognition and 

executive function (171, 177, 180), risky decision making (151), emotional responsivity 

(139), and the regulation of reward processes (197). Importantly, ADHD has been associated 

with structural and functional alterations in regions of the brain where AMP and MPH have 

been shown to alter DA and NE activity.

4.1 Structural Alterations in ADHD

A meta-analysis of imaging data from individuals with ADHD across all age groups 

revealed altered white matter integrity in diverse brain areas, including the striatum and the 

frontal, temporal, and parietal lobes (198). In a meta-analysis of imaging data from children 

and adults (199), global gray matter volume was significantly smaller in those with ADHD, 

especially in basal ganglia structures integral to executive function. In adults with ADHD, 

reduced gray matter volume in the caudate and parts of the dorsolateral prefrontal cortex, 

inferior parietal lobe, anterior cingulate cortex, putamen, and cerebellum were observed; 

increased volume was noted in other parts of the dorsolateral prefrontal cortex and inferior 

parietal lobe (200). A meta-analysis of 1713 persons with ADHD and 1529 controls found 

volumetric reductions in the accumbens, amygdala, caudate, hippocampus, and putamen 

(201).

In a meta-analysis of 9 PET and SPECT studies, which included 169 patients with ADHD 

and 173 healthy controls, it was reported that striatal DAT density in patients with ADHD 

was 14% higher than in healthy controls (202). Meta-regression analysis further revealed 

that previous exposure to ADHD medication influenced striatal DAT density, with lower 

DAT density being associated with a lack of medication exposure (202). As the correlation 

between medication exposure and striatal DAT density accounted for 48% of the variance 

across studies (202), it was suggested that the higher striatal DAT density in individuals with 

ADHD was a neuroadaptive response to stimulant exposure.

4.2 Functional Alterations in ADHD

A meta-analysis of imaging data focusing specifically on timing function, which is 

important for impulsiveness in ADHD, showed consistent deficits in the left inferior 

prefrontal, parietal, and cerebellar regions of individuals with ADHD (203). A meta-analysis 

of 24 task-related fMRI studies coupled with functional decoding based on the BrainMap 

database reported hypoactivation in the left putamen, inferior frontal gyrus, temporal pole, 

and right caudate of individuals with ADHD (204). When examining these deficits in regard 

to the BrainMap database, it was suggested that individuals with ADHD may exhibit deficits 

in the cognitive aspects of music, perception and audition, speech and language, and 

executive function (204).
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In high-functioning, drug-naive young adults with ADHD, resting-state fMRIs revealed 

altered connectivity in the orbitofrontal-temporal-occipital and frontal-amygdala-occipital 

networks (relating to inattentive and hyperactive/impulsive symptoms, respectively) 

compared with matched controls; these abnormalities were not related to developmental 

delays, impaired cognition, or use of pharmacotherapy (205). Imaging studies have also 

reported hypoactivity in the prefrontal cortex and weak connections to other brain regions in 

individuals with ADHD (206). A review of progress in neuroimaging indicated that the 

initial focus on frontostriatal dysfunction has given way to a broader understanding of the 

complex interactions of various regions of the brain in which alterations may contribute to 

ADHD symptoms across the life span (207).

A substantial body of literature has examined the role of DA systems in the neurobiology of 

ADHD and ADHD-related symptoms and behaviors. Among treatment-naive adolescents 

with ADHD, DAT density shows a significant inverse relationship with blood flow in the 

cingulate cortex, the frontal and temporal lobes, and the cerebellum, brain regions which are 

involved in modulating attention (208). In a PET study of treatment-naive men with ADHD 

and men without ADHD, more pronounced reductions in AMP-induced reductions in striatal 

[11C]raclopride binding were associated with worse response inhibition, and those with 

ADHD had the highest-magnitude reductions and AMP-induced reductions in striatal 

[11C]raclopride binding (209). Two SPECT studies and 1 PET study showed that adults with 

ADHD had higher DAT concentrations than adults without ADHD (210-212), with the 

SPECT studies further reporting that MPH reduced DAT availability in adults with ADHD 

(210, 211). Furthermore, studies have shown significant correlations between global clinical 

improvement in ADHD symptoms following MPH treatment and striatal DAT availability 

(213, 214), and the MPH-induced increases in DA availability in the ventral striatum are 

associated with improved ADHD symptomology in adults with ADHD (215). In another 

study, in adults with ADHD, long-term MPH treatment increased striatal DAT availability 

(216). In another PET study in adults with ADHD, decreased DAT and D2/D3 receptor 

availability in the nucleus accumbens and midbrain compared with individuals without 

ADHD was reported, and reduced availability of DAT and D2/D3 receptor availability was 

significantly correlated with lower indices of motivation only in those with ADHD (217). 

Also, a PET study in young male adults with ADHD has also reported dysfunctional DA 

metabolism in the putamen, amygdala, and dorsal midbrain relative to healthy controls 

regardless of treatment status (naive vs previously treated with MPH) and that a history of 

MPH treatment resulted in a down-regulation of DA turnover (218). Despite the 

neuroimaging evidence that supports a role for the DAT in adult ADHD, a systematic 

literature review examining the pharmacogenetics of adult ADHD found that only 1 of 5 

identified studies reported finding a polymorphism at the DAT gene associated with ADHD 

(219).

Studies of NET availability have not consistently reported altered NET availability in 

individuals with ADHD (220, 221), but one study reported genotype-dependent increases in 

NET binding in the thalamus and cerebellum of adults with ADHD compared with controls; 

this effect was largely due to the effect of NET gene polymorphisms on NET binding 

potential (220). Another study reported no NET differences across multiple brain regions, 
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including the hippocampus, thalamus, and midbrain, in individuals with ADHD compared 

with controls (221).

Beyond the changes observed in DA and NE systems in individuals with ADHD, there is 

evidence that GLU, 5-HT, ACH, and opioid systems play a role in ADHD. Studies 

examining neurometabolism using proton MRIs have reported glutamatergic deficits in the 

frontal cortical and striatal regions in individuals with ADHD that may be related to 

cognitive control and symptom severity (12, 222, 223). Regarding the 5-HT systems, it has 

been reported that increased methylation of the 5-HT transporter is associated with worse 

clinical presentation and reduced cortical thickness in children with ADHD (224). In adults, 

significant differences in 5-HT transporter interregional correlations between the precuneus 

and hippocampus have been reported in adults with ADHD compared with controls without 

ADHD (225). Functionally, it has been reported that decreased levels of activation are 

observed in the precuneus of adolescents with ADHD compared with individuals without 

ADHD; however, there is a significantly greater increase in the activation of the precuneus 

following the administration of fluoxetine in adolescents with ADHD compared with 

controls (226). At present, there are no published neuroimaging studies of endogenous 

opioid or ACH systems in individuals with ADHD. However, altered function in both 

systems has been implicated in ADHD (13, 14).

4.3 Co-occurring Psychiatric Conditions and ADHD

Attention-deficit/hyperactivity disorder is often associated with comorbid psychiatric 

disorders (16-18), such as anxiety and mood disorders. Importantly, the same brain regions 

and neurotransmitter systems that underlie ADHD are also implicated in the psychiatric 

disorders that are frequently comorbid with ADHD (19-21). Thus, it is important to 

understand how ADHD therapies might influence psychiatric comorbidities.

4.3.1 Anxiety disorders—In healthy human volunteers, AMP has been reported to 

potentiate amygdalar activity in response to the processing of angry and fearful facial 

expressions (139). These data provide a potential neurobiologic basis for the anxiogenic 

effects of AMP (139). However, it has been theorized that stimulant-associated 

augmentation of serotonergic drive could ameliorate the comorbid anxiety associated with 

ADHD (227). In practice, the effects of stimulants on anxiety can be complex, with acute 

administration of MPH reducing anxiety in adults and chronic treatment during early life 

increasing anxiety during adulthood (228).

4.3.2 Depressive disorders—Psychostimulants have been used in the treatment of 

major depressive disorder (MDD) since the early 1950s, when the use of MPH was first 

examined for MDD (229). The rationale for examining the potential utility of 

psychostimulants in depressive disorders is based on preclinical and clinical evidence 

implicating DA in depressive symptomatology (230). However, the rapid onset of action of 

psychostimulants suggests the mechanisms by which they may influence depressive 

symptoms is likely to differ from that of antidepressants (231).

Based on the published literature, the effects of psychostimulants on depressive symptoms 

appear equivocal. Although one meta-analysis published in 2008 based on 3 short-term trials 
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reported statistically significant improvements favoring monotherapy with psychostimulants 

compared with placebo for depressive symptoms (232), a systematic review of augmentation 

therapy for MDD published in 2009 based on MPH (2 studies) and modafinil (2 studies) 

reported that neither augmentation strategy was clinically superior to antidepressant 

monotherapy in reducing depressive symptoms (233). In addition, 2 large phase 3 studies 

and a phase 2 study of lisdexamfetamine dimesylate augmentation in adults with MDD and 

inadequate response to antidepressant therapy failed to meet their primary efficacy endpoint 

versus placebo (234, 235). The lack of treatment effect in these recently published studies, 

taken together with inconsistent findings based on meta-analyses and systematic reviews, 

suggests that psychostimulants are ineffective in treating the undifferentiated symptoms of 

depression. Psychostimulants have also been examined in other mood disorders, including 

treatment-resistant depression, bipolar depression, and depression associated with specific 

medical conditions (236). For bipolar depression, there is some evidence supporting the 

efficacy of psychostimulant augmentation, but the quality and quantity of studies does not 

allow for a strong evidence-based recommendation for their use to be put forth (236).

Despite inconclusive evidence regarding the efficacy of psychostimulants in treating 

depressive symptoms, the continued publication of review articles on this topic (231, 237, 

238) demonstrates continued interest in this area of research. These review articles 

hypothesize that the lack of consistent clinical efficacy of psychostimulant augmentation 

could be due to poorly defined psychopathology and that psychostimulant effects may be 

more pronounced in selected symptom domains (237, 238) or that the effects of 

psychostimulants are short-lasting (231). It has also been speculated that the use of clinician-

rated scales (rather than patient-rated scales) in some studies (234, 235) may not have 

adequately captured the effects of psychostimulant treatment.

It should also be noted that the use of stimulants as augmentation agents in combination with 

tricyclic antidepressants and MAO inhibitors is controversial, with issues concerning the 

possible development of an adrenergic crisis, the emergence of serotonin syndrome, or a 

hypertensive crisis being raised (239). In fact, both MPH-based agents and AMP-based 

agents are contraindicated in individuals taking an MAO inhibitor (currently or within the 

preceding 2 weeks) because a hypertensive crisis may result (240).

4.3.3 Substance use disorders—The neurobiology of reward and addiction and the 

key role of mesolimbic DA systems have been described in great detail (241, 242). Although 

associations have been made between ADHD and substance abuse, their relationship is 

complex. Several reviews have emphasized that substance use disorders can be comorbid 

with ADHD (16, 17). For example, in a study of 208 adults diagnosed with ADHD and 

treated with psychostimulants as youths, the relative risk of having a diagnosis of substance 

use disorder or alcohol abuse, respectively, compared with the general population was 7.7 or 

5.2 (243). Furthermore, a 2012 review noted that there was evidence for increased rates of 

substance abuse in individuals with ADHD treated with psychostimulants (244). Given the 

known abuse liability of psychostimulants and data indicating that psychostimulant 

medications are associated with misuse and diversion (245, 246), it is not surprising that 

psychostimulant medications approved for use in ADHD are schedule II medications with 

black box warnings for potential drug dependence (247). Some treatment guidelines suggest 
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that nonstimulant alternatives be considered as therapies for ADHD when issues related to 

abuse and dependence are a concern (25, 28, 248).

However, multiple studies have provided evidence that psychostimulant treatment in 

individuals with substance use disorders and ADHD is not associated with a significant 

worsening of substance abuse (249, 250). In a study that examined the efficacy of extended-

release mixed AMP salts in the treatment of ADHD symptoms and cocaine abuse in 126 

cocaine-dependent adults with ADHD (250), significantly greater reductions in ADHD 

symptoms and higher abstinence from cocaine use were observed with extended-release 

mixed AMP salts than placebo. In another study, osmotic-controlled release oral delivery 

system (OROS) MPH did not produce significantly greater reductions in ADHD symptoms 

than placebo in 24 AMP-dependent adults with newly diagnosed ADHD. However, OROS 

MPH treatment also was not associated with evidence of increased AMP abuse, as measured 

by self-reported days of AMP use or craving for AMP, time to relapse, or cumulative 

abstinence duration (249).

4.3.4 Sleep disturbances—The neurobiologic substrates of sleep are diverse and 

distributed throughout the brain, with monoaminergic systems playing an important role in 

wakefulness (21). Substantial literature exists regarding the sleep disturbances associated 

with ADHD, which include insomnia, disordered sleep, difficulty falling asleep, sleep apnea, 

daytime somnolence, and increased nocturnal motor activity (see (18, 251-253) for reviews). 

Evidence suggests that impaired and/or disordered sleep is present in individuals not being 

treated with psychostimulants (18). For example, in a study of the effects of MPH on sleep 

in children with ADHD, parents reported that approximately 10% of study participants had 

sleep problems before starting their medication (254). However, in regard to the reported 

effects of psychostimulants on sleep in individuals with ADHD, there are some 

discrepancies. In a meta-analysis of 9 articles, the use of psychostimulant medication was 

associated with longer sleep latency, worse sleep efficiency, and shorter sleep duration (255). 

A review of the safety and tolerability of ADHD medications noted that insomnia was one of 

the most commonly reported adverse events associated with psychostimulant treatment (36). 

In contrast, some studies have shown that psychostimulants have no significant negative 

impact on sleep (254, 256, 257). A post hoc analysis of the effects of lisdexamfetamine or 

SHP465 mixed amphetamine salts in adults with ADHD demonstrated that the proportions 

of participants exhibiting a worsening of sleep during treatment, as measured by the 

Pittsburgh Sleep Quality Index, did not differ from that of placebo (257). Discrepancies in 

the effects of stimulants on sleep in individuals with ADHD might be attributable to various 

factors, including sleep quality prior to treatment, the stimulant formulation, the length of 

treatment, and the method of sleep assessment (251, 254, 255). For example, in a study of 

MPH in children with ADHD, 23% of participants without preexisting sleep problems 

developed sleep problems while taking MPH, whereas 68.5% of those with preexisting sleep 

problems no longer experienced sleep problems after taking MPH (254).

4.4 Other Safety Concerns

In addition to considering the potential effect of AMP and MPH in individuals with other 

comorbid psychiatric disorders, the peripheral effects of AMP and MPH related to their 
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pharmacology need to be considered, particularly in regard to their effects on cardiovascular 

function. Increased heart rate and blood pressure are among the most frequent treatment-

emergent adverse events reported with psychostimulant treatment (36, 37); increases in pulse 

and blood pressure are also frequently reported (36, 37, 258). There is also a safety concern 

related to the potential for adverse cardiovascular outcomes, including ischemic attacks, 

myocardial infarction, and stroke (259). In a self-controlled case series analysis, treatment 

with MPH was associated with an increased overall risk of arrhythmia and with an increased 

risk of myocardial infarction from 1 week to 2 months after treatment initiation in children 

and adolescents with ADHD (260). Another study reported that the risk for an emergency 

department visit for cardiac-related reasons among youths did not differ between those being 

treated with AMP versus MPH (261). However, these findings should be considered in light 

of data from 2 large studies that reported no significant increase in risk for cardiovascular 

events in current users of ADHD medications compared with nonusers (262, 263).

The neurotransmitter systems responsible for stimulant-associated adverse events and safety 

concerns are in large part related to stimulation of peripheral NE activity (36, 259). Based on 

these concerns, package inserts for stimulants include black box warnings regarding the 

potential for serious adverse cardiovascular events (247). Assessments of the risks and 

benefits of stimulant therapy for ADHD should be made on an individual basis, and 

individuals on psychostimulant treatment should be monitored.

Another issue of potential concern is the possible neuroinflammatory effects of 

psychostimulants. In rats, MPH administration has been reported to produce 

neuroinflammation and oxidative stress in the hippocampus and cerebral cortex, as measured 

by the inflammatory markers tumor necrosis factor α and interleukin 1β (264, 265). In a 

systematic review of 14 studies (266), no study assessed the relationship between 

psychostimulant treatment and neuroinflammation so the relevance of preclinical models of 

neuroinflammation to psychostimulant treatment in individuals with ADHD is unknown. 

The same review did find evidence suggesting a role for inflammation in the pathogenesis of 

ADHD (266), which is consistent with a meta-analysis finding elevated levels of oxidative 

stress in patients diagnosed with ADHD (267). Oxidative stress has also been implicated in 

the lower brain volumes seen in ADHD patients (268).

5.0 Conclusions

Based on the published literature, the primary pharmacologic effects of both AMP and MPH 

are related to increased central DA and NE activity in brain regions that include the cortex 

and striatum. These regions are involved in the regulation of executive and attentional 

function (11). In ADHD, dysfunction in the DA and NE systems, which are critical to proper 

cortical and striatal function, likely account for some of the pathophysiology of ADHD (10, 

11, 206). Although it is a limitation of the review that the only database searched was 

PubMed, it is unlikely that important studies were not captured.

It has been speculated that the moderately greater efficacy of AMP-based agents compared 

with MPH-based agents in ADHD may be related to differences in their molecular actions 

(33), but to date there is no conclusive clinical evidence to support this speculation. 
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Furthermore, there is no conclusive clinical evidence supporting a prospective choice for an 

AMP-based agent over as MPH-based agent (or vice versa) based on the mechanisms of 

action of these drug classes. As such, the current understanding of differences in the 

mechanisms of action of AMP and MPH has not led to clinical guidelines regarding their 

use in specific patient populations. Furthermore, it is possible that differences in the 

pharmacologic profile between AMP and MPH, in combination with the complexities 

associated with the etiology of ADHD (11), contribute to individual differences in treatment 

response to AMP-based agents or MPH-based agents in individuals with ADHD. 

Interactions among these factors might explain why some patients have a differential 

response to these drugs.

When contemplating pharmacotherapy for ADHD, in addition to taking into account the 

potential for adverse cardiovascular outcomes (259), the presence of comorbid psychiatric 

disorders should be considered. Multiple psychiatric comorbidities, including depression and 

anxiety (16, 17), are thought to be mediated in part by shared neurobiological pathways that 

are also implicated in the pathophysiology of ADHD (19, 20). As such, the effect of 

psychostimulant treatment on the symptoms of these disorders and the potential interactions 

with medications used to treat these disorders need to be considered.
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Highlights

• This review discusses amphetamine (AMP) and methylphenidate (MPH) 

pharmacology.

• AMP and MPH increase corticostriatal catecholamine availability in different 

ways.

• Catecholamine alterations occur in attention-deficit/hyperactivity disorder 

(ADHD).

• Differential mechanisms of AMP and MPH may influence individual 

treatment response.

• Considering stimulant effects is vital when treating ADHD with 

comorbidities.
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Figure 1. Brain Mechanisms in ADHD*
(a) The cortical regions (lateral view) of the brain have a role in attention-deficit/

hyperactivity disorder (ADHD). The dorsolateral prefrontal cortex is linked to working 

memory, the ventromedial prefrontal cortex to complex decision making and strategic 

planning, and the parietal cortex to orientation of attention. (b) ADHD involves the 

subcortical structures (medial view) of the brain. The ventral anterior cingulate cortex and 

the dorsal anterior cingulate cortex subserve affective and cognitive components of executive 

control. Together with the basal ganglia (comprising the nucleus accumbens, caudate 

nucleus, and putamen), they form the frontostriatal circuit. Neuroimaging studies show 

structural and functional abnormalities in all of these structures in patients with ADHD, 

extending into the amygdala and cerebellum. (c) Neurotransmitter circuits in the brain are 

involved in ADHD. The dopamine system plays an important part in planning and initiation 

of motor responses, activation, switching, reaction to novelty, and processing of reward. The 

noradrenergic system influences arousal modulation, signal-to-noise ratios in cortical areas, 

state-dependent cognitive processes, and cognitive preparation of urgent stimuli. (d) 

Executive control networks are affected in patients with ADHD. The executive control and 

cortico-cerebellar networks coordinate executive functioning (ie, planning, goal-directed 

behavior, inhibition, working memory, and the flexible adaptation to context). These 

networks are underactivated and have lower internal functional connectivity in individuals 

with ADHD compared with individuals without the disorder. (e) ADHD involves the reward 

network. The ventromedial prefrontal cortex, orbitofrontal cortex, and ventral striatum are at 

the center of the brain network that responds to anticipation and receipt of reward. Other 

structures involved are the thalamus, the amygdala, and the cell bodies of dopaminergic 

neurons in the substantia nigra, which, as indicated by the arrows, interact in a complex 

manner. Behavioral and neural responses to reward are abnormal in ADHD. (f) The alerting 

network is impaired in ADHD. The frontal and parietal cortical areas and the thalamus 

intensively interact in the alerting network (indicated by the arrows), which supports 

attentional functioning and is weaker in individuals with ADHD than in controls. (g) ADHD 

involves the default-mode network (DMN). The DMN consists of the medial prefrontal 

cortex and the posterior cingulate cortex (medial view) as well as the lateral parietal cortex 
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and the medial temporal lobe (lateral view). DMN fluctuations are 180° out of phase with 

fluctuations in networks that become activated during externally oriented tasks, presumably 

reflecting competition between opposing processes for processing resources. Negative 

correlations between the DMN and the frontoparietal control network are weaker in patients 

with ADHD than in people who do not have the disorder.

*Reprinted with permission from Macmillan Publishers Ltd: [NAT REV DIS PRIMERS] 

(Faraone SV, Asherson P, Banaschewski T, Biederman J, Buitelaar JK, Ramos-Quiroga JA, 

et al. Nat Rev Dis Primers. 2015 Aug 6;1:15020), copyright 2015.
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Figure 2. PRISMA Flow Diagram of the Literature Search
*Publications were excluded if they did not focus on the mechanism of action or 

pharmacologic effects of amphetamine or methylphenidate or if the publications were 

imaging studies in individuals who were not healthy (ie, studies in those with psychiatric 

disorders were not included).
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