
Radiation-induced lymphopenia during chemoradiation therapy 
for non-small cell lung cancer is linked with age, lung V5, and 
XRCC1 rs25487 genotype in lymphocytes

Xiaoxue Xiea, Steven H. Linb, James W. Welshb, Xiong Weib, Hekun Jina, Radhe Mohanc, 
Zhongxing Liaob, Ting Xub

aHunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital, The 
Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 
China

bDepartment of Radiation Oncology The University of Texas MD Anderson Cancer Center, 
Houston, TX, USA

cDepartment of Radiation Physics, The University of Texas MD Anderson Cancer Center, 
Houston, TX, USA

Abstract

Background & Purpose: We investigated clinical and genetic factors associated with severe 

radiation-induced lymphopenia (RIL) in a randomized clinical trial of photon vs. proton radiation, 

with chemotherapy, for non-small cell lung cancer.

Methods: XRCC1 rs25487 was genotyped in lymphocytes from serial peripheral blood samples. 

Severe RIL was defined as absolute lymphocyte count (ALC) <0.3×109 cells/L. Univariate and 

multivariate analyses were used to identify independent risk factors, which were then used to 

group patients according to risk of severe RIL.

Results: Univariate analysis of the 178 patients in this analysis showed that older age, larger 

tumors, higher lung V5 and mean lung dose, and higher heart V5 and mean heart dose were 

associated with severe RIL during treatment (P<0.05). The XRCC1 rs25487 AA genotype was 

also associated with increased risk of severe RIL during treatment (AA vs. others: hazard ratio 

[HR] =1.065, 95% confidence interval [CI] 1.089–2.500, P = 0.018). Multivariate analyses showed 

that older age (HR=1.031, 95% CI 1.009–1.054, P=0.005), lung V5 (HR=1.039, 95% CI 1.023–

1.055, P<0.0001), and AA genotype (AA vs. others, HR=1.768, 95% CI 1.165–2.684, P=0.007) 

were independently associated with higher incidence of severe RIL. These three risk factors (age 
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≥56 years, lung V5 ≥51% and XRCC1 rs25487 AA) distinguished patients at different risk of 

developing severe RIL (P<0.0001).

Conclusions: Age, lung V5 and XRCC1 rs25487 AA were all linked with risk of severe RIL. 

Our predictive risk model may be helpful for identifying patients at high risk of severe RIL so that 

treatment can be modified.
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INTRODUCTION

Low absolute lymphocyte counts (ALCs) during therapy have been linked not only with the 

risk of opportunistic infections (e.g. radiation-induced pneumonia) [1,2] but also with worse 

survival in patients receiving radiation therapy [3–9]. Moreover, the emergence of 

immunotherapy has greatly improved outcomes in some patients with lung cancer and has 

become a treatment option in major guidelines. Lymphocytes have crucial roles in cancer 

immunity, and severe lymphopenia resulting from current standard chemoradiation therapy 

regimens could undermine the antitumor effects of checkpoint inhibitors and other immune-

modulating agents [10]. Therefore, it is important to identify factors that could predict the 

risk of severe radiation-induced lymphopenia (RIL).

Lymphocytes are known to be the most radiosensitive of the peripheral blood cells, with an 

LD50 as low as 2 Gy [11]. Lymphopenia is strongly associated with radiation dose and 

volume of organs at risk (e.g., lung, bone marrow, spleen) [12–14]. The entire body can be 

considered the organ at risk for lymphopenia, because peripheral lymphocytes circulate 

throughout the body and exist in all tissues, and lymphoblasts in the bone marrow can be 

exposed to radiation as well. Hence complete avoidance of treating lymphocytes during 

radiation therapy is not possible. Although dosimetric variables have been linked with 

lymphopenia [15], thus far they have not helped to identify patients who may be sensitive to 

RIL, which has been linked with poor overall survival (OS) in a variety of types of cancer 

[38]. A better understanding of the etiopathogenesis of homeostatic failure to restore 

lymphocyte counts may aid in formulating new therapeutic approaches to counter RIL.

Mechanistically, resting T and B lymphocytes show significant DNA fragmentation after 

exposure to 1–5 Gy, suggesting that the capacity for DNA repair is important in the 

development of lymphopenia [16]. The gene XRCC1, located on chromosome 19q13.2–

13.3, encodes the XRCC1 protein, which acts as a scaffold for other proteins in the DNA 

repair complex [17]. Batar and others [18] observed a significant negative correlation 

between XRCC1 mRNA and protein expression and DNA damage level (micronucleus 

frequency) in lymphocytes exposed in vitro to 2 Gy of gamma rays. The single nucleotide 

polymorphism Arg399Gln (G >A, rs25487) is one of the most extensively studied 

polymorphisms in XRCC1 [19]. Alsbeih et al. [20] found that the wild-type XRCC1 399Arg 

(G) allele was associated with an increased risk of developing late reactions (subcutaneous 

and deep tissue fibrosis) to radiotherapy. On the other hand, Chang-Claude et al. [21] 

reported that XRCC1 399Gln (A) alleles were associated with decreased risk of acute skin 
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reactions after radiotherapy (hazard ratio [HR]=0.51). Moreover, Yin et al. [22] found the 

XRCC1 399GlnGln (A/A) genotype to be associated with a reduced risk of radiation 

pneumonitis (adjusted HR for A/A vs. G/G=0.48; 95% confidence interval [CI] 0.24–0.97, 

P=0.041). However, we did not find any reports on associations between XRCC1 399 

genotype and RIL in a PubMed search.

The importance of lymphocytes, T lymphocytes in particular, in antitumor immune effects 

underscores the need to identify risk factors and biomarkers for lymphopenia, particularly 

with the advent of checkpoint-inhibitor immunotherapy for many solid tumors. Here, we 

sought to identify genetic-, patient-, behavior-, and treatment-related factors that could 

predict the risk of severe RIL in patients with non-small cell lung cancer (NSCLC), as a first 

step in developing interventions to prevent or mitigate this form of radiation-induced 

toxicity.

METHODS

Patients

Patients had been enrolled in an institutional review board–approved, prospective 

randomized trial that compared outcomes after intensity-modulated (photon) radiation 

therapy (IMRT) or passive scattering proton therapy (PSPT) for locally advanced NSCLC 

[23]. All patients included in this study provided written informed consent for optional 

blood sample collection for subsequent biomarker analyses. Eligible patients were >18 years 

old; had a Karnofsky performance score of ≥70; and had stage IIA to IIIB disease, stage IV 

disease with a single brain metastasis, or recurrent tumor after surgical resection that could 

be treated definitively with concurrent chemoradiation. The median total radiation dose was 

74 Gy (range 60.0–78.0 Gy) given in 1.8- to 2.4-Gy fractions. For this analysis, ALC values 

(number of cells ×109/L) of 178 eligible patients were obtained less than 30 days before 

treatment and weekly during concurrent chemoradiation, from which baseline and nadir 

ALC values were identified.

Clinical, dosimetric, and genetic data

All patient-related data (age, sex), behavior-related data (smoking history), disease-related 

data (disease stage, tumor histology, tumor volume), and treatment-related data were 

prospectively collected per protocol. The lung V5, mean lung dose (MLD), heart V5, and 

mean heart dose values were extracted from the delivered plans. Genotypes were determined 

from lymphocytes isolated from peripheral blood samples by real-time polymerase chain 

reaction (real-time PCR). The primer sequences, restriction enzymes, and PCR conditions 

used for the experiments are available upon request.

Statistical analysis

To visualize trends in peripheral blood lymphocyte numbers during treatment, we plotted 

ALC values over time during therapy (Suppl. Fig. S1). The nadir ALC value was defined as 

the minimum cell count during treatment for each patient. Optimal cutoff values for ALC 

nadir, age and lung V5 were determined by the methodoloty of Contal and O’Quigley 

[39,40]. The cutoff value to define severe RIL was ALC 0.3×109 cells/L, which was 
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associated with OS with the best fit of Cox proportional hazards model. To analyze the 

cumulative incidence of severe RIL, we recorded the first time the ALC declined below 

0.3×109 cells/L during treatment for each patient. A Cox proportional hazards regression 

model was used for univariate and multivariate analyses to assess potential associations of 

patient-, genetic-, behavior-, tumor-, and treatment-related factors with severe RIL; those 

factors were age, sex, Karnofsky performance status score, baseline ALC, gross tumor 

volume (GTV, in cm3), clinical disease stage, tumor location, smoking history, use of 

induction chemotherapy, lung and heart V5 (in %), and mean lung dose (MLD) and mean 

heart dose (in Gy). The criteria for including (or excluding) factors in the final multivariate 

Cox regression model for severe RIL were P<0.20 for inclusion and P>0.05 for removal in 

stepwise manner. The risk factors were assumed with equal weight to group patients for risk 

of severe RIL according to the number of risk factors. Kaplan-Meier curves were generated 

to visualize the cumulative incidence of severe RIL by risk group. All variables were 

analyzed as continuous when appropriate. All statistical tests were 2-sided, and analyses 

were performed using the SPSS ver. 24.0 statistical software package (IBM Corp., Armonk, 

NY) and SAS software (version 9.4; SAS Institute, Cary, NC).

RESULTS

Table 1 lists the characteristics of the 178 patients analyzed, of whom 95 were men and 83 

were women, with a median age of 66 years (range 37–85 years). Roughly one-third of 

patients (n=64) received induction chemotherapy, and all patients received concurrent 

chemoradiation. Ninety percent of patients (n=160) had a baseline ALC of >1×109 cells/L, 

and the other 10% (n=18) had a baseline ALC of <1×109 cells/L. The ALC nadir value 

appeared from 1 to 8 weeks during treatment. According to the Common Terminology 

Criteria for Adverse Events v 5.0, the ALC nadir was grade 2 (i.e., <0.8–0.5×109 cells/L) in 

16 patients (9%), grade 3 (i.e., <0.5–0.2×109 cells/L) in 103 patients (58%), and grade 4 

(i.e., <0.2×109 cells/L) in 59 patients (33%). No differences in baseline ALCs or during-

treatment nadir ALCs were found according to treatment modality (IMRT vs. PSPT) (Suppl. 

Table S1 and Suppl. Fig. S1). The median follow-up times were 24.6 months for all patients. 

In terms of OS, the optimal cutoff value for ALC nadir was 0.3×109 cells/L, which was also 

the median ALC value. ALC values below this threshold were associated with poorer OS 

after adjustment for other clinical factors (P=0.001, Suppl. Table S2; P=0.002, Suppl. Fig. 

S2). Thus we adopted ALC <0.3×109 cells/L as the definition of severe RIL for this study.

In univariate analysis, we found that older age (HR=1.025, 95% CI 1.004–1.046, P=0.020), 

larger GTV (HR=1.001, 95% CI 1.000–1.003, P=0.030), higher MLD (HR=1.073, 95% CI 

1.023–1.126, P=0.004), larger lung V5 (HR=1.031, 95% CI 1.017–1.045, P<0.0001), higher 

mean heart dose (HR=1.028, 95% CI 1.007–1.049, P=0.009), larger heart V5 (HR=1.013, 

95% CI 1.005–1.020, P=0.001) and the XRCC1 rs25487 AA genotype (vs. AG/GG: 

HR=1.065, 95% CI 1.089–2.500, P=0.018) were all associated with severe RIL (ALC 

<0.3×109 cells/L) during treatment (Table 1).

In multivariate analysis, older age (HR=1.031, 95% CI 1.009–1.054, P=0.005), higher lung 

V5 (HR=1.039, 95% CI 1.023–1.055, P<0.001), and the XRCC1 rs25487 AA genotype (vs. 

AG/GG: HR=1.768, 95% CI 1.165–2.684, P=0.007) were all independently associated with 
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severe RIL (ALC <0.3×109/L) during treatment. Sex, smoking history, baseline ALC level, 

MLD, heart V5, mean heart dose, GTV, and radiation modality were not significantly 

associated with RIL in the multivariate analysis and thus were excluded from the final model 

(Table 2). Optimal cutoff values for age (56 years) and lung V5 (51%) were identified from 

the best fit of the Cox proportional hazards model for sever RIL. The cumulative incidence 

of severe RIL (ALC <0.3×109/L) during treatment stratified by age (56 years, P=0.005), 

lung V5 (51%, P<0.0001), and the XRCC1 rs25487 genotype (AA vs. AG/GG, P=0.014) are 

shown in Figure 1. Finally, we stratified patients for risk of severe RIL (ALC <0.3×109 

cells/L) based on number of risk factors among the three identified in the multivariate 

analysis: age ≥56 years, lung V5 ≥51%, and XRCC1 rs25487 AA genotype (Table 3). 

Patients with 2–3 risk factors were at higher risk of severe RIL than were patients with 0–1 

risk factor (HR=3.111, 95% CI 2.046–4.729, P<0.0001z). The cumulative incidence of 

severe RIL during treatment stratified by number of risk factors is shown in Figure 2. The 

cumulative incidence of severe RIL was 75% in the high-risk groups (2–3 risk factors) and 

39% in low risk groups (0–1 risk factor). In other words, lung V5 needs to be kept at <51% 

in patients aged ≥56 years or those with XRCC1 rs25487 AA genotype to reduce the risk of 

severe RIL.

DISCUSSION

We hypothesized that genetic variations in the DNA repair gene XRCC1 could, with other 

clinical and dosimetric factors, predict RIL (defined in this study as ALC <0.3×109 cells/L). 

Indeed, we confirmed in the present study that the XRCC1 rs25487 AA genotype was 

associated with severe RIL during treatment for NSCLC. The protein product of the DNA 

repair gene XRCC1 is crucial in DNA repair, both in base excision repair [24, 25] and non-

homologous end-joining [26–28]. The functional effect, if any, of the single nucleotide 

polymorphism rs25487, also known as Gln399Arg, is not clear, although some studies 

suggest that amino acid substitutions in evolutionary conserved regions can affect protein 

function [29]. In one study, the (A) allele was associated with reduced repair of genetic 

damage from the nitrosamine NNK in cultured human lymphocytes, leading the authors to 

propose that the amino-acid change in the XRCC1 protein could have led to deficiencies in 

DNA repair [30]. These findings lead us in turn to propose that the reduced DNA repair 

capacity of XRCC1 rs25487 AA may explain the RIL observed in the current study, perhaps 

through compromises in immunity that lead to decreased inflammatory responses of normal 

tissues (e.g., lungs and skin) and worse OS. Specifically, the (A) allele has been linked with 

decreased radiation-associated toxicity in normal tissues, and correspondingly in less 

pneumonitis, less acute skin reactions, and less subcutaneous and deep tissue fibrosis [20–

22]. A meta-analysis suggested that both the XRCC1 rs25487 AG and AA genotypes could 

predict poor OS among patients with lung cancer (G/A vs. G/G: HR 1.23; 95% CI 1.06–

1.44; A/A vs. G/G: HR 2.03; 95% CI 1.20–3.45) [31]. However, direct evidence that 

XRCC1 399Gln/Arg determines lymphocyte radiosensitivity and affects radiotherapy 

outcomes remains limited. Therefore, the above assumptions need to be further verified 

through basic research.

The current study further showed increasing age to be associated with severe RIL during 

treatment for NSCLC. This phenomenon could be explained by the telomere theory, that is, 
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telomeres become shorter with age (i.e., over time) [32–34] and suggests that telomeres may 

be a marker of cellular senescence. Age-related decreases in mean telomere restriction 

fragment length have been linked with chromosomal radiosensitivity and apoptotic response 

in breast cancer [35]. This association between radiosensitivity and telomere shortening was 

also observed in peripheral blood lymphocytes, which could result from defects in 

homologous recombination repair of double-strand breaks and telomere uncapping [36]. 

Therefore aging could possibly induce severe RIL via age-related telomere shortening and 

increased radiosensitivity.

Finally, we found that lung V5 was independently associated with lymphocyte nadir during 

radiotherapy. Although MLD, mean heart dose, heart V5, and GTV were linked with RIL in 

univariate analyses, these factors were excluded from the final multivariate model because of 

their correlation with lung V5. This result was consistent with findings from another study in 

which 711 patients with NSCLC were treated with definitive radiotherapy; lung V5 was the 

factor most strongly associated with lymphocyte nadir, and higher lymphocyte counts during 

treatment were associated with better OS and disease control [15]. In a mathematical 

modeling approach, Yovino et al. [37] found that the radiation dose to circulating 

lymphocytes in patients receiving fractionated radiation for high-grade glioma could be as 

high as 2.2 Gy, with 99% of circulating lymphocytes receiving at least 0.5 Gy, after a typical 

regimen of 30 daily treatments with 2-Gy fractions. The incidental doses received when 

lymphocytes are within the radiation portal during fractionated radiation therapy could be 

sufficient to result in lymphopenia [38]. We realize that the most accurate dosimetric 

variable for RIL would be the dose to the lymphocytes when lymphocytes are considered an 

organ at risk. However, no reliable way of calculating dose to lymphocytes has been found 

to date. Therefore, in the current analysis, we included dose variables for the lung and heart. 

(Although we acknowledge that dose to the great vessels may have added valuable 

information, that dose was not measured and thus that information was not available to us). 

Finally, we used lung V5 as a surrogate for low-dose exposure in multivariate model to 

clarify the effects of radiation dose and volume on RIL because it was the strongest predictor 

of severe RIL. Exposure of more circulating lymphocytes to low-dose irradiation associated 

with the use of larger radiation fields could increase lymphocyte destruction, as suggested by 

our findings regarding greater reductions of circulating lymphocyte numbers being 

associated with lung V5.

Therefore, we built a predictive model consisting of the XRCC1 rs25487 genotype, lung V5, 

and age for predicting the occurrence of severe lymphopenia during radiation therapy 

(Figure 2). Notably, the only factor that is modifiable in the proposed model is the lung V5, 

suggesting that every effort should be made to meet the dose constraint for lung V5, 

especially for older patients or those with the XRCC1 rs25487 AA genotype. We also 

propose that this model could be used to aid in the choice of radiation modality (protons vs. 

photons) that would allow the greatest reduction in lung V5.

Our study did have several limitations. First, we did not have information on lymphocyte 

subtypes (e.g. CD4+ and CD8+ T cells), and thus we could not evaluate associations of 

lymphocyte subtypes with genetic, tumor, or patient characteristics. Second, we did not 

perform studies to verify the mechanism of XRCC1 399Gln/Arg genotype and lymphocyte 
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radiosensitivity. Finally, our data were obtained exclusively from one treatment center, and 

thus findings from the current study and the model developed should be validated with 

independent data sets from multicenter studies. We are planning future collaborative studies 

with other institutions to enroll larger numbers of patients, or perhaps patients with different 

diseases, to validate our findings.

In conclusion, older age, higher lung V5, and the presence of the XRCC1 rs25487 AA 

genotype were found to be independently associated with higher risk of severe RIL. Our risk 

stratification analysis further showed that the risk of severe RIL (ALC <0.3×109/L) during 

treatment for individual patients was increased by the number of risk factors present for that 

patient. With validation, our predictive model can help to guide personalized treatment for 

patients with NSCLC receiving definitive radiotherapy and immunotherapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Retrospective analysis of prospective clinical trial to identify factors 

predicting radiation-induced lymphopenia

• Age, lung V5 and XRCC1 rs25487 AA genotype were all independently 

linked with lymphopenia during chemoradiation for locally advanced non-

small cell lung cancer

• Combinations of these risk factors distinguished patients at different risk for 

lymphopenia
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Fig 1. 
Cumulative incidence of severe radiation-induced lymphopenia (RIL; absolute lymphocyte 

count <0.3×109 cells/L) during treatment for non-small cell lung cancer according to age 

(A), lung V5 (B), and XRCC1 rs25487 genotype (C).
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Fig. 2. 
Cumulative incidence of severe radiation-induced lymphopenia (RIL; absolute lymphocyte 

count <0.3×109 cells/L) during treatment by number of the risk factors (age ≥56 years; lung 

V5 ≥51%; and XRCC1 rs25487 AA genotype). The low-risk groups had 0–1 factor, the 

high-risk groups had 2–3 factors.
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Table 1.

Patient characteristics and univariate Cox regression analysis for lymphocyte nadir during radiotherapy

Characteristic All Patients (n=178) Lymphocyte Nadir during Radiotherapy Hazard P Value

>0.3×109/L (n=76) <0.3×109/L (n=102) Ratio (95% CI)

Age, years

 Median (range) 66 (37–85) 65 (37–81) 66 (39–85) 1.025 (1.004–1.046)

 0.020

 Mean (SD) 64.7 (9.2) 63.4 (9.7) 65.8 (8.6)

Sex, no. (%)

 Female 83 (46.6) 34 (19.1) 49 (27.5) 1.00

 Male 95 (53.4) 42 (23.6) 53 (27.8) 0.873 (0.592–1.2089)

 0.495

Smoking pack-years

 Median (range) 43 (0–244) 37 (0–125) 48 (0–244) 1.003 (0.999–1.007)

 0.150

 Mean (SD) 50.0 (39.8) 43.9 (30.7) 54.5 (44.9)

Tumor histology

 Squamous 62 (34.8) 25 (14.0) 37 (20.8) 1.00

 Adeno 92 (51.7) 36 (20.2) 56 (31.5) 1.017 (0.671–1.541)

 0.938

 Other 24 (13.5) 15 (8.4) 9 (5.1) 0.542 (0.261–1.124)

 0.100

GTV, cm3

 Median (range) 77.7 (1.9–686.6) 55.5 (1.9–686.6) 108.1 (5.7–673.7) 1.001 (1.000–1.003)

 0.030

 Mean (SD) 132.7 (136.4) 118.8 (140.5) 142.8 (133.1)

Disease stage, no. (%)*

 IIA-IIB 12 (6.7) 5 (2.8) 7 (3.9) 1.000

 IIIA-IIIB 152 (85.4) 63 (35.4) 89 (50) 1.196 (0.553–2.584)

 0.649

 IV+recurrent 14 (7.9) 8 (4.5) 6 (3.4) 0.743 (0.249–2.214)

 0.593

Tumor location

 LLL+RLL+RML 53 (29.8) 23 (12.9) 30 (16.8) 1.000

 LUL+RUL 116 (65.2) 48 (27.0) 68 (38.2) 0.795 (0.280–2.260)

 0.667

 Mediastinum 9 (5.1) 5 (2.8) 4 (2.2) 1.052 (0.683–1.622)

 0.818

KPS, no. (%)

 90 56 (31.5) 21 (11.8) 35 (19.7) 1.000

 80 109 (61.2) 50 (28.1) 59 (33.1) 0.959 (0.444–2.072)

 0.916
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Characteristic All Patients (n=178) Lymphocyte Nadir during Radiotherapy Hazard P Value

>0.3×109/L (n=76) <0.3×109/L (n=102) Ratio (95% CI)

 70 13 (7.3) 5 (2.8) 8 (4.5) 0.851 (0.406–1.873)

 0.669

XRCC1 rs25487

 AA 42 (23.6) 9 (5.1) 33 (18.5) 1.065 (1.089–2.500)

 0.018

 AG 80 (44.9) 43 (24.2) 37 (20.8) — —

 GG 56 (31.5) 24 (13.5) 32 (18.0) — —

 AG+GG 136 (76.4) 67 (37.6) 69 (38.8) 1.000

ALC at baseline (x109 cells/L)

 Median (range) 1.63 (0.3–4.12) 1.81 (0.3–3.62) 1.48 (0.39–4.12) 0.832 (0.624–1.109)

 0.210

 Mean (SD) 1.77 (0.72) 1.82 (0.69) 1.72 (0.74)

Radiation modality

 Photons 114 (64.0) 47 (26.4) 67 (37.6) 1.000

 Protons 64 (36.0) 29 (16.3) 35 (19.7) 0.792 (0.526–1.193)

 0.265

Induction chemo, no. (%)

 No 114 (64.0) 50 (28.1) 64 (36.0) 1.000

 Yes 64 (36.0) 26 (14.6) 38 (21.3) 1.128 (0.755–1.686)

 0.557

Lung V5, % <0.0001

 Median (range) 48.18 (12.3–89.4) 43.84 (18.6–73.9) 52.04 (12.3–89.4) 1.031 (1.017–1.045)

 <0.001

 Mean (SD) 48.4 (14.1) 45.3 (13.3) 50.7 (14.3)

Mean lung dose, Gy

 Median (range) 17.8 (1–22.8) 16.0 (1–22.8) 18.5 (1–22.7) 1.073 (1.023–1.126)

 0.004

 Mean (SD) 16.9 (4.3) 16.3 (4.5) 17.6 (3.8)

Heart V5, %

 Median (range) 38.1 (0–100) 29.5 (0–99.6) 46 (0–100) 1.013 (1.005–1.020)

 0.001

 Mean (SD) 43.4 (27.6) 37.8 (26.0) 47.7 (28.2)

Mean heart dose, Gy

 Median (range) 8.4 (0–37.0) 5.8 (0–37.0) 10.2 (0–34.6) 1.028 (1.007–1.049)

 0.009

 Mean (SD) 10.8 (9.0) 9.3 (9.1) 12.0 (8.8)

Abbreviations: CI, confidence interval; SD, standard deviation; GTV, gross tumor volume; KPS, Karnofsky performance status score; LLL, left 
lower lobe; RLL, right lower lobe; RML, right middle lobe; LUL, left upper lobe; RUL, right upper lobe; ALC, absolute lymphocyte count.

*
AJCC 6th edition.
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Table 2.

Multivariate Cox regression analysis for severe radiation-induced lymphopenia (absolute lymphocyte count 

<0.3×109cells/L) during treatment

Characteristics HR (95% CI) P Value

Age 1.031 (1.009–1.054) 0.005

Lung V5, % 1.039 (1.023–1.055) <0.0001

XRCC1 rs25487

 AA vs. AG 2.088 (1.250–3.226) 0.004

 AA vs. GG 1.499 (0.921–2.439) 0.104

 AA vs. AG+GG 1.768 (1.165–2.684) 0.007

Note: The thresholds for factors to be included in the final multivariate Cox regression model were P<0.2 for inclusion and P>0.05 for removal.
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Table 3.

Cox regression analyses of cumulative incidence of severe radiation-induced lymphopenia (absolute 

lymphocyte count < 0.3 × 109cells/L) during treatment stratified by the number of risk factors.

Number of Risk Factors HR 95% CI P Value

1 vs. 0 2.155 0.659–7.042 0.204

2 vs. 0 5.682 1.767–18.182 0.004

3 vs. 0 9.346 2.625–33.333 0.0006

2 vs. 1 2.632 1.686–4.098 <0.0001

3 vs. 1 4.329 2.232–8.333 <0.0001

3 vs. 2 1.642 0.984–3.012 0.110

0–1 vs. 2–3 3.111 2.046–4.729 <0.0001

Note: Risk factors were age ≥ 56 years, Lung V5 ≥ 51%, and XRCC1 rs25487 AA genotype.
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