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Obesity is a major cancer risk factor, but how differences in systemic metabolism change the 

tumor microenvironment (TME) and impact anti-tumor immunity is not understood. Here, we 

demonstrate that high-fat diet (HFD)-induced obesity impairs CD8+ T cell function in the murine 

TME, accelerating tumor growth. We generate a single-cell resolution atlas of cellular metabolism 

in the TME, detailing how it changes with diet-induced obesity. We find that tumor and CD8+ T 

cells display distinct metabolic adaptations to obesity. Tumor cells increase fat uptake with HFD, 

whereas tumor-infiltrating CD8+ T cells do not. These differential adaptations lead to altered fatty 

acid partitioning in HFD tumors, impairing CD8+ T cell infiltration and function. Blocking 

metabolic reprogramming by tumor cells in obese mice improves anti-tumor immunity. Analysis 

of human cancers reveals similar transcriptional changes in CD8+ T cell markers, suggesting 

interventions that exploit metabolism to improve cancer immunotherapy.

Graphical Abstract

Introduction

Obesity is an epidemic in the Western world and a risk factor for at least 13 types of cancer, 

including colorectal carcinoma (Lauby-Secretan et al., 2016). Of cancers in patients >30 

years of age in the United States, ~5% and 10% are attributable to excess body weight in 

men and women, respectively (Islami et al., 2018). Moreover, while overall cancer incidence 

has decreased over the past 10 years in the United States, rates are rising for several obesity-

related cancers, such as liver, pancreatic, thyroid and uterine cancer, as well as for colorectal 

cancer in patients under 55 (Lauby-Secretan et al., 2016; Siegel et al., 2019; Sung et al., 

2019). Thus, it is crucial to elucidate mechanisms by which obesity increases tumor burden.

Obesity induces systemic perturbations to organismal metabolism, leading to dyslipidemia, 

hypercholesterolemia, insulin resistance, altered hormone levels and baseline changes in 

inflammation (Deng et al., 2016). Cellular changes associated with obesity include 

transcriptional and epigenetic alterations in the intestinal epithelium favoring colorectal 

tumor initiation (Beyaz et al., 2016; Li et al., 2014, 2018) and progression (Li et al., 2014). 
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Previous studies on obesity and cancer have focused on tumor-intrinsic effects or on the 

endocrine-tumor cell regulatory axis. It has not yet been reported how changes in systemic 

metabolism induced by obesity affect immune cells in the local tumor microenvironment 

(TME).

The TME is a unique metabolic niche, containing cellular components (tumor cells, immune 

cells, and stromal cells) as well as the contents of the tumor interstitial space. A hallmark 

feature of tumor cell metabolism is increased nutrient consumption to meet energetic, 

anabolic, and pro-survival demands (Pavlova and Thompson, 2016; Spinelli and Haigis, 

2018). Activated T cells are highly proliferative and rely on specific metabolic pathways to 

sustain T cell effector functions (Buck et al., 2015). Given the limited blood supply of solid 

tumors, high nutrient consumption by tumor cells may pose a barrier to the metabolic 

requirements of intratumoral T cells (Chang et al., 2015; Ho et al., 2015). Tumor cell 

metabolism is known to alter many aspects of the local metabolic landscape in ways that 

inhibit anti-tumor immunity (Sugiura and Rathmell, 2018). How systemic metabolism 

affects local metabolism within the TME, however, is not well understood. It is also not 

known how obesity impacts the interplay between tumor and immune cells.

Here we investigate how obesity shifts the metabolic landscape of the TME to inhibit T cell 

function and promote tumor growth. Using metabolic, proteomic, and genomic approaches, 

as well as multiplexed tissue imaging, we systematically dissect how diet-induced obesity 

reshapes metabolism in the TME using syngeneic mouse tumor models. We use single-cell 

RNA-sequencing to characterize metabolic responses to obesity by immune subsets in the 

TME. These multi-omic data reveal a detailed map of the dynamic landscape of tumor-

immune cell interactions with HFD-induced obesity at single-cell resolution. Tumor cells, 

but not CD8+ T cells, dynamically respond to HFD by upregulating pathways that mobilize 

free fatty acids (FFAs). This shift results in altered fuel partitioning among cell populations, 

contributing to a TME that is paradoxically depleted for major fatty acid fuel sources during 

obesity. Genetic intervention to block metabolic reprogramming in tumor cells increases the 

availability of major FFA fuel sources and promotes tumor control by the immune system. 

Thus, adaptive metabolic plasticity in tumors with obesity instigates a tug of war in the TME 

between tumor cells and CD8+ T cells for beneficial fatty acids.

Results

HFD accelerates MC38 tumor growth in a CD8+ T cell-dependent manner

To model human obesity in mice, we randomized C57BL/6J animals at five weeks of age to 

control diet (CD) or HFD groups fed ad libitum (Figure 1A). While CD chow contains 

13.2% kilocalories from fat, 60% of the kilocalories in the HFD come from saturated and 

unsaturated fats (Figure S1A). After 8-10 weeks of feeding, HFD mice gained significantly 

more weight (Figure S1B) and exhibited systemic obesity-associated metabolic changes, 

such as hypercholesterolemia and mild hyperglycemia, as well as changes in circulating 

levels of leptin, resistin, adiponectin, and IL-6, but without changes in fed or fasting insulin 

levels (Figures S1C–S1I).
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After adaptation to CD or HFD, mice were injected with syngeneic MC38 colorectal 

adenocarcinoma cells, which establish highly immunogenic tumors. As observed previously, 

MC38 tumors grew more rapidly in mice fed HFD compared to CD (Figure 1B) (Algire et 

al., 2011; Nimri et al., 2015). We also studied the growth kinetics of three other C57BL/6J 

syngeneic tumor models of varying immunogenicity: E0771 breast adenocarcinoma, B16 

melanoma and Lewis Lung Carcinoma (LLC) (Crosby et al., 2018; Lechner et al., 2013; 

Mosely et al., 2017). Highly immunogenic orthotopic E0771 breast tumors grew faster in 

HFD animals (Figure 1C), while moderately immunogenic B16 melanoma tumors 

demonstrated a modest increase in growth rate with HFD (Figure 1D), and the growth rate of 

poorly immunogenic LLC tumors did not change with diet (Figure 1E). To further 

investigate how immunogenicity affects growth kinetics, we monitored growth of B16 

tumors expressing the immunogenic model antigen ovalbumin (B16-OVA-RFP) for 11 days, 

and found that even at this early time point, HFD tumors were substantially larger than CD 

tumors (Figure S1J). We also measured the effect of HFD on the growth of CT26 (colon 

carcinoma) and RENCA (renal adenocarcinoma) tumors, which are syngeneic in BALB/cJ 

mice. CT26 tumors grew faster in HFD- than CD-fed mice, but RENCA tumors did not 

(Figures S1K and S1L).

To interrogate whether the reduced growth rates of tumors in CD animals were due to 

control by T cells, we implanted MC38 tumors in T cell receptor α chain knock-out (TCRα-

KO) mice, which lack conventional αβ T cells. Although TCRα-KO mice exhibited similar 

weight gain on HFD as wildtype (WT) mice (Figure S1B), there was no difference in the 

growth rate of MC38 tumors in TCRα-KO mice fed CD compared to HFD (Figure 1F). 

Similarly, there were no diet-dependent changes in tumor growth rate in mice depleted of 

CD8+ T cells (Figure 1G, Figures S1M and S1N). While CD8+ T cell depletion expectedly 

accelerated tumor growth in both conditions, the difference between tumors in mice with 

and without CD8+ T cell depletion was smaller in the HFD context (Figures S1O and S1P). 

Taken together, these data provide evidence that HFD-induced changes in metabolism 

increase MC38 tumor growth by limiting anti-tumor CD8+ T cell responses.

HFD feeding reduces the number and functionality of intratumoral CD8+ T cells

To understand how HFD feeding alters the immune landscape of MC38 tumors, we used 

flow cytometry to profile tumor-infiltrating immune cell populations in tumors 10-14 days 

after implantation, when tumors were similar in volume (Figures 1B and 2A). In HFD 

tumors we observed large changes in the lymphocyte compartment, including cytotoxic T 

cell populations capable of performing antigen-specific cell killing. Specifically, HFD MC38 

tumors contained fewer CD8+ T cells as a fraction of the CD45+ leukocyte infiltrate (Figure 

2B, Figure S2A). The reduction in CD8+ T cells was specific to the tumor, since we did not 

observe this in the spleen or draining lymph node (dLN) (Figure 2B). To determine whether 

the reduced CD8+ T cell fraction corresponded to an overall reduction in number, we used 

GFP-expressing MC38 cells and counted the number of CD45+ leukocytes and CD8+ T cells 

relative to tumor cells by flow cytometry. This showed that HFD mice had a decreased 

leukocyte to tumor cell ratio (Figure 2C, Figure S2B), as well as a lower CD8+ T cell to 

tumor cell ratio (Figure 2D, Figure S2B). The ratio of CD4+ T cells to tumor cells was not 

significantly changed (Figures S2B and S2C), and the proportion of regulatory FOXP3+ 
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CD4+ T cells (Tregs) of all CD4+ T cells was comparable in CD and HFD tumors (Figure 

S2A, Figure S2D). As a result, the ratio of CD8+ T cells to Tregs was lower in HFD tumors 

(Figure S2E).

In addition to CD8+ T cells, we also evaluated the effects of HFD on other immune cell 

populations in MC38 tumors. Natural killer (NK) cell numbers were comparable across 

conditions (Figure S2F). However, the percentage of CD11b+ myeloid cells increased with 

HFD (Figures S2A and S2G), corresponding to an expansion of both GR1+ CD11b+ 

myeloid-derived suppressor cell numbers (Figures S2A and S2H) and F4/80+ GR1− CD11b+ 

tumor-associated macrophages (TAMs) (Figures S2A and S2I), two populations known to 

promote tumor growth. The ratio of CD11b+ myeloid cells to tumor cells did not increase, 

since there were fewer infiltrating immune cells in HFD tumors (Figure S2J). We also 

looked at CD11c+ dendritic cells, which stimulate T cells by presenting antigen. The 

percentage of CD11c+ dendritic cells in tumors was similar in CD and HFD, as were the 

expression levels of MHC-I, MHC-II, and CD40 on CD11c+ cells (Figures S2K–S2N). Diet 

did not alter MHC-I and PD-L1 levels on MC38 tumor cells (Figures S2O and S2P). These 

findings suggest that CD8+ T cells are the immune cell type in the MC38 TME most 

dramatically impacted by HFD.

To study the effect of HFD on the activity and function of CD8+ T cells in tumors we 

assayed markers indicative of T cell function. CD8+ tumor-infiltrating lymphocytes (TILs) 

from HFD mice were less proliferative, based on Ki67 levels (Figure 2E, Figure S2Q). A 

smaller proportion of HFD CD8+ TILs expressed the costimulatory receptor ICOS (Figure 

2F, Figure S2R). We also examined PD-1 expression, which is induced during activation, 

and observed fewer CD8+ TILs expressing PD-1 in HFD animals (Figure 2G). Thus, CD8+ 

TILs express lower levels of both costimulatory and co-inhibitory receptors, consistent with 

decreased activation. Accordingly, we found that fewer CD8+ TILs expressed the cytolytic 

molecule Granzyme B (GZMB) with HFD compared to CD (Figures 2H and 2I), suggesting 

reduced functionality. HFD did not alter the ability of CD8+ T cells to produce the 

inflammatory cytokines IFNγ and TNFα, but increased IL-2 production (Figures 2J–2L). 

We also analyzed the expression of key T cell functional markers from the diet-sensitive 

E0771 and B16-RFP-OVA tumor models, finding similar functional deficits in intratumoral 

T cells. GZMB and PD-1 expression were significantly lower in CD8+ T cells from HFD 

tumors, whereas CD8+ T cell infiltration was reduced in B16-OVA, but not E0771, tumors 

(Figures 2M and 2N, Figures S2S–S2V). In contrast, CD8+ T cell infiltration and 

functionality did not change with HFD in CT26 tumors in BALB/cJ mice (Figures S2W and 

S2X). Thus, HFD reduces intratumoral T cell function across many, but not all, diet-

sensitive tumor models.

We then asked whether obesity altered the activation of CD8+ T cells ex vivo after antibody 

stimulation. HFD-derived naïve splenic CD8+ T cells performed similarly or better than their 

CD-derived counterparts in terms of proliferation, GZMB expression and Ki67 expression 

when stimulated with anti-CD3/anti-CD28 antibodies in vitro (Figures S2Y–S2AA). Thus, 

changes in CD8+ T cell proliferation and state were specific to the HFD environment in vivo 
and did not appear to involve an intrinsic defect in T cell activation.
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Single-cell RNA-sequencing shows diet-induced alterations in tumor-infiltrating immune 
populations

Next, we used single-cell RNA-sequencing of tumor-infiltrating CD45+ leukocytes from CD 

and HFD MC38 tumors to map the tumor-immune transcriptional landscape in an unbiased 

and comprehensive manner (Figure 3A). To define major cell populations, we performed 

unsupervised clustering analysis on integrated single-cell datasets from CD and HFD 

tumors. This identified 16 distinct clusters (Figure 3B), where each of the 16 clusters 

contained cells from both diet conditions (Figure S3A). We annotated clusters based on the 

expression of known genetic markers (Figure S3B) and categorized those cell populations 

into groups with common pro- or anti-tumorigenic properties. Lymphocytes were 

significantly reduced in animals on HFD, whereas the relative proportions of 

immunosuppressive myeloid cell populations did not change (Figure 3C).

To map metabolic alterations with obesity at a single-cell resolution, we projected a curated 

set of 61 KEGG metabolic gene signatures onto all cells (DeTomaso et al., 2019). KEGG 

signatures enriched in leukocytes from CD tumors included sugar metabolism (fructose/

mannose metabolism, glycolysis/gluconeogenesis, galactose metabolism, and inositol 

phosphate metabolism) as well as redox pathways (cysteine and methionine metabolism and 

the pentose phosphate pathway) (Figure 3D). By contrast, leukocytes from HFD tumors 

were enriched for multiple pathways involved in fat and cholesterol metabolism 

(glycosphingolipid biosynthesis, steroid biosynthesis, fatty acid metabolism, and TCA 

cycle), folate biosynthesis, and pentose and glucuronate interconversion (Figure 3D). Next, 

we calculated KEGG metabolic signature scores for each cluster and compared average 

scores in CD versus HFD (Figures 3E–3G, Figures S3C–S3H). These comparisons largely 

corroborated the KEGG signatures for the complete dataset. For example, glycolysis and 

gluconeogenesis were significantly enriched with CD for 9 out of 16 clusters (Figures 3D 

and 3F) and fatty acid metabolism was significantly enriched with HFD across multiple 

clusters (Figures 3D and 3G).

We also identified cluster-specific metabolic adaptations that were not reflected in the 

overall cell analysis. For example, oxidative phosphorylation was enriched with CD in four 

clusters, including T lymphocytes, and enriched in HFD in cluster #10, corresponding to M2 

macrophages (Figure S3F). Interestingly, some pathways related to fat synthesis, including 

glycerolipid and sphingolipid metabolism, were not altered by HFD (Figures S3G and S3H). 

Clusters #6, #8, and #10, corresponding to monocytes, T cells, and M2 TAMs, were 

particularly sensitive to HFD, as each of these populations showed significant differences for 

three out of four of the major metabolic signatures that direct carbon into glycolysis and the 

TCA cycle (Figures 3E–3G, Figures S3E and S3F).

We next profiled KEGG signaling signatures involved in metabolic regulation and immune 

activity. As expected, transcriptional signatures of insulin signaling were enriched with 

HFD, but only in certain myeloid clusters (Figure S3I). Likewise, mTOR signaling was more 

associated with HFD, but only altered in myeloid populations (Figure S3J). On the other 

hand, phosphatidyl inositol signaling was enriched in CD for T lymphocytes (S3K). We saw 

other signatures consistent with impaired T cell function with HFD. In T lymphocytes 

(cluster #8), we observed significant reductions in chemokine signaling and T cell receptor 
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signaling with HFD (Figures 3H and 3I). Collectively, these data reveal the existence of both 

common and cell type-specific modes of metabolic adaptations to HFD.

Since our initial clustering did not resolve different T lymphocyte populations, we re-

clustered T lymphocytes (cluster #8) into subsets, which identified four sub-clusters (Figure 

3J) that all express Cd3g (Figure S3L). Lymphocyte sub-clusters were identified as CD4+ or 

CD8+ T cells by the expression of Ikzf2 and Cd8a, respectively (Figures S3M and S3N). 

CD8+ T cells were further characterized as proliferating, Tim3+ cytotoxic, or Slamf6+ stem 

cell-progenitor subsets based on the expression of the corresponding cell signature (Figures 

S3O–S3R) (Kowalczyk et al., 2015; Miller et al., 2019). We then scored KEGG metabolic 

signatures within all CD8+ T cells, which revealed metabolic pathways enriched with CD 

versus HFD (Figure 3K). We observed metabolic signatures enriched with CD that have 

been correlated with T cell activation, including sugar and amino acid metabolism (Figure 

3K) (Geiger et al., 2016; MacIver et al., 2013; Sinclair et al., 2013; Wei et al., 2017). Due to 

the small number of cells in clusters T-2 and T-3, we focused subsequent analysis on the T-0 

Tim3+ cytotoxic CD8+ T cell population.

When we performed differential expression analysis on Tim3+ cytotoxic CD8+ T cells, the 

top five genes enriched in CD CD8+ T cells were involved in T cell effector function and 

included Gzmb, Tnfrsf9, Ifng, Ccl3, and Ccl4 (Figure 3L). To examine changes associated 

with diet, we scored CD8+ T cells in cluster T-0 against the C7 immunological signature 

database for MSigDB. We manually curated gene sets to focus on genes involved in CD8+ T 

cell stimulation and filtered for signatures that were significantly autocorrelated in ≥ 1 

condition (Figures S3S and S3T), which represent features that are associated with the cell 

cluster. Overall, signatures associated with naïve or unstimulated T cells tended to be 

enriched with HFD, whereas those corresponding to stimulated T cells were enriched with 

CD (Figure 3M, Figure S3T). To determine if cells scoring higher for T cell stimulation 

signatures also scored higher for specific metabolic signatures (or vice versa), we calculated 

the correlation between T cell stimulation signatures and a core set of KEGG metabolic 

pathways for CD and HFD CD8+ T cells. Indeed, metabolic pathways were more 

significantly correlated with T cell activation in the HFD TME (Figure 3N). In sum, single-

cell profiling revealed that immune cells in the TME undergo unique metabolic adaptations 

in response to HFD and the differences are distinctive in the T cells, which display altered 

expression of major central carbon metabolic pathways.

HFD remodels the tumor-immune landscape in the TME

For tumor cell killing, CD8+ T cells require direct cell-cell contact and sufficient metabolic 

resources. Thus, we sought to understand if obesity affects the location of TILs within the 

TME as well as whether the positions of T cells in a tumor relate to changes in the 

intratumoral metabolic niche. We mapped the locations and states of cells in the TME using 

cyclic immunofluorescence (CyCIF), which enables multiplexed tissue imaging. The 

resulting 23-plex, sub-cellular resolution images of formalin fixed paraffin embedded 

(FFPE) tissue sections made it possible to generate an atlas of immune, tumor, and stromal 

cell populations, map their locations within the TME, and identify key features of their 

metabolic state (Lin et al., 2018).
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Cell clusters were defined computationally, based on patterns of marker expression and the 

score for their metabolic signature (see materials and methods for details; Figures 4A and 

4B, FiguresS4A and S4B). We assigned identities to individual clusters based on the 

expression of lineage markers (Figure 4C). Overall, nine distinct cell types could be 

identified and mapped (Figure 4C). Similar to our earlier findings, CyCIF analysis 

independently showed that HFD tumors contained fewer CD8+ T cells, and further revealed 

that T cells were not concentrated at the tumor margin, a hallmark of T cell exclusion 

(Figure 2D, Figure S4C).

We observed substantial variation in the expression of metabolic and cell state markers with 

cell type and across the TME. Of note, the expression of glycolytic markers (GLUT1, 

PKM2, and LDH) was non-uniform across tumors with regions of both bright and dim 

staining (Figure 4D). By contrast, the spatial distributions of other metabolic markers such 

as GLUD1, ACO2, COX4, and VDAC1 were more uniform across tissue sections (Figure 

S4D). To determine whether variation in metabolic state across tumors correlated spatially 

with the locations of immune cells, we measured the overlap between immune cell 

populations and regions of the tumor with high expression of GLUT1 or ACO2. GLUT1- 

and ACO2-high regions were defined by protein expression and were not associated with 

any particular cell type. For this analysis, the proportion of intratumoral CD8+ T cells 

located in GLUT1-high or ACO2-high regions (Figures 4E and 4F) was compared to a 

simulated null distribution involving the same number of CD8+ T cells (Figure 4G, Figure 

S4E). This analysis showed that both CD4+ and CD8+ T cells were significantly less 

abundant in GLUT1-high regions than expected by chance (Figures S4F and S4G). 

Exclusion was not observed either for CD8+ T cells in ACO2-high regions (Figure S4F) or 

for other immune cell types, such as CD11b+ LY6G+ myeloid cells (Figure S4H). To 

determine if diet changes the propensity for T cells to avoid GLUT1-high regions, we 

controlled for differences in cell density for each tissue by normalizing the percent overlap 

between CD8+ T cells and GLUT1-high regions to the corresponding simulated distribution. 

The normalized overlap between CD8+ and CD4+ T cells and GLUT1 was reduced in HFD 

tumors (Figures 4H and 4I), with CD8+ T cells significantly more excluded from GLUT1-

high areas in HFD than in CD. Thus, while CD8+ T cells are found within HFD tumors, our 

data suggest that HFD feeding changes metabolic niche interactions within tumors and 

impacts local T cell infiltration patterns.

HFD causes opposing metabolic changes in CD8+ T cells versus tumor cells

CD8+ T cells rely on many of the same fuel sources and metabolic pathways as tumor cells 

to support proliferation, survival, and effector functions. To study how diet impacts 

metabolic reprogramming in different types of cells within tumors, we used bulk RNA-

sequencing (RNA-seq) on sorted populations of GFP+ MC38 tumor cells, CD8+ TILs, and 

CD8+ T cells residing in the dLN from day 12 tumors in CD- or HFD-fed mice. By 

comparing CD8+ T cells from the tumor and dLN, we identified patterns of gene expression 

specific to the TME. Principal component (PC) analysis revealed robust separation along 

PC1 of T cells derived from tumor versus dLN, involving genes with well-described roles in 

T cell activation (Figure 5A, Figures S5A and S5B). PC2 distinguished TILs isolated from 

HFD and CD animals (Figure 5A). Thus, PC analysis revealed a larger effect of diet on the 
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transcriptional profiles of CD8+ T cells in tumors than in dLNs, suggesting that the 

differences in CD8+ T cells with obesity are specific to the TME.

To understand TME-specific adaptive responses in CD8+ T cells, we studied transcriptional 

changes in CD8+ TILs. Only four genes exhibited FDR-corrected statistically significant 

differential expression with HFD (Figure 5B), and three of these genes were involved in fat 

synthesis or cholesterol metabolism: ELOVL6, DGAT1, and LDLRAP1. To determine 

whether tumor cells displayed similar adaptations to HFD, we profiled gene expression in 

sorted MC38 tumor cells. 32 genes were differentially expressed between CD and HFD in 

MC38 tumor cells (GEO subseries GSE157994) and gene set enrichment analysis (GSEA) 

revealed hallmarks of hypoxia (FDR q-value = 0.022) and inflammation (TNFα signaling 

via NFκB, FDR q-value = 0.027) enriched in CD tumors (Figure S5C). Transcriptional 

changes in CD8+ TILs were non-overlapping with tumor cells (Figures 5C–5F), providing 

evidence for distinct metabolic adaptations to HFD. Using a less stringent cut-off for 

significance (p-value < 0.01, non-FDR corrected), only 12 out of 703 differentially 

expressed genes were common between tumor and CD8+ T cells (Figure S5D). Diet did not 

alter the expression of genes involved in antigen presentation and immunogenicity in MC38 

tumor cells (Figure S5E). These data indicate that HFD has different effects on T cells and 

tumor cells and that changes in T cells are specific to the TME.

To probe for metabolic adaptations with HFD, we profiled changes in >1800 metabolic 

genes and known metabolic regulators belonging to four GO categories (GO:0006520, 

GO:0005975, GO:0006629, and GO:0006099). We identified a significant reduction in Phd3 
(Prolyl Hydroxylase-3, alternatively known as Egln3) and Nmnat2 expression in tumor cells 

as the top significantly changed genes with diet-induced obesity (Figure 5C). We confirmed 

by qPCR that Phd3 mRNA expression was reduced with HFD in later stage (day 23) tumor 

lysates (Figure 5D). By contrast, Phd3 expression did not change in the CD8+ TILs (Figure 

5E).

PHD3 is a member of the prolyl hydroxylase family, best known for regulating the response 

to hypoxia by hydroxylating the transcription factor HIF1α (Kaelin and Ratcliffe, 2008). 

PHD3 has been associated with a number of signaling pathways important in inflammation 

and immune control (Fu and Taubman, 2010; Garvalov et al., 2014; Xue et al., 2010; Yano et 

al., 2018). Another study in tumor cells found that PHD3 regulates fatty acid oxidation 

(FAO) by repressing the import of long-chain fatty acids into mitochondria (German et al., 

2016). Thus, we hypothesized that HFD might reprogram tumor cell metabolism at the 

expense of local CD8+ T cells. We therefore compared average expression levels of a panel 

of FAO genes within the two RNA-seq datasets. We found that while HFD tumor cells 

displayed overall changes in gene expression that would promote FAO (Figure 5G), these 

changes were absent in CD8+ TILs (Figure 5H). In addition, transcript levels for glycolytic 

genes tended to decrease with HFD in MC38 tumor cells to a greater extent than in CD8+ 

TILs (Figures 5I and 5J). These data reveal that the metabolic adaptations to the systemic 

stress of HFD, including changes in fat metabolism, differ between tumor cells and CD8+ 

TILs.

Ringel et al. Page 9

Cell. Author manuscript; available in PMC 2021 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HFD reprograms fat utilization in the TME

To monitor lipid storage profiles in CD8+ TILs and tumor cells, we measured neutral lipid 

accumulation using LipidTOX staining. We found that both CD8+ TILs and MC38 tumor 

cells contained similar levels of neutral lipids in both diets (Figures 5K and 5L, Figure S5F). 

To test whether diet alters fatty acid uptake, we measured palmitate influx ex vivo using 

BODIPY-labeled palmitate (C16-BODIPY). Tumor cells derived from HFD mice took up 

more fatty acid than CD tumor cells (Figure 5M). We reasoned that alterations in tumor-

intrinsic fat utilization might impact fat uptake by CD8+ T cells in the same 

microenvironment. Whereas diet did not alter baseline palmitate uptake by CD8+ T cells in 

the dLN (Figures 5N and 5O), CD44+ CD8+ TILs from HFD-fed mice acquired less 

palmitate from media than their CD counterparts (Figures 5N and 5P). This was also true in 

B16-OVA-RFP and E0771 tumors (Figures 5Q–5S). Data on CD44+ CD8+ TILs contrast 

with other tumor-infiltrating leukocyte populations from HFD tumors, such as CD11b+ 

myeloid cells, which did not reduce fatty acid uptake (Figures S5G–S5I). Thus, tumor and 

CD8+ T cells appear to rewire their metabolism differently: tumor cells adapt and increase 

fatty acid utilization, whereas CD8+ T cells do not.

Enhanced fatty acid uptake by tumor cells may leave T cells deprived of fatty acids in the 

TME. Consistent with this hypothesis, naïve CD8+ T cells activated in vitro in charcoal-

stripped serum-containing media, which contains few fatty acids, proliferated better with 

fatty acid supplementation (Figures 5T and 5U). In contrast, FFA supplementation did not 

affect MC38 tumor cell proliferation (Figure S5J), demonstrating a cell-type specific 

vulnerability to fat availability. In total, these findings provide functional evidence that 

individual cell populations in the TME mount distinct responses to systemic metabolic 

perturbations (obesity), resulting in differences in fatty acid utilization between immune and 

tumor cells.

Proteomic analysis reveals fatty acid uptake and oxidation signatures by HFD tumor cells

To gain a deeper molecular understanding of tumor cell adaptations to HFD, we compared 

the proteome of GFP+ tumor cells sorted from CD or HFD tumors using tandem mass tag 

(TMT)-based quantitative proteomics (Figure 6A). Principal component analysis and 

hierarchical clustering of 7,178 proteins showed that CD- and HFD-derived MC38 cells have 

distinct proteomes (Figures S6A and S6B). Using fast pre-ranked gene set enrichment 

analysis, we found that fatty acid metabolism and oxidative phosphorylation were among the 

pathways most enriched in HFD tumor cells (Figure 6B). IFNγ response in HFD was 

reduced relative to CD, which could be explained by reduced CD8+ T cell infiltration 

(Figure 6B).

Proteomic analysis revealed additional mechanisms whereby HFD supports fat utilization in 

tumors, via induction of transporters (SLC27A1), fatty acid binding proteins (FABP5), and 

proteins involved in mitochondrial beta-oxidation (CPT1A, ACSM3, ACADVL, ETFB, and 

ECHS1) (Figures 6C, 6D, and 6F). By contrast, glycolytic enzymes catalyzing irreversible 

and/or rate-limiting steps were downregulated with HFD (Figures 6C–6F). There was no 

clear change in proteins involved in fat synthesis, while the expression of several TCA cycle 

proteins increased with HFD, in line with the gene set enrichment analysis (Figure 6F, 
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Figures S6C and S6D). The expression of proteins mediating antigen processing and 

presentation was not significantly changed with diet, suggesting that reduced anti-tumor 

immunity with HFD was not caused by altered antigen presentation, in line with RNA-seq 

data (Figures S5E and S6E). Overall, these proteomic data support that HFD MC38 tumor 

cells rewire metabolism to increase fatty acid uptake and oxidation.

HFD alters the neutral lipid composition of the TME

Since fat oxidation signatures were highly enriched in tumor cells with HFD, we performed 

targeted lipidomics to measure the effect of HFD on lipid levels in the circulation and in the 

TME. We analyzed the lipid composition of plasma and two intratumoral compartments: 

sorted GFP+ MC38 tumor cells and tumor interstitial fluid (TIF). Whereas few lipid species 

were significantly altered in tumor cells (Figure S6F), HFD had a larger impact on lipid 

availability in both plasma and TIF (Figures S6G and S6H). Because circulating nutrients 

are a main source of metabolites in TIF, we anticipated many metabolites would scale 

uniformly between TIF and plasma (Sullivan et al., 2019). Thus, we plotted the TIF-to-

plasma ratio for each lipid with either diet to identify the lipid classes specific to the TME 

that were most altered by HFD. As expected, there was a strong positive correlation between 

the TIF-to-plasma ratios in CD and HFD for all lipids analyzed (Pearson r = 0.8071, 

p<0.0001), showing that TIF composition primarily reflects lipid levels in circulation 

(Figure S6I). However, we noticed that triglyceride (TAG) and, to a lesser extent, diglyceride 

(DAG) species tended to occupy off-diagonal positions (Figures S6I–S6L). Removing these 

lipid classes increased the correlation between HFD and CD (Pearson r = 0.9543, p<0.0001), 

and improved the goodness-of-fit to a linear scaling model (Figures S6L and S6M), 

indicating that DAG and TAG levels are major differences in the TME in mice fed HFD. 

Indeed, the top four TAG and DAG species (by peak intensity) revealed significant 

enrichment in TIF with HFD, but not in plasma (Figures 6G–6J). To check if local 

lipoprotein lipase (LPL) activity could account for the lipid enrichment in TIF with HFD, we 

measured LPL activity in homogenized tumor lysates and mouse heart for comparison. We 

observed similar LPL activity in CD and HFD tumors (Figure S6N), suggesting that HFD 

tumors contain a lipid-rich microenvironment with local lipase activity that facilitates 

cellular uptake.

Tumor cell PHD3 expression controls fatty acid availability in the HFD TME

Since we found that HFD reprograms the TME to enhance fat uptake in tumors, we 

hypothesized that these HFD-induced changes in tumor cell fat metabolism may impact FFA 

availability and CD8+ T cell function in the TME. We postulated that preventing HFD-

induced metabolic rewiring may restore CD8+ T cell responses and prevent increased tumor 

growth on HFD. To test this idea, we overexpressed PHD3 in MC38 cells (MC38 PHD3-

OE), which is one of the main metabolic regulators changed in MC38 cells with HFD 

(Figure S7A). PHD3-OE cells had higher levels of hydroxyl ACC2, which is a PHD3 

substrate that regulates fat oxidation and read-out of PHD3 activity (Figure S7B). MC38 

PHD3-OE cell lines grew at the same rate as control cells in vitro (Figure S7C). PHD3 

overexpression was maintained when cells were injected into CD and HFD animals (Figures 

S7D and S7E). Moreover, PHD3 overexpression did not alter the expression of MHC-I or 

PD-L1, but did significantly reduce fatty acid uptake by the tumor cells (Figures S7F–S7H).
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To test the hypothesis that PHD3 expression in tumor cells modulates local availability of 

FFAs, we used targeted metabolomics to measure FFAs in plasma and TIF from MC38 

tumors (Figure 7A). To verify the purity of our TIF isolation, we compared normalized NAD
+ levels between TIF and whole tumor tissue lysate, which indicated little contamination of 

our TIF preparation with intracellular contents (Figure S7I). HFD increased circulating 

levels of many FFAs, including palmitic and oleic acid (C16:0 and C18:1) (Figures 7B and 

7C, Figure S7J). By contrast, local FFA levels in TIF were reduced in animals on HFD as 

compared to CD (Figure 7D). Notably, most metabolites in TIF were unchanged by diet 

(data not shown), indicating a unique role for FFAs in the HFD TME. Depletion of fatty 

acids in the TME is paradoxical given the high level of dietary fatty acids in HFD and 

suggests that local metabolic reprogramming may affect FFA availability.

Next, we compared relative FFA levels in TIF from MC38 PHD3-OE and empty vector (EV) 

control tumors. Whereas PHD3 overexpression had no significant impact on FFA levels in 

CD TIF (Figure 7E), several FFAs increased in PHD3-OE TIF with HFD (Figure 7F). FFAs 

constituting major lipid carbon sources in circulation, including palmitate and oleate (C16:0 

and 18:1) were among the significantly changed fatty acids (Figure 7F). Of note, tumor cell 

PHD3 overexpression was sufficient to restore palmitate availability in the TME (Figure 

7G). Thus, restoring PHD3 expression in tumor cells is sufficient to alter nutrient availability 

in the TME.

Tumor cell PHD3 overexpression promotes CD8+ T cell tumor control

If metabolic reprogramming and depletion of FFAs within the TME diminish local anti-

tumor immunity, then counteracting this local metabolic rewiring may improve tumor 

control by infiltrating CD8+ T cells. We therefore tested whether altering PHD3 expression 

in MC38 cells would affect tumor control by CD8+ T cells. As numbers of CD8+ TILs might 

be reduced in a TME depleted for critical fuels, we asked whether raising PHD3 levels in 

tumor cells would increase CD8+ infiltration in HFD tumors. We injected EV-transduced 

and PHD3-OE MC38 tumor cells in opposing flanks of mice fed CD or HFD and measured 

intratumoral CD8+ T cell numbers and localization (Figure 7H). MC38 tumor sections were 

stained with DAPI to reveal overall architecture, and then for CD8 to reveal infiltration of 

CD8+ T cells (Figure 7I). Quantification of images revealed depletion of CD8+ T cells in 

HFD, without major changes to CD8+ T cell localization around or within the tumors 

(Figure 7J). PHD3 overexpression in tumor cells significantly increased CD8+ T cell 

infiltration in HFD animals (Figure 7J), providing evidence that changing a metabolic 

pathway in tumor cells can impact tumor control via a non-cell autonomous mechanism.

We investigated the effect of PHD3 overexpression on tumor growth in vivo. Ectopic PHD3 

expression did not alter tumor growth kinetics in mice fed a CD (Figure 7K). However, 

MC38 PHD3-OE tumor growth was reduced compared to EV control in HFD animals 

(Figure 7K). To test the hypothesis that this finding was a result of better tumor control by 

CD8+ T cells, we examined tumor growth in TCRα-KO mice (Figure 7L) and in CD8+ T 

cell-depleted mice (Figure 7M). PHD3-OE had no effect on tumor growth in TCRα-KO 

mice on HFD (Figure 7L), which shows that PHD3-OE MC38 cells do not have an intrinsic 

reduction in growth over control MC38 cells. Moreover, while PHD3-OE reduced tumor 
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growth rates in HFD mice treated with isotype control antibody, PHD3 expression status did 

not affect tumor growth rate in CD8+ T cell-depleted mice (Figure 7M). These data show 

that maintaining high PHD3 expression in MC38 tumor cells improves the anti-tumor T cell 

response in HFD mice and mitigates the effects of HFD on anti-tumor immunity. Overall, 

multiple lines of evidence reveal that HFD-induced local metabolic rewiring in the tumor 

alters fuel partitioning and reduces anti-tumor immunity in the TME.

PHD3 loss correlates with reduced anti-tumor CD8+ T cell function across multiple human 
cancers

To explore whether obesity alters the tumor metabolic landscape in human patients, we 

analyzed the colon adenocarcinoma (COAD) RNA-seq dataset available on the public 

domain of The Cancer Genome Atlas (TCGA) with corresponding BMI data. Expression of 

PHD3, but not of PHD1 or PHD2, was significantly lower in tumors from obese patients 

with BMI ≥ 30 kg/m2 (Figure 7N, Figure S7K). We also observed a reduction in PHD3 
expression in cancer compared to normal tissue from COAD patients (Figure 7O) 

(Radhakrishnan et al., 2016; Rawluszko et al., 2013).

Based on these findings, we hypothesized that obesity might reduce T cell infiltration or 

function in human tumors. We scored COAD tumors based on the expression of a CD8+ 

gene signature. Using this metric, CD8+ T cell infiltration was reduced in tumors from 

severely obese patients (BMI ≥ 35 kg/m2) (Figure 7P), consistent with a recent study that 

found fewer CD8+ TILs in colorectal tumors from obese patients (Wang et al., 2018). We 

also analyzed the association between PHD3 transcript levels and markers of CD8+ T cell-

mediated immunity and inflammation in human patient samples. There were significant 

positive correlations between MHC-I and GZMB with PHD3 expression across multiple 

cancer types (Figures S7L and S7M), suggesting that PHD3-low tumors are less inflamed.

Next, we asked whether patient samples with low PHD3 expression might be enriched 

among immunologically “cold” tumors. We tested this hypothesis in five TCGA datasets 

composed of the most significantly correlated cancers from the Spearman analysis (COAD, 

PRAD, KIRC, LUAD, and THCA) (Figures S7L and S7M) as well as melanoma (SKCM) 

for comparison. Patient samples were stratified as PHD3-high or PHD3-low based on 

percentile cut-offs for PHD3 expression of 10% or 20%. We then clustered patient samples 

into immunologically “hot”, “intermediate”, or “cold” categories based on CD8+ gene 

signature score (Figure 7Q). Not only was PHD3 expression lower in cold COAD tumors 

(Figure S7N), we also found that PHD3-low samples were significantly enriched among 

cold tumors for five out of six cancer types, and for all cancer types tested with a strong 

correlation between PHD3 and MHC-I or GZMB expression (Figures S7L, S7M and S7O). 

As a control, GLUD1 expression, an unrelated metabolic gene involved in glutaminolysis, 

was not enriched in immunologically cold tumors (Figure S7O). These data show that PHD3 
downregulation occurs in human cancers and correlates with reduced immunity.

Discussion

In this paper, we identify systemic metabolism, as altered by diet, to be a critical determinant 

of metabolic programs in the TME. Tumors develop in metabolically diverse contexts, since 
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patients have a broad spectrum of dietary habits, blood chemistry parameters, adiposity, and 

basal metabolic properties. Previous studies have focused primarily on tumor cell-intrinsic 

metabolic rewiring associated with these variables. Our work demonstrates that cellular 

components of the TME, for example immune and tumor cells, can behave differently. 

Adaptations by tumor cells to HFD cause T cell dysfunction due to altered fatty acid 

partitioning and local depletion of essential metabolites, revealing that the metabolic states 

of cells within tumors can be coupled. These findings highlight the complexity of local 

metabolism within tumors and demonstrate that it is critical to consider metabolic 

reciprocity between intratumoral cell populations as a factor regulating immune control over 

tumor growth.

Several recent studies have found that dietary perturbations altering systemic metabolic state 

can also impact anti-tumor immunity (Di Biase et al., 2016; Pietrocola et al., 2016; Rubio-

Patiño et al., 2018). For example, low-protein diet enhances cytokine production by tumor 

cells, which promotes the anti-tumor immune response (Rubio-Patiño et al., 2018). Another 

study showed that obesity diminished CD8+ T cell function in the PyMT tumor model, 

which was associated with increased FAO and reduced glycolysis in T cells (Zhang et al., 

2020). One key difference with our study is that PyMT tumors occur in the lipid-rich 

environment of the mammary fat pad. Also, we do not see changes in glycolytic gene 

expression with diet in CD8+ T cells (Figure 5I). Finally, a recent study found that diet-

induced obesity enhances responses to PD-1/PD-L1 therapy in the B16 mouse melanoma 

model (Wang et al., 2018), which matches clinical data showing better outcomes for obese 

melanoma patients treated with immune checkpoint blockade (Cortellini et al., 2019; 

McQuade et al., 2018; Murphy and Longo, 2019; Woodall et al., 2020). In agreement with 

these studies, we also find a defective baseline anti-tumor T cell response with HFD. 

Melanoma is not among the cancer types in which we find a correlation between low PHD3 
expression and reduced CD8+ T cell signatures (Figure S7O), suggesting that metabolic 

properties unique to specific cancer types may impact intratumoral changes in response to 

obesity. Clearly, metabolic state may have profound effects on therapeutic outcomes, and 

these effects are under-explored.

The current study provides insight into the immunometabolic landscape within tumors at 

single-cell resolution. Our studies reveal that tumor metabolism may significantly differ in a 

lean versus an obese setting, and that dietary stress may amplify the metabolic tug of war in 

tumors with a direct effect on the local function of CD8+ T cells. We show that obesity 

potentiates transcriptional and metabolic reprogramming events leading to altered nutrient 

availability in the TME and immune dysfunction. Thus, the full impact of metabolic 

reprogramming in tumors cannot be captured by studying tumor cells in culture without 

pressures imposed by the microenvironment. Rather, to fully harness the power of targeting 

metabolism in patients, we must understand the interplay between systemic metabolism, 

changes in the TME, and the potential for different effects on the metabolism of tumor and 

immune cells. An improved understanding of how systemic metabolism affects nutrient 

partitioning and immune function in the TME may have implications for therapeutic 

interventions targeting cancer metabolism and/or anti-tumor immunity with impacts on 

precision medicine and future patient care.
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Limitations of Study

The study presented here has several important considerations. First, our data are suggestive 

of a T cell activation defect in tumors, rather than terminal, irreversible exhaustion, and it 

would be interesting for future studies to dissect this further. Second, we show that HFD 

alters the nutrient content within the TME, which can be reversed by PHD3 overexpression 

in MC38 tumor cells to improve anti-tumor CD8+ T cell responses. While these data provide 

proof of concept that the transcriptional changes with HFD in tumor cells dampen anti-

tumor immunity, we did not formally demonstrate this is caused by enhancing fat oxidation 

in MC38 cells. As diet-induced obesity leads to systemic perturbations and PHD3 

overexpression only partially rescues CD8+ T cell infiltration and tumor growth kinetics, 

other mechanisms likely contribute to reduced anti-tumor CD8+ T cell responses. For 

instance, our studies do not rule out the role of other immune cell types in these phenotypes. 

Alternatively, HFD may induce the production of a metabolite downstream of altered 

metabolism within the TME that is inhibitory to immune cells. Finally, as tumors display an 

array of metabolic reprogramming, the full spectrum of cancer adaptation to systemic stress 

will depend upon tumor types, as well as the systemic physiology of the individual. Our data 

determine conclusively that an individual’s systemic metabolism can transmit signals to the 

TME. It will be exciting for future investigation to study other systemic perturbations in this 

context, such as other models of metabolic dysfunction and aging.

STAR Methods

Resource Availability

Lead Contact for Reagent and Resource Sharing—Further information and requests 

for resources and reagents should be directed to and will be fulfilled by the Lead Contact, 

Marcia C. Haigis (Marcia_Haigis@hms.harvard.edu).

Materials Availability—Plasmids generated in this study will be made available by 

request to the lead contact.

Data Code and Availability—RNA-sequencing datasets generated during this study are 

available at the GEO repository within the GSE157999 reference series. TMT-proteomics 

data generated during this study have been deposited to the ProteomeXchange Consortium 

via the PRIDE partner repository with the dataset identifier PXD019495. All other relevant 

data are available from the corresponding author on request.

Experimental Model and Subject Details

Cell Lines—MC38, LLC, B16, Phoenix, and 293T cells were cultured in normal DMEM 

without pyruvate supplemented with 10% FBS and 1% penicillin/streptomycin. E0771 and 

CT26 cells were cultured in RPMI 1640 supplemented with 10% FBS, 10 mM HEPES and 

1% penicillin/streptomycin. RENCA cells were cultured in RPMI 1640 supplemented with 

10% FBS, 1% penicillin/streptomycin, 0.1 mM non-essential amino acids, 1 mM sodium 

pyruvate, and 2 mM extra L-glutamine. Cells derived from dissociated tumors were cultured 

in R10 or R2, which consists of RPMI 1640 medium supplemented with either 10% or 2% 
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FBS, 1% penicillin/streptomycin, 10 mM HEPES, and 0.05 mM 2-mercaptoethanol. MC38, 

Phoenix, 293T and E0771 cells are female. B16 and RENCA cells are male. The sex of LLC 

and CT26 cell lines is not published. All cells were cultured at 37°C in a humidified 5% 

CO2 incubator. All FBS was heat-inactivated prior to use.

Mice—4-week old C57BL/6, TCRα knock-out (B6.129S2-Tcrαtm1Mom/J), and C57BL/6-

Tg(TcraTcrb)1100Mjb/J (OT-1) female mice were purchased from Jackson Laboratories. 

OT-1 CD8+ TCR-transgenic mice have been previously described (Hogquist et al. 1994). For 

all experiments, 5-week old mice were assigned to CD (PicoLab Rodent Diet 20 5053; Lab 

Diet) or HFD (#12492; Research Diets, Inc.) for 8-10 weeks. All mouse colonies and 

experimental animals were maintained in the same animal facility at Harvard Medical 

School and housed in specific pathogen-free conditions. All animals were used in 

accordance with animal care guidelines from the Harvard Medical School Standing 

Committee on Animals and the National Institutes of Health. All mouse protocols were 

approved by the Harvard Medical Area Standing Committee on Animals.

Method Details

Cloning—PHD3-overexpression vectors were constructed by PCR-amplifying mouse 

PHD3 (Egln3) using CloneAmp HiFi PCR Premix (Clontech) from a plasmid containing 

full-length PHD3 (MmCD00320451) using primers containing BamHI and Sal I restriction 

sites. The digested insert was ligated into pLenti CMV GFP Blast (659-1) using Quick 

Ligase (NEB BioLabs) according to the manufacturer’s instructions. Resulting ligation 

reactions were transformed in Stbl3 E. coli for vector propagation and validation. RFP-

overexpression vectors were constructed in the same way, but using primers containing Xho 

I and EcoR V restriction sites. The digested insert was ligated into MSCV-PIG (Puro-IRES-

GFP, Addgene #18751), which was digested with the same enzymes, to replace GFP with 

RFP. For the generation of B16-OVA-RFP cells from B16 melanoma cells, plasmids were 

generated by replacing the puromycin resistance cassette with OVA and replacing GFP with 

RFP in the MSCV-PIG plasmid.

Ectopic Gene Overexpression—Phoenix-ECO packaging cells were transfected with 

MSCV-PIG, which constitutively expresses GFP, or MSCV-PIR (generated in this paper, 

which constitutively expresses RFP) or MSCV OVA-IRES-RFP to produce retrovirus. 

Fluorescent MC38 cell lines were generated by infecting MC38 cells with viral supernatants 

for 24 hours, and then sorting for the brightest 20% of GFP+ or RFP+ cells after 48 hours of 

resting in normal DMEM. Cells were sorted a second time 7-14 days later and the brightest 

20% of GFP+ or RFP+ cells were collected and maintained in vitro under standard culture 

conditions. B16-OVA-RFP cells were created following the same protocol, infecting B16 

melanoma cells with OVA-IRES-RFP retrovirus. Cell stocks were frozen and stored in liquid 

nitrogen. Fluorescent cell lines were routinely selected for 24-48 hours in puromycin after 

recovery to ensure retention of the fluorescent marker.

Lentivirus containing PHD3-OE plasmid or empty vector control were produced by co-

transfecting HEK 293T cells with the target plasmid plus four helper plasmids (5 μg target, 2 

μg pHRΔ8.2, 2 μg CMV-VSVG, 0.5 μg pMD.G, and 0.5 μg CMVΔR8.2) using a 1:3 ratio of 
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Fugene 6 to DNA. Virus was harvested 48 hours post-infection and filtered through a 0.45 

μm filter. Lentivirus was frozen at −80°C for long-term storage or used immediately. For 

MC38 infection, MC38 cells were trypsinized and resuspended in media containing 10 

μg/mL Polybrene (Santa Cruz). Trypsinized cells were diluted 1:1 with fresh or thawed 

lentivirus and then plated for 24 hours before changing the media. 48 hours post-infection, 

MC38 cells were selected with 7 μg/mL blasticidin (Sigma-Aldrich) for 48-72 hours before 

using for assays. Frozen MC38 PHD3-OE cell lines were cultured for 24 hours in the 

presence of 7 μg/mL blasticidin before expanding for tumor injections.

Mouse Tumor Models—After 8-10 weeks of CD or HFD feeding, mice were 

anesthetized with 2.5% Avertin diluted in 1X DPBS, shaved at the injection site, and then 

injected subcutaneously in the abdominal flank with 105 (MC38, LLC, and B16) or 2.5x105 

(B16-OVA-RFP, CT26, and RENCA) cells, or in the mammary gland with 2x105 E0771 

cells. Once palpable tumors were present, tumors measurements were performed using a 

caliper every 2-3 days. Tumor volumes were calculated using the following formula for 

ellipsoid volume: 0.5 x D x d2, where D is the long and d is the short diameter. Mice were 

sacrificed at humane endpoints or day 10-14 for tissue harvest.

Metabolic Phenotyping—Plasma glucose concentrations were measured in blood 

collected from the tail vein using a Contour blood glucose meter. To measure plasma insulin, 

leptin, IL-6, adiponectin, resistin, and cholesterol concentrations, mice were separated into 

fed or fasted groups and fasted overnight for 16 hours before blood was collected via cardiac 

puncture into EDTA-coated tubes. Whole blood was spun at 1500 g for 15 minutes at 4°C 

and the upper plasma layer was moved to a new tube. Plasma samples were sent for analysis 

at the Vanderbilt University Medical Center (VUMC) Lipid Core or VUMC Hormone Assay 

& Analytical Services Core.

Antibody-Mediated T Cell Depletions—Mice were treated with six doses of depleting 

antibodies or isotype control delivered by intraperitoneal injection on days-1 (300 vg), 1 

(200 μg), 4 (200μg), 8 (200μg), 12 (200 μg), and 16 (200 μg) relative to tumor injection (day 

0). Depletion efficiency was checked by flow cytometry on cheek bleeds on days 3, 10, and 

18 using antibodies targeting non-competing CD8 epitopes. For depletion experiments with 

MC38 cell lines, the following antibodies were used: rat IgG2b isotype control (BioXCell, 

Clone #LTF-2) or anti-CD8α (BioXCell, Clone #2.43). For depletion experiments with 

PHD3-OE cell lines, the following antibodies were used: rat IgG1 isotype control 

(BioXCell, Clone #TNP6A7) or anti-CD8β (BioXCell, Clone #53-5.8)

Protein Extraction and Western Blotting—MC38 cells were washed once with ice-

cold 1X DPBS and then lysed directly in ice-cold RIPA lysis buffer (150 mM NaCl, 5 mM 

EDTA, 50 mM Tris pH 8.0, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) 

supplemented with 1 mM DTT, EDTA-free protease inhibitor (Sigma), phosphatase inhibitor 

cocktail 2 (Sigma), and phosphatase inhibitor cocktail 3 (Sigma). Cells were scraped into 

Eppendorf tubes and incubated on ice for 15 minutes with occasional vortexing before 

clarification by centrifugation at >16,000 g in a microcentrifuge at 4°C for 10 minutes. 

Protein concentrations were determined by BCA assay (ThermoFisher Scientific). Equal 
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concentrations of protein were diluted into 1X SDS-PAGE loading buffer, boiled at 95°C for 

10 minutes, and then loaded onto Criterion TGX 4-20% gels (Biorad). Proteins were 

transferred onto nitrocellulose membranes (Biorad) and transfer quality was assessed by 

Ponceau staining. All Western blotting solutions were prepared in 1X TBST. The membrane 

was blocked for 1 hour at room temperature in 5% nonfat milk and then incubated overnight 

at 4°C with the indicated antibodies diluted in 3% BSA: αPHD3 (ThermoFisher Scientific, 

Cat# PA1-20196, 1:1000), αFLAG (Cell Signaling, Cat# 2368, 1:1000), αBeta-Actin 

(Sigma, Cat# A2066, 1:10,000). The membrane was washed three times for 5 minutes with 

1X TBST and then incubated for one hour at room temperature with the corresponding 

secondary HRP-conjugate antibody diluted in 5% nonfat milk. The membrane was washed 

three times with 1X TBST and then developed using ECL solution (Perkin Elmer).

Protein Immunoprecipitation (IP)—ACC2 immunoprecipitation from MC38 cells and 

Western blotting for hydroxy-proline post-translational modifications was performed as 

previously described (German et al., 2016).

Tumor Dissociation and Tumor-Infiltrating Leukocyte Isolation—Tumors were 

harvested on day 10-14 post-injection and digested in 1X DPBS containing calcium, 

magnesium, and 250 units/mL of Type 1 Collagenase (Worthington Biochemical 

Corporation). For samples that were not run through Percoll gradients, this buffer also 

contained 20 units/mL DNase I. Samples were dissociated by GentleMACS (MiltenyI), 

incubated for 20 minutes at 37°C with gentle rocking, dissociated by GentleMACS again, 

and then filtered through a 70 μm filter. In some experiments, TILs were enriched by 

centrifuging samples through a Percoll gradient. Briefly, dissociated tumor cells were 

resuspended in 5 mL 40% salt-adjusted Percoll (GE Healthcare Lifesciences), which was 

layered over 2 mL 70% salt-adjusted Percoll. Samples were spun at room temperature for 20 

minutes at 800 g with the acceleration and brake off. Leukocytes were recovered from the 

interface of the 40% and 70% Percoll layers.

Flow Cytometry and Staining—Primary mouse cells isolated from spleen, draining 

lymph node, and tumor were stained with fluorescent antibodies and analyzed by flow 

cytometry. For experiments with live/dead criteria, cells were first stained with LIVE/DEAD 

Fixable Near-IR stain (ThermoFisher Scientific) in 1X DPBS according to the 

manufacturer’s instructions. Subsequent surface marker staining was performed in MACS 

buffer containing 1X DPBS supplemented with 1% FBS and 2 mM EDTA. Intracellular 

staining for flow panels containing nuclear proteins was performed using the eBioscience 

FoxP3/ Transcription Factor Staining Buffer Set (ThermoFisher Scientific). For intracellular 

staining of cytoplasmic proteins, such as cytokines, the Fixation/Permeabilization Solution 

Kit (BD Biosciences) was used. Intracellular cytokine staining was performed after a 4 hour 

stimulation with PMA (100 ng/mL) and ionomycin (500 ng/mL) in the presence of 

GolgiStop at 37°C. Please see Key Resources Table for the fluorescently labeled antibodies 

used for staining.

To stain for neutral lipids, TILs or dissociated GFP+ tumors were incubated with HCS 

LipidTOX™ Deep Red (ThermoFisher Scientific) diluted 1:200 in MACS buffer for 1 hour 

at 37°C. After LipidTox staining, TIL samples were stained with the flow cytometry 
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antibodies. Ex vivo palmitate uptake was measured in purified TIL samples or dissociated 

RFP+ tumors after overnight incubation at 37°C in R2 with 1 μM BODIPY™ FL C16 added. 

The following morning, TIL samples were stained with flow cytometry antibodies.

Data collection was performed on a BD FACSymphony or LSR II flow cytometer and 

analyzed using FlowJo v10.4.1.

T Cell Isolation and Activation—Naïve CD8+ T cells were isolated from the spleens of 

13-15 week old female wildtype or OT-1 mice using negative magnetic selection (Miltenyi 

Biotec) and stained with Cell Trace Violet (CTV, ThermoFisher Scientific) as per the 

manufacturer’s instructions. 50,000 CD8+ T cells were plated per well on 96-well plates pre-

coated with αCD3/αCD28 antibodies at concentrations ranging from 0 to 8 μg/mL and 

incubated at 37°C in a humidified 5% CO2 incubator. For free fatty acid supplementation, 

palmitate and oleate were individually conjugated to fatty acid-free BSA (MP Biomedicals) 

in 150 mM NaCl at a 6:1 molar ratio to make a 4 mM, pH-adjusted FA stock solution. For 

fatty acid supplementation, 100 μM each of BSA-conjugated palmitate and oleate was added 

to the culture medium containing charcoal-stripped serum, or an equivalent concentration of 

BSA alone as a control. After 48-72 hours of stimulation, cell numbers, viability, and 

proliferation were measured by flow cytometry. A naïve control was maintained with 10 

ng/mL IL-7 (BioLegend).

Lipoprotein Lipase Activity Assays—LPL activity assays were performed using a 

commercially available fluorometric assay from Abcam. Briefly, dissected tissues were 

weighed on an analytical balance, rinsed in ice-cold PBS, and then homogenized using 

10-15 strokes in a dounce homogenizer. The LPL assay was performed in accordance with 

the manufacturer’s instructions.

RNA Extraction and qPCR—RNA was extracted from flash-frozen, powderized tumor 

tissue using TRIzol™ reagent (ThermoFisher Scientific) and purified using the Direct-zol 

RNA miniprep kit (Zymo Research) according to the manufacturer’s instructions. cDNA 

was synthesized using the iScript cDNA synthesis kit (BioRad). Quantitative real-time PCR 

was performed with PerfeCTa SYBR® Green FastMix (Quantabio) on a Roche Lightcycler 

480 and analyzed using ΔΔCt calculations. β-actin was used as a reference gene for 

normalization.

RNA-Sequencing—For RNA-sequencing experiments, CD8+ TILs and GFP+ tumor cells 

were sorted from dissociated MC38-PIG tumors, as were CD8+ T cells from dLNs, after 

staining with the following antibodies for mouse antigens: CD45.2-AF647 (BioLegend, 

Clone #104), CD3ε-PE (BioLegend, Clone#145-2C11), CD8α-BC510 (BioLegend, Clone 

#53-6.7), CD4-PacBlue (BioLegend, Clone #RM4-5), and CD11b-PE/Cy7 (BioLegend 

Clone #M1/70). 20-100K CD8+ T cells were sorted by gating away from debris and then 

gating for singlets that were CD45+, CD3+/CD11b−, CD8+/CD4−. 200K GFP+ tumor cells 

were sorted from each sample by gating away from debris and then gating for singlets that 

were CD45−/GFP+. Samples were sorted into tubes containing R10 supplemented with an 

extra 10% FBS, stored on ice, and then spun at 750 g for 10 minutes at 4°C. Cell pellets 

were resuspended in 30 μL RLT buffer (Qiagen) with 1% (v/v) 2-mercaptoethanol added and 
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frozen at −80°C. RNA-seq library preparations were performed as previously described 

(Sage et al., 2016).

Single-Cell RNA-Sequencing—CD45+ tumor-infiltrating leukocytes were enriched by 

positive selection from dissociated day 12 MC38 tumors for single-cell analysis. Prior to 

magnetic enrichment, MC38 tumors were minced in RPMI containing 2% FBS, 2 mg/mL 

collagenase P (Roche), and 50 mcg/mL DNase I (Sigma) and then incubated at 37°C with 

gentle rocking for 10 minutes. CD45+ leukocytes were magnetically labeled and enriched by 

positive selection (Miltenyi Biotec). Cells were diluted with Trypan Blue and counted using 

a hemocytometer. Tumors from three different mice were pooled per sample, and two 

samples were prepared per diet condition. For a target recovery of 5,000 single cells, 

~8-9,000 live cells were loaded onto the Chromium Controller (10X genomics) and 

processed according to the manufacturer’s instructions. One sample failed at this step, 

leaving two CD and one HFD sample, which were sequenced on an Illumina NextSeq500 

sequencer using a 75-bp kit with paired-end reads.

Metabolite Extractions—12-14 days after tumor injections, plasma, tumor interstitial 

fluid, and tumor tissue were harvested for metabolomics analysis. Blood was collected by 

heart puncture into heparinized tubes (VWR) and separated into plasma by centrifugation at 

1500 g for 20 minutes at 4°C. Tumor interstitial fluid was collected as previously described 

(Wiig et al., 2003). Briefly, dissected tumors were wrapped in nylon net filters (EMD 

Millipore) and placed over Eppendorf tubes on ice. Tumors were spun at 400 g for 15 

minutes at 4°C. Tumor tissue was moved to a new tube so that both the tumor interstitial 

fluid and tumor tissue could be snap-frozen in liquid nitrogen and stored at −80°C. Tumor 

tissue was manually powderized by mortar and pestle and accurately weighed prior to 

metabolite isolation.

To extract metabolites from serum and tumor interstitial samples, 50 μL of cold extraction 

solvent (40:40:20 methanol:acetonitrile:water stored at −20°C) was added to 1.5 μL of 

sample. After vortexing, the samples were incubated on ice for 20 minutes, and then 

centrifuged at 16,000 g for 20 minutes at 4°C. Finally, the supernatants were transferred to 

LC vials. For tissue samples, the volume of the extraction solution (μL) was 40 x the weight 

of tissue (mg) to make an extract of 25 mg tissue per mL solvent. Metabolite extraction from 

tissues was performed by adding the extraction solution to the powderized tissues followed 

by vortexing. Samples were incubated at −20°C for 2 hours, then centrifuged at 16,000 g for 

20 minutes at 4°C and the clean supernatants transferred to LC vials (Jang et al., 2018).

For lipidomics analysis, 2 μL TIF or plasma was extracted with water : methanol : 

chloroform (1:1:1) containing 4 μM TAG (19:0/19:0/19:0) as internal standard. Samples 

were vortexed and sonicated for 5 minutes. After centrifugation at 3000g for 20 minutes, the 

chloroform phase was dried under nitrogen gas and then reconstituted in 50 μL methanol : 

chloroform (9:1).

LC-MS Analysis—For untargeted metabolomics of polar metabolites, extracts were 

analyzed using a quadrupole-orbitrap mass spectrometer (Q Exactive, Thermo Fisher 

Scientific, San Jose, CA) coupled to hydrophilic interaction chromatography via 
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electrospray ionization. lC separation was on a XBridge BEH Amide column (2.1 mm x 150 

mm, 2.5 μm particle size; Waters, Milford, MA) using a gradient of solvent A (20 mM 

ammonium acetate, 20 mM ammonium hydroxide in 95:5 water: acetonitrile, pH 9.45) and 

solvent B (acetonitrile). Flow rate was 150 μL/minute, column temperature was 25 °C, 

autosampler temperature was 5°C, and injection volume was 10 μL. The LC gradient was: 0 

min, 90% B; 2 min, 85% B; 3 min, 75% B; 7 min, 75% B; 8 min, 70% B; 9 min, 70% B; 10 

min, 50% B; 12 min, 50% B; 13 min, 25% B; 14 min, 25% B; 16 min, 0% B; 21 min, 0% B; 

22 min, 90% B; 25 min, 90% B. The mass spectrometer was operated in negative ion or 

positive ionizations mode to scan from m/z 70 to 1000 at 1Hz and a resolving power of 

140,000 (Jang et al., 2018).

For the analysis of free fatty acids, extracts were analyzed using an orbitrap mass 

spectrometer (Exactive, Thermo Fisher Scientific, San Jose, CA) coupled to ion-pairing 

reverse phase chromatography via electrospray ionization. LC separation was on a Luna C8 

reversed-phase column (2.0 x 150 mm, 3μm particle size, 100 Å poresize, Phenomenex, 

Torrance, CA) using a gradient of solvent A (97/3 water/methanol with 10 mM 

tributylamine and 15 mM acetic acid, pH 4.5) and solvent B (methanol). Flow rate was 250 

μL/minute, column temperature was 25 °C, autosampler temperature was 5°C, and injection 

volume was 10 μL. The LC gradient was: 0 min, 80% B; 10 min, 90% B; 11 min, 99% B; 25 

min, 99% B; 26 min, 80% B; 30 min, 80% B. The mass spectrometer was operated in 

negative ion mode to scan from m/z 120 to 400 at 1Hz and a resolving power of 100,000 

(Kamphorst et al., 2011).

For lipidomics analysis, the lipid extract was separated by using a Kinetex evo C18 column 

(2.6 um, 150 mm × 2.0 mm I.D., Phenomenex) coupled to a Thermo Scientific SII UPLC 

system. The C18 column was used with the following buffers and linear gradient: A = water 

with 0.1% formic acid, B = 90% isopropanol, 10% methanol; 5% to 100% from 0-20min, 

100% for additional 5min; flow rate 200 μL/min. Mass spectrometry detection was carried 

out on a Q Extractive HF-X orbitrap mass spectrometer with an HESI source operated in 

positive mode. Metabolite quantification was done using TraceFinder software 

(ThermoFisher). The identity of the metabolite was confirmed by matching accurate mass or 

MS/MS fragmentation pattern to databases.

Histology—Empty vector-transduced and PHD3-OE tumor cells were implanted into mice 

on opposing abdominal flanks as described above. On day 12 post-implantation, both left 

and right flank tumors were excised and immediately frozen in Optimal Cutting Temperature 

compound (OCT) on dry ice. Tumors sections were cut at 7 μm, fixed in ice-cold acetone, 

and stored at −20°C until staining. Before staining, slides were re-fixed in ice-cold acetone 

for 10 minutes. Tissues were then re-hydrated in 1X PBS and blocked at room temperature 

with 5% BSA/1X PBS solution for one hour. The slides were incubated with CD8-PE 

antibody (BioLegend, Clone#YTS156.7.7) diluted in 1X PBS for one hour in a humidified 

chamber at room temperature. Slides were then washed 3 times with 1X PBS and stained 

with DAPI for an additional 10 minutes. Finally, slides were washed once in 1X PBS and 

mounted with Prolong Glass Antifade Mountant (Thermofisher Scientific). Slides were 

imaged with a confocal Olympus FV3000 microscope and the resulting images (each 1024 x 

1024 pixels) were stitched together using microscope software to generate the final 
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reconstructed tissue sections with a scale of 1 μm = 1.6091 pixels. CD8+ T cell numbers 

were counted by two independent blinded observers and obtained by counting the number of 

positive signals in randomly drawn 1000x1000 pixel boxes throughout the tissue image.

TMT-Proteomics—Cell pellets were processed using the streamlined TMT labelling 

protocol (Navarrete-Perea et al., 2018). Samples were lysed in 8M urea in 200 mM EPPS pH 

8.5 with protease (Pierce A32953) and phosphatase (Pierce A32957) inhibitors, and passed 

through a 21-guage needle 10x. Samples were reduced with 5 mM TCEP, alkylated with 10 

mM iodoacetamide, and quenched with 5 mM DTT, followed by methanol/chloroform 

precipitation of protein. Pellets were reconstituted in 200 mM EPPS pH 8.5, digested 

overnight with LysC protease (Wako 129-02541) at 1:100 while shaking at room 

temperature, followed by digestion with trypsin (Pierce 90305) at 1:100 while shaking at 

37°C. Anhydrous acetonitrile (Honeywell AS017-0100) was added to ~30%, followed by 

labelling with TMT10 (Thermo 90110) reagent. 1% of each labeled sample was combined 

and analyzed unfractionated to ensure labeling efficiency was >97%. After confirmation, the 

reaction was quenched by adding ~0.3% hydroxylamine, and incubating at RT for 15min. 

The samples were then mixed at a 1:1 (total amount) ratio across all conditions. After 

mixing, labelled peptide samples were de-salted using a 200 mg Sep-Pak cartridge (Waters 

WAT054925), followed by drying in a rotary evaporator. Samples were then reconstituted in 

5% ACN 10 mM ammonium bicarbonate for basic reverse phase fractionation on an Agilent 

300extend-C18 column (3.5μm, 4.6x250mm) using an Agilent Infinity 1260 HPLC. Peptides 

were subjected to a 75 min linear gradient from 13% to 42% of Buffer B (10 mM 

ammonium bicarbonate, 90% ACN, pH 8) at a flow rate of 0.6 mL/min, resulting in a total 

of 96 fractions which were consolidated into 24 by combining (in a chessboard pattern) four 

alternating wells down columns of the 96-well plate. Assuming adjacent fractions contain 

overlapping peaks, only 12 non-adjacent samples were analyzed by the mass spectrometer. 

The pooling scheme has been illustrated previously (Navarrete-Perea et al., 2018; Paulo et 

al., 2016a). Each eluted fraction was desalted via StageTip for SPS-MS3 analysis.

Mass spectra were collected on an Orbitrap Lumos mass spectrometer equipped with a Field 

Asymmetric-waveform Ion-Mobility Spectrometry (FAIMS) device coupled to a Proxeon 

EASY-nLC 1200 LC pump (ThermoFisher Scientific). Peptides were separated on a 35 cm 

column (i.d. 100 μm, Accucore, 2.6 μm, 150 Å) packed in-house using a 90 min gradient 

(from 5% -30% acetonitrile with 0.1% formic acid) at 500 nl/min. A multi-notch FAIMS 

method was used to additionally separate peptides at 40, 60 and 80 CV (Schweppe et al., 

2019, 2020). Each analysis used an SPS-MS3-based TMT method (McAlister et al., 2014; 

Ting et al., 2011), which has been shown to reduce ion interference compared to MS2-based 

quantification (Paulo et al., 2016b). MS1 data were collected using the Orbitrap (120,000 

resolution; maximum injection time 50 ms; AGC 4e5, 400-1400 m/z). Determined charge 

states between 2 and 5 were required for sequencing and a 90 s dynamic exclusion window 

was used. MS2 scans consisted of collision-induced dissociation (CID), quadrupole ion trap 

analysis, automatic gain control (AGC) 2E4, NCE (normalized collision energy) 45, q-value 

0.25, maximum injection time 35 ms, and isolation window of 0.7 Da using a Top10 

method. MS3 scans were collected in the Orbitrap at a resolution of 50,000, NCE of 45%, 
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maximum injection time of 100 ms, and AGC of 1.5e5. Data from all 12 fractions were 

combined to achieve a <1% false discovery rate (FDR) at the protein level.

Mass spectra were processed using a SEQUEST-based software pipeline. Data were 

searched against the UniProt Mouse database (December 2018), using a 20-ppm precursor 

ion tolerance for total protein-level analysis and 0.9 Da product ion tolerance. TMT tags on 

lysine residues and peptide N termini (+229.163 Da) and carbamidomethylation of cysteine 

residues (+57.021 Da) were set as static modifications, while oxidation of methionine 

residues (+15.995 Da) was set as a variable modification. Peptide-spectrum matches (PSMs) 

were identified, quantified, and filtered to a 1% peptide false discovery rate (FDR) and then 

collapsed further to a final protein-level FDR of 1%. Proteins were quantified by summing 

reporter ion counts across all matching PSMs. Briefly, a 0.003 Da (3 millidalton) window 

around the theoretical m/z of each reporter ion was scanned and the maximum intensity 

nearest the theoretical m/z was used. Reporter ion intensities were adjusted to correct for the 

isotopic impurities of the different TMT reagents according to manufacturer specifications 

and adjusted to normalize ratios across labelling channels. Lastly, for each protein, signal-to-

noise (S:N) measurements of the peptides were summed and then normalized to 100.

Cyclic Immunofluorescence—Cyclic immunofluorescence (CyCIF) (Lin et al., 2015, 

2018) was performed on formalin-fixed paraffin embedded (FFPE) tissue sections of mouse 

MC38 colorectal tumors engrafted into syngeneic mice. Resected tissues were fixed 

overnight in 10% neutral buffered formalin at room temperature and then moved to 70% 

ethanol at 4°C. Fourteen tissue sections were taken from a cohort of 7 mice fed CD and 7 

mice fed HFD. Each tissue section was probed with antibodies against the following 

immune or metabolism targets: CD8A, CD4, FOXP3, CD11b, CD68, LY6G, NOS2, 

EOMES, TCF1, MTOR, phospho-MTOR, MYC, GLUT1, PKM2, LDH, COX4, ACO2, 

GLUD1, VDAC1, PCNA, KI67, ACTB and VIM. Tissues were imaged at 20x (2x2 binning) 

using a CyteFinder slide-scanning fluorescence microscope (RareCyte inc.) equipped with 

an automated stage controller. Raw imaging data from each of 4 CyCIF cycles were flat-

field corrected using a previously described method for background and shading correction 

(Peng et al., 2017), then stitched and aligned using ASHLAR: a program for seamless 

mosaic image processing across imaging cycles (manuscript in preparation). The resulting 

mosaic images were segmented by first training a convolutional neural network to recognize 

cell boundaries using training data, then using the model to predict cell boundaries in each 

of the 14 tissue sections used in the experiment (Ronneberger et al., 2015).

Single-cell data were computationally analyzed using a set of Python-based data analysis 

libraries (pandas, numpy, scipy, matplotlib, etc.). Several data pre-processing steps were 

taken; first, cells associated with adipose tissue surrounding many of the tissue sections were 

filtered from the analysis by using a Gaussian kernel density estimator to identify and isolate 

areas of high cell density (i.e. tumor tissue) (Figure S4B). Second, under- and over-

segmented cells were removed by setting lower and upper bounds on cell area (Figure S4B). 

Third, DNA signal intensity (Hoechst dye) was correlated across imaging cycles to isolate 

cells present across all imaging cycles (Figure S4B). Finally, raw signal intensities were 

log10-transformed, filtered to remove extreme outliers, and rescaled between the values of 0 

and 1.
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Overall, the cleaned dataset consisted of 14 tissues. To identify major cell populations, 

dimensional reduction using t-Distributed Stochastic Neighbor Embedding (t-SNE) was 

performed on the cleaned dataset followed by density-based clustering by HDBSCAN 

(Figure 4B) (Campello et al., 2013; van der Maaten, L. J. P., 2008). We excluded cell 

clusters that were comprised of cells from fewer than two samples (#1, #2, #6, and #9). This 

approach identified six major clusters (#0, #3, #4, #5, #7, and #8). We next re-clustered the 

largest cell population (#8), which revealed three sub-clusters (#8.0, #8.1, and #8.2). We 

noticed that cluster #8.2 contained a mixture of CD11b+ myeloid cells and tumor/stromal 

cells, the latter of which do not express immune lineage markers but are dimly positive for 

CD11b expression. Thus, we thresholded cluster #8.2 by CD11b expression to separate the 

tumor/stromal fraction (#8.2) and CD11b+ myeloid cells (#8.3) (Figures 4B and 4C). We 

used the expression of lineage markers to identify intratumoral cell populations including 

CD8+ T cells (#7), CD4+ Tconv cells (#4), CD4+ Treg cells (#5), double negative cells 

expressing T cell transcription factors (#3), several myeloid populations (#0, #8.1 and #8.3), 

and tumor/stromal cells (#8.0 and #8.2) (Figures 4B and 4C).

Spatial relationships between immune cells and areas of high metabolic gene expression 

within the MC38 TME were quantified by calculating the percentage of immune cells 

overlapping regions of strong metabolic immunomarker signal intensity (referred to as % 

overlap). Poisson-Disc sampling (Bridson, 2007) was used to calculate the % overlap 

resulting from uniformly distributing a similar number of cells across the same 2D tissue 

space to achieve expectation values which assume the absence of spatial patterning with 

respect to metabolic gene expression. Independent, two-tailed, Student’s t-tests were 

computed on % overlap values from experiment and simulation to test for the presence of 

biological patterning within the CD and HFD groups independently. In cases where 

biological patterning was detected under both treatment conditions, experimental % overlap 

values were subtracted from their respective simulated values and the differences were used 

to test for differences in the magnitude and direction of biological pattern between CD and 

HFD tumors.

Quantification and Statistical Analysis

Statistical Analyses—Statistics were computed with GraphPad Prism 7 software using 

unpaired Student’s t-test for comparisons between two groups and two-way ANOVA for 

tumor growth curves with multiple variables, followed by the Bonferroni posthoc test for 

comparison of tumor sizes at multiple individual time points. Graphs containing tumor 

growth curves display mean values with error bars corresponding to standard error of the 

mean (SEM). All other data are represented as mean +/− standard deviation. P-values are 

denoted in figures as: *p<0.05, **p<0.01, ***p<0.001, ****<0.0001.

Metabolomics Analysis—Fold-changes between experimental groups were computed 

based on blanked, integrated peak areas for each metabolite. Significance was determined 

using an unpaired Student’s t-test.

Bulk RNA-Seq Analysis—RNA-seq data was analyzed using the CLC Genomics 

Workbench version 8.0.1 RNA-seq analysis software package (Qiagen). Read alignment was 
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performed to the mouse genome using the following parameters: (mismatch cost=2, 

insertion cost=3, deletion cost=3, length fraction=0.8, similarity fraction=0.8). Samples were 

normalized to reads per million before performing differential expression analysis (total 

count filter cutoff=5.0). Heatmaps were generated using the pheatmap package from 

bioconductor in R (version 3.4.4). Raw and processed RNA-seq data files were uploaded to 

the GEO repository within the GSE157999 reference series.

Single-Cell RNA-Seq Analysis—Sample demultiplexing, barcode processing, 

alignment, filtering, and UMI counting were performed using the Cell Ranger analysis 

pipeline (v.1.2). Ambient RNA contamination estimation and removal was performed in R 

using the SoupX package (v1.2.2) with three lists of nonexpressed genes: (i) Cd3g, Cd3e, 

Cd8a, Thy1, Lat, Lck, and Ptprcap, (ii) Cd74, Lyz2, C1qa, C1qb, H2-Ab1, H2-Eb1, Tyrobp, 

Tpt1, Fth1, and (iii) Col3a1, Col6a1, Serpinh1, and Sparc (v.1.2.2) (Young and Behjati, 

2018). Strained counts from SoupX were written to a directory in CellRanger format using 

the R package DropletUtils (v.1.6.1) and used for downstream analysis in R using Seurat 

(v.3.1.5) (Stuart et al., 2019). Raw and processed RNA-seq data files were uploaded to the 

GEO repository within the GSE157999 reference series.

Data pre-processing, normalization, integration, and clustering was performed using the R 

package Seurat. After merging all samples into a single Seurat object, single-cell 

transcriptomes were initially filtered using four metrics for quality control. First, cells in 

which fewer than 400 genes or more than 2,500 genes were detected were removed from the 

analysis. Second, cells where mitochondrial encoded transcripts represented greater than 

12% or less than 0.25% of the total library were excluded. Third, cells with more than 

12,000 RNA molecules detected per cell were discarded. Finally, genes detected in fewer 

than three cells across the dataset were removed. The resulting expression matrix contained 

9,104 cells by 13,484 genes, with 5,721 cells from CD tumors and 3,383 from HFD tumors. 

Normalization and variance stabilization was performed using the R package sctransform, 

which interfaces directly with Seurat, on each diet condition separately (v0.2.1) 

(Hafemeister and Satija, 2019). CD and HFD datasets were integrated using canonical 

correlation analysis to harmonize the datasets by finding shared sources of variation (Butler 

et al., 2018). 2,000 variable gene features were chosen using the SelectIntegrationFeatures 

function in Seurat, followed by the PrepSCTIntegration function to make sure that all 

Pearson residuals required for downstream analysis were calculated. Anchors between 

datasets were identified using the FindIntegrationAnchors function and passed to the 

IntegrateData function using normalization.method = ‘SCT’ to produce an integrated 

dataset. Dimensional reduction was accomplished by performing principal component 

analysis (PCA) on the integrated dataset and then using the first 48 principal components for 

Uniform Manifold Approximation and Projection (UMAP) using default parameters 

associated with the RunUMAP function. Unsupervised clustering was done by constructing 

a shared nearest neighbor (SNN) graph using the FindNeighbors function and then 

performing graph-based clustering using the “Louvain” algorithm with resolution = 0.5 by 

the FindClusters function. Differential expression analysis between clusters and comparing 

diet conditions was performed using a Wilcoxon rank sum test. Cluster markers were 
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identified using the FindConservedMarkers function. Comparisons between population sizes 

among diet conditions were performed using a two-sided exact binomial test.

Metabolic and signaling pathway gene signatures were curated from the KEGG subset of 

canonical pathways from the C2 collection within MSigDB. Immune signatures were 

curated from the C7 collection of immunologic signatures within MSigDB. Single-cell 

signature scores were calculated using the Vision package v.2.1.0 (DeTomaso et al., 2019). 

Signatures that were highly autocorrelated within clusters were evaluated by Geary’s C, 

using C′=1− C for autocorrelation effect size and computation of an empirical p-value with 

FDR-correction within Vision for significance. For each cluster, signatures that were 

significantly altered by diet were assessed by Wilcoxon rank sum test with false discovery 

rate correction using the method of Benjamini and Hochberg. Pearson correlations and p-

values between signatures were calculated in R using the rcorr function from the Hmisc 

package v.4.4.0.

TCGA Data Analysis—Spearman correlation analysis was performed on TCGA data 

using the GEPIA web portal (http://gepia.cancer-pku.cn/). For each cancer type represented 

in TCGA, Spearman correlation coefficients and p-values were calculated between PHD3 
(Egln3) and MHC-I or GZMB expression using normalized transcripts per million values 

(TPM).

To evaluate the impact of body mass index (BMI) on PHD3 expression and how PHD3 
expression levels stratify across immunologically “hot” versus “cold” tumors, normalized 

counts (RNA-seq) were obtained using the TCGAbiolinks package (version 3.8) from 

bioconductor in R for the COAD, PRAD, KIRC, LUAD, THCA, and SKCM datasets, along 

with clinical annotations. Normal tissue samples and metastases were removed from the 

analysis, unless otherwise noted. Each sample was ranked within the corresponding dataset 

for PHD3 expression and classified as PHD3-high or PHD3-Low using percentile cut-offs of 

10% or 20%. Next, patient samples were clustered based on a list of CD8+ signature genes 

comprised of CD8+ T cell lineage markers (CD3D and CD8A) as well as genes involved in 

CD8+ T cell trafficking, activation, and cytotoxicity (CXCR3, GZMA, GZMB, GZMK, 

ICOS, and PRF1) using the Pheatmap package from bioconductor in R, generating sample 

clusters that were “hot”, “intermediate”, or “cold” for T cell infiltration and functionality. 

CD8+ immune scores were calculated as the genewise sum of z-scores for the CD8+ 

signature genes. For subsequent enrichment analysis the “intermediate” and “hot” groups 

were combined. PHD3 status was layered over the clustering and the number of PHD3-Low 

samples was counted in “cold” tumors versus all others. Fisher’s Exact Test was used to 

quantify enrichment of PHD3-low samples in “cold” tumors for each TCGA dataset.

Proteomics Analysis—Enrichment analysis was performed using the fgsea package 

implemented in R (v1.14.0) (Sergushichev, 2016). Pre-ranked lists were generated by 

weighting fold-change by the negative logarithm of the p-value comparing CD and HFD. 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository with the dataset identifier PXD019495 

(Deutsch et al., 2020; Perez-Riverol et al., 2019).
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Highlights:

• Defined a metabolic single cell atlas of the tumor immune landscape with 

obesity

• Obesity induces a metabolic tug of war between tumor and T cells for lipids

• Tumor cells induce fat metabolism and change their microenvironment during 

obesity

• Blocking metabolic adaptations to obesity in cancers restores anti-tumor 

immunity
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Figure 1. MC38 tumor growth is accelerated by HFD feeding in a CD8+ T cell-dependent 
manner
(A) Schematic depicting experimental setup.

(B-E) Tumor growth curves of WT C57BL/6J mice inoculated with 105 MC38 (B), 2x105 

E0771 (C), 105 B16 melanoma (D), or 105 Lewis Lung Carcinoma (E) tumor cells.

(F) Tumor growth curves of TCRα-KO mice fed CD or HFD inoculated with 105 MC38 

tumor cells.

(G) Tumor growth curves of WT C57BL/6J mice inoculated with 105 MC38 tumor cells and 

treated with isotype control (left) or depleting anti-CD8 (right) antibodies after CD or HFD 

feeding for 8-10 weeks.

Data represent ≥ two independent experiments with ≥ 5 mice per group. (*p≤0.05, 

**p<≤.01, ***p≤0.001, ****p≤0.0001). Graphs display mean +/− SEM (B-G).

See also Figure S1.
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Figure 2. HFD reduces intratumoral CD8+ T cell numbers and functionality
(A) Schematic depicting experimental setup.

(B-L) Flow cytometry analysis of MC38 (B, E-L), MC38-GFP (C-D), E0771 (M) or B16-

OVA-RFP (N) tumors on day 10-14 after inoculation.

(B) Quantification of the percentage of CD8+ T cells among intratumoral CD45+ cells.

(C-D) The ratio of CD45+ cells (C) or CD8+ T cells (D) to MC38-GFP tumor cells.

(E-G) Quantification of Ki67 (E), ICOS (F), and PD-1 (G) expression among CD8+ TILs.
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(H-I) Representative flow plot (H) and quantification (I) of GZMB expression among CD8+ 

TILs.

(J-L) Quantification of IFNγ (J), TNFα (K) and IL-2 (L) expression among CD8+ TILs after 

ex vivo phorbol myristate acetate (PMA)/ionomycin stimulation.

(M-N) Quantification of GZMB expression among CD8+ TILs in E0771 (M) and B16-OVA-

RFP (N) tumors.

Data represent ≥ two independent experiments with ≥ 6 mice per group. (ns p>0.05, 

*p≤0.05, **p≤0.01). Graphs display mean +/− SD (B-G, I-N).

See also Figure S2.
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Figure 3. Single-cell analysis reveals global metabolic remodeling of tumor-immune infiltrate.
(A) Schematic depicting single-cell RNA-seq experiment and analysis.

(B) Identification of tumor-infiltrating immune cell populations. Uniform Manifold 

Approximation and Projection (UMAP) embeddings of single-cell RNA-seq profiles from 

9,104 CD45+ leukocyte cells showing 16 clusters identified by integrated analysis, colored 

by cluster. Representative of one experiment, n = 6 pooled CD mice and n = 3 pooled HFD 

mice.

(C) Barplot depicting proportional differences in leukocyte infiltrate from HFD versus CD 

tumors. Each class contains the following clusters from 3B: immunosuppressive (all M2 

macrophage clusters #0, #3, #7, #10, #12; neutrophils #1, and MDSCs #4), pro-immune (all 

M1 macrophage clusters #2 and #5), dendritic cells (clusters #11 and #14), monocytes 

(clusters #6 and #9), and lymphocytes (T lymphocytes #8 and natural killer cells #13).

(D) Enrichment of KEGG metabolic signature scores in all single-cell transcriptomes for 

HFD versus CD tumors.

(E) Schematic depicting the interpretation of panels F-I.

(F-I) Scatterplots showing average signature score, calculated in VISION, for curated KEGG 

pathways on a cluster-by-cluster basis in HFD versus CD for glycolysis and gluconeogenesis 
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(F), fatty acid metabolism (G), chemokine signaling pathway (H), and T cell receptor 

signaling (I).

(J) Subset and re-clustering of T lymphocytes from cluster #8 (top), colored by diet (lower 
left) or cluster (lower right).
(K) Enrichment of KEGG metabolic signature scores that are altered by diet in single-cell 

transcriptomes from re-clustered CD8+ T cells. CD and HFD q-values are depicted in 

positive and negative directions, respectively.

(L) Heatmap of the top 5 differentially expressed genes enriched in Tim3+ cytotoxic CD8+ 

tumor-infiltrating lymphocytes from CD animals (cluster #T-0).

(M) Scatterplot comparing autocorrelation scores computed in Vision for curated immune 

gene signatures in Tim3+ cytotoxic CD8+ tumor-infiltrating lymphocytes (cluster #T-0). Plot 

depicts immune signatures that are significantly autocorrelated in at least one diet condition, 

and the point size reflects the magnitude of the difference in autocorrelation between HFD 

and CD.

(N) Correlation between KEGG metabolic pathway signatures involved in major carbon-

handling pathways and KEGG T Cell Receptor Signaling (left) or Naïve vs. activated CD8+ 

T cell (GSE15324) signature (right) in Tim3+ cytotoxic CD8+ T cells (cluster #T-0).

Statistical significance was assessed by two-sided binomial test (C), Wilcoxon rank sum 

with FDR correction using the method of Benjamini and Hochberg (D, F-I, K), empirical p-

value calculation with FDR-correction within Vision (M), and by asymptotic t 

approximation (N). (ns p>0.05, *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001).

See also Figure S3.
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Figure 4. Multiplexed imaging reveals metabolic remodeling in tumors with HFD
(A-E) CyCIF analysis of MC38 HFD versus CD tumors.

(A) Representative image of CD tumors depicting segregation of immune lineage markers. 

Scale bars are 50 μm.

(B) Cell populations identified by t-SNE embedding and density-based clustering, showing 

the top three markers expressed per population.

(C) Heatmap depicting cell populations identified by HDBSCAN from Figure 4B.

(D) Expression pattern of glycolytic genes in CD and HFD tumors.
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(E) Representative t-CyCIF image showing GLUT1 (purple) and CD8α (green) expression 

in the MC38 TME (HFD tumor shown). Scale bar is 500 μm.

(F-G) Representative images depicting real and simulated data used for spatial analysis. 

GLUT1 expression in the HFD TME superimposed with scatter points representing the x, y 

coordinates of cells classified as CD8+ T cells (F) or a similar number of uniformly-

distributed data points across the same tissue area as generated by Poisson-Disc sampling 

(G). Data points are colored according to their inclusion (orange) or exclusion (blue) from 

areas of high GLUT1 expression. Scale bars are 500 μm.

(H-I) Normalized fraction of CD8+ (H) and CD4+ (I) T cells overlapping areas of high 

GLUT1 or ACO2 expression in the MC38 tumor microenvironment.

Statistical significance was assessed by student’s t-test (H-I). (ns p>0.05, *p≤0.05, 

**p≤0.01, ***p≤0.001).

See also Figure S4.
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Figure 5. HFD induces distinct metabolic adaptations in MC38 tumor cells and CD8+ TILs
(A-C, E-J) Analysis of RNA-sequencing data performed on cells sorted from day 12 MC38 

tumors from CD-fed and HFD-fed animals.

(A) Principal component analysis of the top 400 genes with the largest variance from CD8+ 

TILs versus CD8+ T cells from the dLN in animals fed HFD or CD.

(B) Volcano plot comparing gene expression levels in CD8+ TILs from CD and HFD 

tumors. Genes with FDR-corrected p-value < 0.05 are highlighted. Dotted lines indicate 1.5-

fold change.
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(C) Volcano plot depicting differentially expressed metabolic genes in MC38-GFP tumor 

cells. Metabolic genes were defined as the union of the following GO gene subsets: 

GO:0006520 Cellular Amino Acid Metabolic Process, GO:0005975 Carbohydrate 

Metabolic Process, and GO0006629 Lipid Metabolic Process, or GO:0006099 Tricarboxylic 

acid cycle, excluding transcription factors. Dotted lines indicate 1.5-fold change.

(D) Phd3 expression in day 23 MC38 tumors measured by qPCR.

(E-F) Heatmaps showing relative expression in CD8+ TILs (E) and MC38 tumor cells (F) of 

genes that are significantly differently expressed between CD and HFD tumor cells (Phd3) 

or CD8+ TILs (Cherp, Dgat1, Elovl6, Ldlrap1).

(G-H) Average expression for genes involved in FAO from tumor cells (G) and CD8+ TILs 

(H).

(I-J) Heatmaps depicting glycolytic genes in CD8+ TILs (I) versus tumor cells (J).

(K-L) Ex vivo LipidTox neutral lipid staining in CD8+ TILs (K) and GFP+ MC38 cells (L) 

in day 10-14 tumors.

(M) Quantification of C16-BODIPY uptake ex vivo in MC38-RFP tumor cells.

(N-P) Quantification of C16-BODIPY uptake in ex vivo CD8+ T cells (N). Representative 

histograms for ex vivo C16-BODIPY uptake in CD8+ T cells isolated from dLN (O) or 

tumor (P) from day 10-14 MC38 tumors.

(Q-S) Quantification of C16-BODIPY uptake ex vivo from dissociated tumors: B16-OVA-

RFP tumor cells (Q) or CD8+ TILs isolated from B16-OVA-RFP (R) and E0771 tumors (S) 

or dLN.

(T-U) Expansion index (T) and representative flow plots (U) measuring proliferation of 

CTV-labeled CD- and HFD-derived naïve CD8+ T cells after 48 and 72 hours on 1, 2, or 4 

μg/mL each of plate-bound anti-CD3 and anti-CD28, with or without supplementation of 

BSA-conjugated free fatty acids (FFAs).

Data represent ≥ two independent experiments with ≥ 6 mice per group. Graphs display 

mean +/− SD (K-N, Q-T). (ns p>0.05, *p≤0.05, **≤<0.01).

See also Figure S5.
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Figure 6. Protein-level analysis confirms enhanced fatty acid uptake and oxidation by HFD 
tumor cells
(A) Schematic depicting TMT-proteomics experiment.

(B) Enrichment analysis using Hallmark gene sets from MSigDB.

(C) Bar graph showing relative expression of key proteins involved in fat oxidation or 

glycolysis.

(D-E) Heatmaps depicting relative expression levels of proteins involved in fat uptake and 

oxidation (D) or glycolysis (E).
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(F) Schematic depicting key upregulated (red) or downregulated (blue) proteins in fat uptake 

and oxidation, glycolysis, and TCA cycle.

(G-J) Relative abundance of indicated DAG (G-H) and TAG (I-J) lipid species in CD and 

HFD plasma (G,I) and TIF (H,J).

Key abbreviations: DAG, diglyceride. ES, Enrichment Score, TAG, triglyceride. TIF, tumor 

interstitial fluid. Graphs display mean +/− SD. Statistical significance was assessed by 

Student’s t-test (C-J). (ns p>0.05, *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001).

See also Figure S6.
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Figure 7. Modulating Phd3 expression in tumor cells increases CD8+ T cell infiltration and 
reduces tumor growth kinetics during HFD
(A-G) Metabolomic analysis for FFA content of TIF and plasma from CD- or HFD-fed day 

14 MC38 tumors.

(A) Experimental schematic for fractionation of interstitial fluid.

(B-C) Comparison of palmitate (B) and oleate (C) levels in plasma from tumor-bearing mice 

fed HFD versus CD. Open circles correspond to mice bearing PHD-OE tumors and 

diamonds correspond to mice bearing empty vector-transduced tumors.
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(D-F) Volcano plots comparing FFA abundance in TIF that change with diet (D), or PHD3-

OE versus empty vector (EV)-transduced MC38 tumors from CD-fed (E) and HFD-fed (F) 

animals. Blue circles represent FFAs that decrease across the tested conditions, where light 

blue corresponds to 0.05<p-value<0.1 and dark blue corresponds to FFAs with p-

value<0.05. Pink circles represent FFAs that increase across the tested conditions, where 

light pink corresponds to 0.05<p-value<0.1 and dark pink corresponds to FFAs with p-

value<0.05.

(G) Comparison of palmitate (C16:0) levels in TIF among HFD versus CD and PHD3-OE 

versus EV-transduced MC38 tumors.

(H-J) Histological analysis of PHD3-OE versus EV-transduced day 12 MC38 tumors.

(H) Schematic depicting experimental setup with paired tumors in HFD or CD-fed mice.

(I) Images showing tissue architecture as well as numbers and localization of CD8+ T cells.

(J) Blinded quantification of CD8+ T cell numbers in tissue sections.

(K-L) Tumor growth curves of CD-fed and HFD-fed WT C57BL/6J (K) or TCRα-KO (L) 

mice inoculated with 105 EV-transduced or PHD3-OE MC38 tumor cells.

(M) Tumor growth curves of HFD-fed WT C57BL/6J mice inoculated with 105 EV-

transduced or PHD3-OE MC38 tumor cells and treated with isotype control (left) or 

depleting anti-CD8 (right) antibodies.

(N-Q) Bioinformatics analysis of colon adenocarcinoma (COAD) RNA-seq TCGA data.

(N) PHD3 expression in obese and non-obese COAD patients.

(O) PHD3 expression in cancer versus normal tissue in COAD patients.

(P) CD8+ T cell Immune Score from severely obese and non-obese COAD patients, 

calculated as the genewise z-score sum of CD8+ T cell marker genes shown in panel (Q).

(Q) COAD samples clustered by CD8+ T cell expression signature. PHD3 expression was 

stratified based on a percentile cut-off and combined with the clustering results.

Data represent one independent experiment with > 6 mice per group (K-M). Graphs display 

mean +/− SD (B, C, G, N-O) or mean +/− SEM (K-M). (ns p>0.05, *p≤0.05, **p≤0.01, 

***p≤0.001, ***p≤0.0001).

See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

DYKDDDDK Tag Antibody (FLAG) Cell Signaling Cat#2368S; RRID: AB_2217020

PHD3 Polyclonal Antibody ThermoFisher Scientific Cat#PA1-20196; RRID: AB_2096876

Anti-Actin antibody produced in rabbit Sigma Cat#A2066; RRID: AB_476693

Acetyl-CoA Carboxylase (C83B10) Rabbit mAb #3676 Cell Signaling Cat#C83B10; RRID: AB_2219397

Acetyl-CoA Carboxylase 2 (D5B9) Rabbit mAb #8578 Cell Signaling Cat#D5B9; RRID: AB_10949898

Anti-Hydroxyproline antibody (ab37067) Abcam Cat#ab37067; RRID: AB_873885

αTubulin Antibody (B-7) Santa Cruz 
Biotechnology

Cat#sc-5286; RRID: AB_628411

Rabbit IgG HRP Linked Whole Ab GE Healthcare/Sigma Cat#NA934-1ML; RRID: AB_2722659

Mouse IgG HRP Linked Whole Ab GE Healthcare/Sigma Cat#NA931-1ML; RRID: AB_772210

InVivoMAb anti-mouse CD3ε, Clone #145-2C11 BioXCell Cat#BE0001-1; RRID: AB_1107634

InVivoMAb anti-mouse CD28, Clone #37.51 BioXCell Cat#BE0015-1-A050MG; RRID: 
AB_1107624

InVivoMAb rat IgG2b isotype control, anti-keyhole limpet 
hemocyanin

BioXCell Clone: LTF-2; Cat#BE0090; RRID 
AB_1107780

InVivoMAb anti-mouse CD8α BioXCell Clone: 2.43; Cat#BE0061; RRID: 
AB_1125541

InVivoMAb rat IgG1 Isotype control, anti-trinitrophenol BioXCell Clone: TNP6A7; Cat#BE0290; RRID: 
AB_2687813

InVivoMAb anti-mouse CD8β (Lyt 3.2) BioXCell Clone: 53-5.8; Cat#BE0223; RRID: 
AB_2687706

TruStain FcX™ (anti-mouse CD16/32) Antibody BioLegend Clone: 93; RRID: AB_1574973

PE anti-mouse CD45.1 Antibody BioLegend Clone: A20; RRID: AB_313496

Alexa Fluor® 647 anti-mouse CD45.2 Antibody BioLegend Clone: 104; RRID: AB_492870

APC anti-mouse CD45.2 Antibody BioLegend Clone: 104; RRID: AB_389210

Brilliant Violet 421™ anti-mouse CD45.2 Antibody BioLegend Clone: 104; RRID: AB_10900256

BUV395 Mouse Anti-Mouse CD45.2 BD Biosciences Clone: 104; RRID: RRID: AB_2738867

APC anti-mouse CD3ε Antibody BioLegend Clone: 145-2C11; RRID: AB_312676

PE anti-mouse CD3ε Antibody BioLegend Clone: 145-2C11; RRID: AB_312672

FITC anti-mouse CD3ε Antibody BioLegend Clone: 145-2C11; RRID: AB_312670

Alexa Fluor® 700 anti-mouse CD4 Antibody BioLegend Clone: RM4-5; RRID: AB_493701

APC/Cy7 anti-mouse CD4 Antibody BioLegend Clone: RM4-5; RRID: AB_312726

BUV737 Rat Anti-Mouse CD4 BD Biosciences Clone: RM4-5; RRID: AB_2732918

Pacific Blue™ anti-mouse CD4 BioLegend Clone: RM4-5; RRID: AB_493375

Brilliant Violet 421™ anti-mouse CD8α Antibody BioLegend Clone: 53-6.7; RRID: AB_10897101

Brilliant Violet 510™ anti-mouse CD8α Antibody BioLegend Clone: 53-6.7; RRID: AB_2561389

FITC anti-mouse CD8b Antibody BioLegend Clone: YTS156.7.7; RRID: AB_961293

V500 Rat anti-Mouse CD8a BD Biosciences Clone: 53-6.7; RRID: AB_1937317

Pacific Blue™ anti-mouse CD8b.2 Antibody BioLegend Clone: 53-5.8; RRID: AB_10641278
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REAGENT or RESOURCE SOURCE IDENTIFIER

Alexa Fluor® 700 anti-mouse CD8b Antibody BioLegend Clone: YTS156.7.7; RRID: AB_2563948

APC/Cy7 anti-mouse CD8b Antibody BioLegend Clone: YTS156.7.7; RRID: AB_2563950

PE/Cy7 anti-mouse/human CD11b Antibody BioLegend Clone: M1/70; RRID: AB_312798

V500 Rat anti-CD11b BD Biosciences Clone: M1/70; RRID: AB_10893815

Brilliant Violet 510™ anti-mouse/human CD11b Antibody BioLegend Clone: M1/70; RRID: AB_2561390

Brilliant Violet 605™ anti-mouse/human CD11b Antibody BioLegend Clone: M1/70; RRID: AB_11126744

PerCP/Cy5.5 anti-mouse/human CD44 Antibody BioLegend Clone: IM7; RRID: AB_2076206

FITC anti-mouse/human CD44 Antibody BioLegend Clone: IM7; RRID: AB_312956

PE anti-mouse/human CD44 Antibody BioLegend Clone: IM7; RRID: AB_312958

PE/Cy7 anti-mouse CD62L Antibody BioLegend Clone: MEL-14; RRID: AB_313102

FOXP3 Monoclonal Antibody (FJK-16s), eFluor 450; 
eBioscience™

ThermoFisher Scientific Clone: FJK-16s; RRID: AB_1518812

PerCP-Cy™5.5 Mouse anti-Ki-67 BD Biosciences Clone: B56; RRID: AB_10611574

FITC anti-human/mouse Granzyme B Antibody BioLegend Clone: GB11; AB_2114575

Pacific Blue™ anti-human/mouse Granzyme B Antibody BioLegend Clone: GB11; RRID: AB_2562195

PE/Cy7 anti-mouse CD279 (PD-1) Antibody BioLegend Clone: RMP1-30; RRID: AB_572016

Brilliant Violet 605™ anti-mouse CD279 (PD-1) Antibody BioLegend Clone: 29F.1A12; RRID: AB_11125371

Brilliant Violet 605™ anti-mouse CD19 Antibody BioLegend Clone: 6D5; RRID: AB_11203538

PerCP/Cy5.5 anti-mouse CD11c Antibody BioLegend Clone: N418; RRID: AB_2129642

APC/Cy7 anti-mouse NK-1.1 Antibody BioLegend Clone: PK136; RRID: AB_830870

Ly-6G/Ly-6C Monoclonal Antibody (RB6-8C5), FITC, 
eBioscience™

ThermoFisher Scientific Clone: RB6-8C5; RRID: AB_465314

Pacific Blue™ anti-mouse F4/80 Antibody BioLegend Clone: BM8; RRID: AB_893487

Brilliant Violet 421™ anti-mouse CD11c antibody BioLegend Clone: N418; RRID: AB_10897814

Alexa fluor® 647 anti-mouse H-2Kb/H-2Db antibody BioLegend Clone: 28-8-6; RRID: AB_492931

FITC anti-mouse I-Ab antibody BioLegend Clone: AF6-120.1; RRID: AB_313724

PE/Cy7 anti-mouse CD274 (PD-L1) antibody BioLegend Clone: 10F.9G2; RRID: AB_10639934

PE anti-mouse CD273 (PD-L2) antibody BioLegend Clone: TY25; RRID: AB_2299418

Brilliant Violet® 711 anti-mouse CD40 antibody BD Biosciences Clone: 3/23; RRID: AB_2740384

APC anti-mouse IFN-γ antibody BioLegend Clone: XMG1.2; RRID: AB_315403

PerCP/Cy5.5 anti-mouse TNF-α antibody BioLegend Clone: MP6-XT22; RRID: AB_961435

PE anti-mouse IL-2 BioLegend Clone: JES6-5H4; RRID: AB_315301

CD8a Monoclonal Antibody (4SM15) eBioscience Cat#14-0808-82; Clone: 4SM15; RRID: 
AB_2572861

Anti-CD68 antibody Abcam Clone: ab125212; RRID: AB_10975465

Recombinant Anti-Lactate Dehydrogenase antibody-Alexa 
Fluor® 488

Abcam Cat#ab202652; Clone: EP1566Y

CD4 Monoclonal Antibody (4SM95), eFluor 570 eBioscience Cat#41-9766-82; Clone: 4SM95; RRID: 
AB_2573637

FOXP3 Monoclonal Antibody (FJK-16s), Alexa Fluor 488, 
eBioscience

eBioscience Cat#53-5773-82; Clone: FJK-16s; RRID: 
AB_763537
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REAGENT or RESOURCE SOURCE IDENTIFIER

EOMES Monoclonal Antibody (Dan11mag), PE, eBioscience ThermoFisher Scientific Cat#12-4875-82; Clone: Dan11mag; RRID: 
AB_1603275

Alexa Fluor® 647 anti-mouse Ly-6G Antibody BioLegend Clone: 1A8; RRID: AB_1134159

Ki-67 (D3B5) Rabbit mAb (Alexa Fluor® 488 Conjugate) Cell Signaling Cat#11882S; Clone: D3B5; RRID: 
AB_2687824

Anti-CD11b antibody [EPR1344] (Alexa Fluor® 647) Abcam Cat#ab204471; Clone: EPR1344

Recombinant Anti-GLUD1 antibody [EPR11370] (Alexa 
Fluor® 488)

Abcam Cat#ab204001; Clone: EPR11370

Vimentin (D21H3) XP® Rabbit mAb (Alexa Fluor® 555 
Conjugate) #9855

Cell Signaling Cat#9855; Clone: D21H3; RRID: 
AB_10859896

Recombinant Anti-Glucose Transporter GLUT1 antibody 
[EPR3915] (Alexa Fluor® 647)

Abcam Cat#ab195020; Clone: EPR3915; RRID: 
AB_2783877

PCNA (PC10) Mouse mAb (Alexa Fluor® 488 Conjugate) Cell Signaling Cat#8580; Clone: PC10; RRID: 
AB_11178664

Recombinant Anti-COX IV Antibody [EPR9442(ABC)] - 
Mitochondrial Loading Control (Alexa Fluor® 555)

Abcam Cat#ab210675; Clone: EPR9442; RRID: 
AB_2857975

Phospho-mTOR (Ser2448) Monoclonal Antibody, eFluor 660 eBioscience Cat#50-9718-41; Clone: MRRBY; RRID: 
AB_2574351

Recombinant Anti-iNOS antibody [EPR16635] (Alexa Fluor® 
555)

Abcam Cat#ab209594; Clone: EPR16635

Anti-Aconitase 2 antibody [6F12BD9] (Alexa Fluor® 647) Abcam Cat#ab198050; Clone: 6F12BD9; RRID: 
AB_2857971

TCF1/TCF7 (C63D9) Rabbit mAb (Alexa Fluor® 488 
Conjugate)

Cell Signaling Cat#6444S; Clone: C63D9; RRID: 
AB_2797627

PKM2 (D78A4) XP® Rabbit mAb (PE Conjugate) Cell Signaling Cat#89367; Clone: D78A4; RRID: 
AB_2800137

mTOR (7C10) Rabbit mAb (Alexa Fluor® 647 Conjugate) Cell Signaling Cat#5048; Clone: 7C10; RRID: 
AB_10828101

Recombinant Anti-c-Myc antibody [Y69] (Alexa Fluor® 555) Abcam Cat#ab201780; Clone: Y69; RRID: 
AB_2728791

Anti-VDAC1 / Porin antibody [20B12AF2] (Alexa Fluor® 647) Abcam Cat#ab179840; Clone: 20B12AF2

Bacterial and Virus Strains

Stbl3™ Chemically Competent E. coli ThermoFisher Scientific Cat#C737303

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

DMEM (high glucose, glutamine, no pyruvate) ThermoFisher Scientific Cat#11965118

RPMI 1640 Medium ThermoFisher Scientific Cat #11875093

1X DPBS ThermoFisher Scientific Cat#14190250

1X DPBS (calcium, magnesium) ThermoFisher Scientific Cat#14040133

Penicillin-Streptomycin ThermoFisher Scientific Cat#15140122

Fetal Bovine Serum (FBS) Sigma Cat#F2442 Lot#17L189

Charcoal-Stripped Fetal Bovine Serum (FBS) ThermoFisher Scientific Cat#A3382101

2-mercaptoethanol ThermoFisher Scientific Cat#21985023

EDTA (0.5 M) ThermoFisher Scientific Cat#15575020

HEPES ThermoFisher Scientific Cat#15630080
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REAGENT or RESOURCE SOURCE IDENTIFIER

Fugene 6 Transfection Reagent Promega Cat#E2691

Hexadimethrine bromide (Polybrene) Santa Cruz Cat#sc-255611

Collagenase, Type I Worthington 
Biochemical Corporation

Cat#LS004194

Collagenase P Roche Cat#11249002001

Percoll density gradient media GE Healthcare 
LifeSciences

Cat#17089101

Complete Mini Protease Inhibitor Sigma Cat#11836170001

Phosphatase Inhibitor Cocktail 2 Sigma Cat#P5726-5ML

Phosphatase Inhibitor Cocktail 3 Sigma Cat#P0044

Blasticidin Sigma-Aldrich Cat#15205

BamH I-HF Restriction Endonuclease NEB BioLabs Cat#R3136S

Sal I-HF Restriction Endonuclease NEB BioLabs Cat#R3138S

Xho I Restriction Endonuclease NEB BioLabs Cat#R0146S

EcoR V-HF Restriction Endonuclease NEB BioLabs Cat#R3195S

CloneAmp™ HiFi PCR Pre-Mix Clontech Cat#639298

Quick Ligation™ Kit NEB BioLabs Cat#M2200S

TRIzol™ Reagent ThermoFisher Scientific Cat#15596018

iScript cDNA Synthesis Kit BioRad Cat#1708891

PerfeCTa SYBR® Green FastMix Quantabio Cat#101414-270

Buffer RLT Qiagen Cat#79216

LB Broth LB Sigma-Aldrich Cat#L7275

HCS LipidTOX™ Deep Red Neutral Lipid Stain, for cellular 
imaging

ThermoFisher Scientific Cat#H34477

BODIPY™ FL C16 (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-
Diaza-s-Indacene-3-Hexadecanoic Acid)

ThermoFisher Scientific Cat#D3821

Prolong Glass Antifade Mountant ThermoFisher Scientific Cat#P36982

Recombinant Mo-se IL-7 (carrier-free)-10 ug BioLegend Cat#577802

Ionomycin from Streptomyces conglobatus Sigma Aldrich Cat#I9657-1MG

GolgiStop™ Protein transport inhibitor BD Biosciences Cat#554724

Bovine Serum Albumin (BSA), ≥98%, Fatty Acid-free MP Biomedicals Cat#IC15240110

Sodium palmitate Sigma Cat#P9767

Sodium oleate Sigma Cat#O7501

Critical Commercial Assays

LIVE/DEAD Fixable Near-IR stain ThermoFisher Scientific Cat#L10119

Naive CD8a+ T Cell Isolation Kit, mouse Miltenyi Biotec Cat#130-096-543

CD45 MicroBeads, mouse Miltenyi Biotec Cat#130-052-301

eBioscience™ Foxp3 / Transcription Factor Staining Buffer Set ThermoFisher Scientific Cat#00-5523-00

Fixation/Permeabilization Solution Kit BD Biosciences Cat#554714

Direct-zol RNA Miniprep Kit Zymo Research Cat#R2050

RNeasy Micro Kit Qiagen Cat#74004
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REAGENT or RESOURCE SOURCE IDENTIFIER

Pierce™ BCA Protein Assay Kit ThermoFisher Scientific Cat#23227

Western Lightning ECL Pro Perkin Elmer Cat#NEL120001EA

Cell Trace™ Violet Cell Proliferation Kit, for flow cytometry ThermoFisher Scientific Cat#C34557

10’ Chromium Single Cell 3′ v2 10X Genomics Cat#PN-120267

Chromium Single Cell A Chip Kit 10X Genomics Cat#PN-1000009

Chromium i7 Multiplex Kit, 96 rxns 10X Genomics Cat#PN-120262

Lipoprotein Lipase Assay Kit (Fluorometric) Abcam Cat#ab204721

Deposited Data

TMT-proteomics of sorted MC38 tumor cells with high-fat diet This manuscript 
(ProteomeXchange)

Accession#PXD019495

Raw and analyzed RNA-sequencing data This paper (GEO 
repository)

GSE157999

Experimental Models: Cell Lines

MC38 colorectal adenocarcinoma Laboratory of D. 
Vignali, University of 
Pittsburgh School of 
Medicine, Pittsburgh, PA

RRID: CVCL_B288

Lewis Lung Carcinoma N/A RRID: CVCL_4358

B16.F10 Melanoma Gift from G. Dranoff 
(Novartis Institutes for 
Biomedical Research)

RRID: CVCL_0159

E0771 breast cancer cell line Corporate Cell Line 
Sales (CH3 Biosystems)

Cat#94A001; RRID: CVCL_GR23

RENCA kidney renal adenocarcinoma cell line ATCC Cat#CRL-2947; RRID: CVCL_2174

CT26 colon carcinoma cell line N/A RRID: CVCL_7256

HEK293T N/A RRID: CVCL_0063

Phoenix-ECO ATCC Cat#CRL-3214; RRID: CVCL_H717

Experimental Models: Organisms/Strains

C57BL6/J The Jackson Laboratory #000664; RRID: IMSR_JAX:000664

TCRa knock-out mice: B6.129S2-Tcratm1Mom/J The Jackson Laboratory #002116; RRID: IMSR_JAX:002116

OT-1 mice: C57BL/6-Tg(TcraTcrb)1100Mjb/J The Jackson Laboratory #003831; RRID: IMSR_JAX:003831

Oligonucleotides

Cloning mouse PHD3-OE vector with C-terminal
FLAG:
Fwd - CGTAGAGGATCCATGCCTCTGGGACACAT
Rev
-
GGACGCGTCGACCTACTTGTCGTCGTCGTCCTTGTAGTC
GATGTCGTGGTCCTTGTAGTCACCGTCGTGGTCCTTGTA
GTCGTCTTTAGCAAGAGCA

This manuscript N/A

Cloning RFP to generate MSCV-PIR:
Fwd -
cttccgctcgagATGGCCTCCTCCGAGGACG
Rev -
gattcggatatcTTAGGCGCCGGTGGAGTG

This manuscript N/A

PHD3 qPCR Primers (mouse):
Fwd -
CAGACCGCAGGAATCCACAT
Rev - TTCAGCATCGAAGTACCAGACAGT

German et al., 2016 N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

β-Actin qPCR Primers
(mouse):
Fwd - AGCCATGTACGTAGCCATCC
Rev -
CTCTCAGCTGTGGTGGTGAA

German et al., 2016 N/A

Recombinant DNA

pCMV-SPORT6 Egln3 (Phd3) Harvard PlasmID 
Database

MmCD00320451

MSCV-PIG (Retroviral vector containing puromycin-IRES-
GFP)

Addgene Addgene#18751

MSCV-PIR (Retroviral vector containing puromycin-IRES-
RFP)

This manuscript N/A

pLenti CMV GFP Blast (659-1) Addgene Addgene#17445

pLenti CMV Phd3 Blast (C-terminal FLAG-tag) This manuscript N/A

Software and Algorithms

GraphPad Prism V7 GraphPad Software https://www.graphpad.com

FlowJo 10.4.1 FlowJo LLC https://www.flowjo.com

CLC Genomics Workbench Version 8.0.1 Qiagen https://www.qiagenbioinformatics.com/
products/clc-genomics-workbench/

GEPIA (Gene Expression Profiling Interactive Analysis) Laboratory of Z. Zhang, 
Peking University, 
Beijing Shi, China

http://gepia.cancer-pku.cn/

GenePattern Broad Institute https://www.genepattern.org/

Other

PicoLab® Rodent Diet 20 LabDiet Cat#5053

Rodent Diet With 60 kcal% Fat Research Diets Cat#D12492

GentleMACS C Tubes Miltenyi Cat#130-093-237

Criterion TGX gel 4-20% BioRad Cat#5671095

Nitrocellulose Membrane 0.2uM BioRad Cat#162-0112

Lithium Heparin Tubes (2 mL) VWR Cat#454237

MICROVETTE CB300 EDTA/PK100 Sarstedt Inc Cat#NC9141704

Nylon Net Filters EMD Millipore Cat#NY2004700

Cell. Author manuscript; available in PMC 2021 December 23.

https://www.graphpad.com
https://www.flowjo.com
https://www.qiagenbioinformatics.com/products/clc-genomics-workbench/
https://www.qiagenbioinformatics.com/products/clc-genomics-workbench/
http://gepia.cancer-pku.cn/
https://www.genepattern.org/

	Summary
	Graphical Abstract
	Introduction
	Results
	HFD accelerates MC38 tumor growth in a CD8+ T cell-dependent
manner
	HFD feeding reduces the number and functionality of intratumoral
CD8+ T cells
	Single-cell RNA-sequencing shows diet-induced alterations in
tumor-infiltrating immune populations
	HFD remodels the tumor-immune landscape in the TME
	HFD causes opposing metabolic changes in CD8+ T cells versus tumor
cells
	HFD reprograms fat utilization in the TME
	Proteomic analysis reveals fatty acid uptake and oxidation signatures by HFD
tumor cells
	HFD alters the neutral lipid composition of the TME
	Tumor cell PHD3 expression controls fatty acid availability in the HFD
TME
	Tumor cell PHD3 overexpression promotes CD8+ T cell tumor
control
	PHD3 loss correlates with reduced anti-tumor CD8+ T cell function
across multiple human cancers

	Discussion
	Limitations of Study
	STAR Methods
	Resource Availability
	Lead Contact for Reagent and Resource Sharing
	Materials Availability
	Data Code and Availability

	Experimental Model and Subject Details
	Cell Lines
	Mice

	Method Details
	Cloning
	Ectopic Gene Overexpression
	Mouse Tumor Models
	Metabolic Phenotyping
	Antibody-Mediated T Cell Depletions
	Protein Extraction and Western Blotting
	Protein Immunoprecipitation (IP)
	Tumor Dissociation and Tumor-Infiltrating Leukocyte Isolation
	Flow Cytometry and Staining
	T Cell Isolation and Activation
	Lipoprotein Lipase Activity Assays
	RNA Extraction and qPCR
	RNA-Sequencing
	Single-Cell RNA-Sequencing
	Metabolite Extractions
	LC-MS Analysis
	Histology
	TMT-Proteomics
	Cyclic Immunofluorescence

	Quantification and Statistical Analysis
	Statistical Analyses
	Metabolomics Analysis
	Bulk RNA-Seq Analysis
	Single-Cell RNA-Seq Analysis
	TCGA Data Analysis
	Proteomics Analysis


	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table T1

