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Abstract

Modeling structures and functions of large RNAs especially with complicated topologies is highly 

challenging due to the inefficiency of large conformational sampling and the presence of 

complicated tertiary interactions. To address this problem, one highly promising approach is 

coarse-grained modeling. Here, following an iterative simulated reference state approach to 

decipher the correlations between different structural parameters, we developed a potent coarse-

grained RNA model named IsRNA1 for RNA studies. Molecular dynamics simulations in the 

IsRNA1 can predict the native structures of small RNAs from sequence and fold medium-sized 

RNAs into near-native tertiary structures with the assistance of secondary structure constraints. A 

large-scale benchmark test on RNA 3D structure prediction shows that IsRNA1 gives improved 

performance for relatively large RNAs of complicated topologies, such as large stem-loop 

structures and structures containing long-range tertiary interactions. The advantages of IsRNA1 

include the consideration of the correlations between the different structural variables, the 

appropriate characterization of canonical base-pairing and base-stacking interactions, and the 

better sampling for the backbone conformations. Moreover, a blind screening protocol was 

developed based on IsRNA1 to identify good structural models from a pool of candidates without 

prior knowledge of the native structures.
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1. INTRODUCTION

Ribonucleic acid (RNA) molecules play a wide variety of important roles in cells from 

carrying genetic information to regulating gene expression and enzymatic activity in 

biochemical reactions1. Determining the three-dimensional (3D) structures of RNA 

molecules and their dynamic behaviors between distinct biologically active conformations is 

crucial for understanding RNA functions2,3 and designing RNAs with new functionalities. 

However, compared with sequence determination4,5, experimental determination of RNA 3D 

structures is severely limited by the size and flexibility of RNAs. This limitation has 

prompted the development of computational approaches, such as the folding simulation 

techniques to aid RNA 3D structure determination and study RNA dynamics between 

alternative states.6–9

For structure prediction and folding simulations, coarse-grained (CG) modeling and 

simulation approaches are particularly attractive due to reduced degrees of freedom, less 

rugged free energy landscape, and more efficient conformational sampling10,11. In recent 

decades, various CG models at different resolutions have been developed for RNA 

molecules to facilitate structure determination, probe folding stability, and estimate 

kinetics11–24. For instance, the low-resolution model NAST12 uses only one bead per 

nucleotide, and it can generate, cluster, and rank RNA 3D structures using RNA-specific 

statistical potentials that are supplemented by constraints on the secondary (2D) structure 

and tertiary contacts. The TIS13 model can predict folding thermodynamics of RNA in 

monovalent salt solutions by matching simulations with experimental melting data. Based on 

discrete Molecular Dynamics (MD) simulations, the three-bead CG model, iFoldRNA14, can 

provide good 3D structure prediction for structurally diverse RNAs, and its variations, 

iFoldRNAv215 and iFoldNMR16, can employ hydroxyl radical probing data and sparse 

NMR constraints to guide the 3D folding of small to medium-sized RNA molecules, 

respectively. Using five beads for each nucleotide, the medium-resolution CG model 

RACER17–19 can de novo fold short RNAs, and when supplemented by small-angle X-ray 

scattering (SAXS) structural information, it is able to characterize complex tertiary 

structures of large RNAs. A multilevel representation CG model, SimRNA20, can predict 

structural and dynamical features of RNAs of up to 190 nucleotides (nts), especially when 

the 2D structure and/or additional long-range contact restraints are available. The latest 

version HiRE-RNAv321 is a higher resolution model that uses six and seven beads per 

nucleotide for pyrimidines and purines, respectively, and can predict the structure, stability, 

and free energy surface for RNAs with sizes ranging from 12 to 76 nts and different levels of 

structural complexity.
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In spite of the highly promising progress in CG modeling of RNA folding, several major 

challenges still remain8,11. One prominent challenge is to design a more accurate CG force 

field to treat medium to large RNA molecules with complicated topologies, such as long-

range kissing tertiary interactions. Recently, we developed the iterative simulated reference 

state method to build an accurate RNA CG force field25 (IsRNA). Compared with the 

previous CG models, the parameterization of energy functions in IsRNA has the advantage 

of accounting for the local and nonlocal correlations between different structural degrees of 

freedoms and their interaction energies as well as effects from inherent chain connectivity 

and excluded volume. Furthermore, since contributions from both native-like and non-native 

conformations are considered in the simulated reference states, the IsRNA force field can 

account for both native and nonnative interactions in RNA folding. The simulated 

Boltzmann-like probability distributions based on the IsRNA force field agree with the 

statistical distributions from the experimental structures deposited in Protein Data Bank 

(PDB) for all the concerned structural variables such as bond length, bond angle, torsion 

angle, and pairwise distance25. Recently, the IsRNA-based CG MD simulation has shown a 

number of successful applications to various problems. For example, by predicting a series 

of kinetically important intermediates and incorporating information from a nanopore 

experiment and a master equation analysis26, IsRNA-based simulation successfully 

elucidated the folding pathway for an RNA pseudoknot. Furthermore, applications of IsRNA 

to problems such as Mg2+ ion effects in hepatitis C virus genomic RNA27,28 and the 

relationship between nucleotide flexibility, RNA 3D structure energetics, and selective 2′-
hydroxyl acylation analyzed by primer extension (SHAPE) reactivity29 suggest that IsRNA-

based CG MD simulations are able to provide a reliable 3D conformational ensemble for the 

study of various RNA folding properties. However, despite the successful applications of 

IsRNA to many simple RNA systems above, the ability of the IsRNA model to deal with 

complicated tertiary folding of RNAs remains to be systematically developed and explored.

In addition to the accuracy of the CG force field, another bottleneck for tertiary folding of 

large and topologically complex RNAs is inefficient sampling of the conformational space 

because of the huge number of degrees of freedom, even in the CG representation8. Since 

the folding of RNA molecules is thought to be hierarchical30,31, the employment of 2D 

structure constraints in tertiary folding simulations of large RNAs can greatly improve the 

sampling efficiency and accuracy. Here, the 2D structure indicates the assignment of 

canonical base pairs in an RNA structure and can involve both non-cross-linked (in 

conventional RNA secondary structures) and cross-linked base pairs. In fact, for many 

RNAs, a significant portion of 2D structure information can be derived from multiple 

homologous sequence alignment methods (Rfam32,33), free energy-based models 

(Mfold34,35, RNAstructre36,37, Vfold38,39, DotKnot40, CyloFold41, etc.), and data-driven 

approaches (the two-dimensional mutate-and-map strategy42 and SHAPE-directed 2D 

structure prediction43–45).

Here, we present an improved IsRNA model called IsRNA1 by treating the base-pairing 

interactions as a synergistic sum of combined energy functions, rather than uncorrelated 

pairwise distance-dependent interactions in IsRNA. Moreover, the energy functions in the 

improved IsRNA1 model were reparametrized through a larger experimental PDB dataset 

(592 in IsRNA1 vs. 299 entries in IsRNA) to extract the observed probability distributions 
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pobs(x) and a more complete simulated dataset (121 in IsRNA1 vs. 40 cases in IsRNA) to 

construct the reference state distributions pref(x). Compared to the original IsRNA model, 

the improved IsRNA1 can provide a more accurate description for the canonical base-pairing 

and stacking interactions and guide more efficient and accurate sampling of the 

conformational space for tertiary folding of medium to large RNAs. Using MD simulations, 

we tested the ability of the IsRNA1 model to fold RNAs extensively. First, our test results 

indicate that the IsRNA model can perform de novo folding of small RNA molecules. 

Second, with the information of 2D structure as an input, an IsRNA-IsRNA1 pipeline can 

fold medium-sized RNAs into native-like 3D structures. Third, benchmark test on RNA 3D 

structure prediction indicates that, compared with the state-of-the-art CG models, the 

IsRNA1 model provides improved results for RNAs of relatively large size and complicated 

topologies. Finally, we developed an IsRNA1-based screening protocol to blindly identify 

good structures without prior knowledge of the native structure. And our test results with 

RNA-Puzzles suggest that the IsRNA1 energy function-based screening protocol can 

identify good models that have lower root-mean-square deviation (RMSD) relative to the 

native structure and higher Interaction Network Fidelity on Watson–Crick interactions 

(INFWC).

2. MATERIAL AND METHODS

Coarse-grained RNA representation and the force field.

In agreement with the Vfold CG model38,46, the IsRNA1 CG model uses two beads to 

represent the phosphate group (P) and ribose sugar ring (S) located at the P and C4’ atoms, 

respectively, to define the backbone. The model also uses three beads and two beads 

positioned at the center-of-mass of the constituent heavy-atom groups to define the purine 

and pyrimidine bases, respectively (See Fig. 1). More details about the CG beads used in the 

IsRNA1 model25 can be found in Table S1 of the Supporting Information (SI). Similar to the 

previous study25, the CG force field in IsRNA1 model can be written as

Etotal = bondsEbond(b) bond angles Eangle(θ) torsion angles Etorsion(ϕ)

base pairsEbp(b θ ϕ) pairsEpair(r) j i ELJ(rij)
(1)

Here the local covalent energy terms Ebond(b), Eangle(θ), and Etorsion(ϕ) represent the bond 

stretching, bond angle bending, and torsion angle energies, respectively. As shown below, 

the canonical base-pairing interaction Ebp(b,θ,ϕ) is described by a series of combined 

covalent energy functions. The non-local term Epair(r) accounts for the remaining base-base, 

base-backbone, and backbone-backbone interactions. The last term ELJ(rij) describes the 

excluded volume interaction between any two non-bonded beads i and j. Details of the 

energy functions are given in the SI Section I. Compared with the previous CG models17–21, 

the current energy functions more fully capture the profiles of potential of mean forces for 

the structural variables and enable a broader and more accurate sampling of the 

conformational space25.
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Combined energy functions for base-pairing interactions.

In the original IsRNA model25, a non-local pairwise base-base interaction is calculated as a 

function of the distance between two beads in the CG model. However, a base pair involves 

multiple interactions, whose strengths depend on multiple distances and angles together. 

Therefore, we introduced a multivariable function in the combined form for the canonical 

base-pairing energy:

Ebp(b, θ, ϕ) = Ebond(b1) + Ebond(b2) + Eangle(θ1) + Eangle(θ2) + Etorsion(ϕ1)
+ Etorsion(ϕ2) (2)

As shown in the equation above, the two “bond” lengths, two “bond” angles, and the two 

torsion angles act collectively to determine the base-pairing interaction energy. Conversely, 

if a base pair is opened, all the related non-covalent energy functions are turned off. The 

definitions of the variables b1, b2, θ1, θ2, ϕ1, and ϕ2 for the G-C, A-U, and G-U canonical 

base-pairing interactions are given in Fig. 1 and SI Tables S3–S5. Because the simulated 

distributions based on the energy functions above can successfully reproduce the 

distributions derived from the PDB structure database for all the concerned structural 

parameters in a base pair, the combined energy functions given in Eq. (2) may have the 

potential to appropriately account for canonical (G-C, A-U, and G-U) base-pairing 

interactions. We call the IsRNA with the improved treatment for the base-pairing 

interactions (Eq. 2) as IsRNA1.

An iterative simulated reference state approach to parameterize energy functions.

Specifically, we used the probability distributions extracted from the experimental PDB 

dataset to parameterize the energy functions in IsRNA1 model. According to the inverse 

Boltzmann law, the statistical potential energy for a given structural variable x, such as the 

bond length b, bond angle θ, torsion angle ϕ, or pairwise distance r, can be calculated by

E(x) = − kBT ln pobs(x)/pref(x) (3)

where kB is the Boltzmann constant, T is the temperature, pobs(x) is the probability 

distribution for x observed from the experimental structures deposited in PDB database, and 

pref(x) is the probability distribution for the reference state. A challenge underlying the 

extraction of statistical potential energies through Eq. (3) is how to account for the 

correlation effect between different structural variables. This correlation effect stems from 

the inherent chain connectivity and many-body base-base interactions as well as the volume 

exclusion between different segments. (See SI Section II and Figures S1–S2 for some typical 

examples about the correlation effects.)

Since the total coarse-grained (CG) force field given in Eq. (1) is a linear combination of 

energy functions for different variables, we can add the energy terms one by one on-the-fly 

as guided by the iteratively simulated reference states, where in each step, the simulated 

distribution based on the existing variables is treated as the reference state distribution 

pref(x) for the next variable x to be added. In such a way, the correlation effect can be 

appropriately built into the reference state pref(x) through CG MD simulations and the 
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probability distributions for the concerned structural variables approach the observed 

distributions from the PDB database. Because the energy function is built based on the 

distribution of the whole (simulated) conformational ensemble, including both the native and 

the nonnative states, it might be used to simulate the folding energy landscape of an RNA. 

However, as a caveat, we note that the derivation of the energy function relies on the selected 

dataset of (native) structures, thus whether the simulation can give the physical folding 

process remains a problem for further investigation.

The detailed parameterization procedure for the energy function through the iterative 

simulated reference state approach has been discussed in our previous work25. For clarity, an 

illustrated flowchart of the parameterization procedure is given in Fig. 2 and described 

below.

i. To extract the observed probability distributions for the different structural 

variables, a large experimental PDB dataset contains 592 X-ray crystal and NMR 

structures with the redundant structures removed (relative to 299 entries in the 

original IsRNA) was constructed. The details about the extraction of probability 

distributions from the dataset are given in the SI Section III.

ii. All the energy functions in the bond stretching category in IsRNA1 force field, 

including 6 types of the base-pairing interactions, were directly determined from 

the corresponding observed probability distributions ρobs(b) via Ebond(b) = 

−kBTln ρobs(b). From the bond length data, we estimated the diameters σ for the 

excluded volume interactions ELJ(rij) (see SI Eq. S5). The Ebond(b) and ELJ(rij) 

parameters were used as the starting energy functions for the iteratively 

constructed force field.

iii. In each of the following steps, we added an energy term E(xi+1) (for variable 

xi+1) to the existing energy function Ui = E(x1)+E(x2)+ …+E(xi) determined 

from the previous steps (for variables x1,x2,…, xi). MD simulations were 

performed based on the force field Ui to calculate the reference state distribution 

pref(xi+1) for xi+1. To construct a complete reference state, a large dataset (named 

simulated dataset) that contains 121 RNA molecules (relative to 40 RNAs in the 

original IsRNA) with size ranging from 12 to 120 nts was used in the 

simulations. This dataset covers a variety of structural topologies including stem-

loop, junction, pseudoknot, triplex, and loop-related kissing tertiary interactions; 

See the SI Table S2 for the PDB IDs of the 121 RNAs. Starting from the native 

structures, the simulations collected in total 121,000 structure snapshots for the 

calculation of the distribution pref(xi+1) (See SI Section III for more details). 

Then the energy term E(xi+1) was determined from Eq. (3). We note that no 

explicit artificial bias toward the native structures is introduced in the 

simulations. In fact, the reference state distribution pref(xi+1) from the collected 

structure snapshots accounts for both the native and the non-native interactions. 

However, the derived energy function is dependent on the selected database for 

native structures, and it not clear whether the observed probability distribution 

pobs(x) forms the physical Boltzmann distribution for the different variables. 

Therefore, it requires further investigation to determine whether the extracted 
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energy function can accurately describe the physical free energy landscape for an 

RNA.

iv. In the iterative procedure, we fitted energy terms following the order Eangle(θ) 

(bond angle bending energy) → Etorsion(ϕ) (torsion energy) → Epair(r) (non-local 

pairwise interaction). The above energy terms were added to the CG force field 

one by one until the simulated conformational ensemble reproduced the target 

(observed) distributions for all the structural variables. To optimize the 

convergence speed, when adding the energies E(x) one by one, among all the 

structural variables within the same category, the one with the largest energy 

contribution was selected in each step and the corresponding energy function 

E(x) = −kBTln[ρobs(x)/ρref(x)] was added to the CG force field; See the SI 

Section IV for more details.

Overall, the proposed iteration procedure can identify correlations between the structural 

variables. For example, if the added energy E(x) is 0, the structural variable x is fully 

correlated to the existing structural variables (before x is added to the force field). In total, 

we found 18, 18, 26, and 41 weakly correlated (nearly independent) bond stretching lengths, 

bond angles, torsion angles, and pairwise interactions out of 18, 33, 31, and 55 observed 

ones, respectively. These weakly correlated variables were selected as the effective collective 

variables in the final IsRNA1 CG force field; See SI Table S3–S6 for the corresponding 

energy parameters.

Simulation protocol.

The CG MD simulations in the IsRNA/IsRNA1 model were performed through Langevin 

dynamics (NVT ensemble) in the modified open-source software, LAMMPS47. LAMMPS 

runs efficiently on both single-processor and parallel computers by supporting the MPI 

message-passing library. The default time step for integration was set to Δt = 1fs. Apart from 

the conventional MD simulations at the desired temperature, we also employed two 

enhanced sampling techniques, simulated annealing MD and replica-exchange MD 

(REMD), to rapidly sample the 3D conformational space. In general, starting from the initial 

structures, a long time CG MD simulation was performed to relax or fold the RNA 

molecules with the IsRNA/IsRNA1 CG force field. Based on the simulated conformational 

ensemble from MD trajectories, we can compute the probability distributions, predict the 

most stable 3D structures, and calculate the average potential energies; see the SI Figure S3 

for an illustrative flowchart for the 3D structure prediction.

The simulation details including simulation methods, simulation time, temperature, initial 

structure, structure snapshot collection, construction of the conformation ensemble, and total 

central processing unit (CPU) hours for each study are summarized in SI Table S7. For 

instance, to fold RNAs with medium size ranging from 22 to 78 nts into native-like 3D 

structures with 2D structure constraints, we developed an IsRNA-IsRNA1 pipeline. 

Specifically, REMD simulations starting from the coil structures were performed based on 

the IsRNA force field with 8 replicas and temperatures from 200 K to 375 K for 300 ns per 

replica. The constraints on base pairs in the IsRNA simulations were enforced using 

harmonic potentials Erest(r) = kr(r − r0)2 on the participating pairs of beads as shown in Fig. 
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1, such as pairs GO-CN and GN-CN for a G-C pair. To avoid unphysical artifacts caused by 

those restraints, the restraint spring coefficient kr was gradually strengthened from 0.01 to 5 

kcal/mol/Å2 during the long simulation period to make the RNA fold into the proper 

conformation. After sufficient folding of RNA molecules in the first 200 ns, structure 

snapshots and their potential energies were collected from the last 100 ns in the interval of 

100 ps for each replica and 8,000 structures were obtained in total. As a refinement step, the 

folded structure given by the IsRNA model served as the initial structure for an additional 

REMD simulation using the improved IsRNA1 CG force field. Specifically, the IsRNA1-

based REMD simulation employed 11 replicas with temperatures from 150 K to 400 K for 

100 ns simulation time per replica. The structure snapshots and potential energies were 

collected every 100 ps from the last 50-ns trajectory for each replica and 5,500 structures 

were obtained in total. The collected snapshots formed a conformational ensemble for the 

prediction of the final tertiary structure by the IsRNA1 model. The total CPU time for the 

folding of a 78-nt RNA molecule using the IsRNA-IsRNA1 pipeline is about 670 hours on a 

common desktop computer with Intel Core(TM) i7-5930K 3.5GHz CPU. Since the number 

of CG beads in IsRNA/IsRNA1 model is small (relative to all-atom model), only one CPU 

thread is required for each REMD replica and the multiple threads parallelization for each 

replica would not cause significant enhancement in the computational performance.

To further benchmark the performance of IsRNA1 model on 3D structure prediction on a 

large dataset and RNA-Puzzles challenges, with the sequence and the 2D structure as inputs, 

the template-based Vfold3D39,48 and VfoldLA49,50 algorithms were used to generate three 

3D structures (if available) as the initial states of the CG MD simulations. For the 

complicated RNAs containing tertiary interactions (cross-linked base pairs), if Vfold3D/

VfoldLA algorithms fail to generate the initial 3D structures, the cross-linked base pairs in 

the 2D structure will be ignored when building the initial 3D structures. To avoid unphysical 

3D structures built with the VfoldLA algorithm, we ran 30-ns REMD simulations (10 

replicas with temperature from 225 K to 450 K) with the aforementioned gradually 

strengthened harmonic restraints Erest(r) to form and stabilize the cross-linked base pairs. 

Based on the initial 3D structures and the base-pairing constraints, we performed t-ns 

REMD simulations (10 replicas with temperature from 200 K to 425 K) to sample the 3D 

conformations, where t is 1.5 and 50 for junction and non-junction structures, respectively. 

After the first t/2-ns simulations for relaxation of the initial structures, the conformational 

snapshots and their potential energies from the last t/2-ns trajectories for all replicas were 

collected. As a result, from the three initial 3D structures, an ensemble of 15,000 

conformations was generated for 3D structure prediction. The typical CPU time for the 3D 

structure prediction of a 101-nt RNA is about 330 hours (10 replicas in total) on a 

workstation with AMD Ryzen Threadripper 1950X 2.1 GHz CPU.

Inputs and outputs.

The typical inputs of IsRNA1 CG MD simulations include a starting 3D structure (PDB-

formatted), a 2D structure in the dot-bracket format, and a configuration file that contains 

the basic parameters, such as simulation technique, simulation time, temperature, interval for 

collection of structure snapshots. The starting structure can be obtained from predictions 

given by IsRNA model or other computational approaches, such as Vfold3D48, 
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VfoldLA49,50, etc., or even a coil structure. For the test cases, the 2D structures were 

extracted from the native 3D folds by the RNApdbee51 webserver or by the DSSR52 

software. Cross-linked base-pairing interactions for pseudoknot and loop-kissing tertiary 

structures are directly supported in the dot-bracket format of the 2D structure. The IsRNA1 

model can handle RNA molecules of one or multiple chains. Depending on the size and 

topology of the RNA, simulation parameters in the configuration file (such as the sampling 

technique, simulation time and temperature) can be easily changed from the default settings.

Additional constraints can also be fed into the IsRNA1 CG MD simulations. Two typical 

constraints are long-range contacts indicated by experiments and/or computational methods 

and 3D templates for structure motifs extracted from the homologous structures. Similar to 

the constraints for base pairs, long-range contacts constraints can be imposed using bond 

stretching energies between involved bead pairs with appropriate energy functions. In the 

LAMMPS library for bond stretching potentials, various types of energy functions with 

tunable parameters are available. Similarly, constraints on particular bond angles and 

torsional angles are also feasible. The constraints from structure templates can be 

accomplished by modeling each related template as a rigid body in the MD simulations. 

Other useful features of CG MD simulations include freezing groups of beads, adding 

flexible tethering or external force on specific nucleotides, and enabling a variety of 

sampling ensembles, such as canonical, isothermal-isobaric, and isenthalpic ensembles.

The primary outputs of IsRNA1 CG MD simulations are the folding trajectories, which are 

readable in VMD53 to visualize the folding process. The potential energies for the different 

components listed in Eq. (1), such as Ebond, Eangle, Etorsion, Ebp, and Epair, were recorded for 

each snapshot. For the purpose of 3D structure prediction, structures of top 10% lowest 

energy (Etotal in Eq. 1) were selected from the conformational ensemble. Based on the 

pairwise RMSDs over all the CG beads, the selected low-energy structures in the 

conformational ensemble were clustered through an in-house program54. In detail, any two 

structures with pairwise RMSD less than a threshold value were defined as a neighbor. Then 

the structure having the most neighbors was chosen as the 1st centroid structure. The first 

centroid structure and its neighbors were grouped into the 1st (largest) cluster and the 1st 

centroid structure was considered as the top 1 predicted 3D structure. Applying the same 

idea to the remaining conformations resulted in the 2nd, 3rd, … (smaller) clusters and the 

corresponding centroid structures. The cutoff RMSD threshold for the clusters is chosen 

such that the largest cluster contains about 65% of the candidate structures or the cutoff 

RMSD is equal to 0.1Å times the sequence length, depending on which RMSD cutoff is 

smaller. See SI Table S7 for more details in extracting the conformational ensemble for the 

present studies.

The four/five CG beads per nucleotide representation in IsRNA model permits a nearly one-

to-one mapping between a CG conformation and the corresponding PDB all-atom model. To 

implement the all-atom reconstruction, a built-in single-nucleotide fragment matching 

algorithm was developed based on the PDB dataset. Finally, NAMD55 with the CHARMM56 

force field was applied to perform energy minimizations to fix possible errors in local 

geometries (such as unphysical bond lengths) and to reduce the clash scores of the predicted 

all-atom structures. As the energy minimization mainly improves the local structural quality 
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for the predicted models (such as clash score) and keeps the global features (such as the 

RMSD) nearly unchanged, other refinement methods, such as QRNAS57 and RNAfitme58, 

are also useful.

3. RESULTS

De novo folding of small RNA molecules into native structures.

Through simulated annealing MD simulations, starting from the coil structures, the original 

IsRNA model is able to de novo fold small RNAs into their native structures solely from the 

sequences. The simulation details are given in the “Materials and Methods” and in the SI 

Table S7. In total, there are 15 small RNA molecules collected from previous studies18, 21. 

The lengths of the small RNAs range from 12 to 36 nts and their structural topologies are 

simple stem-loop structures, including duplexes, hairpins and bulge loops. The plots of 

RMSDs vs. potential energies during the folding process for some typical cases are given in 

the SI Fig. S4. As shown in Fig. 3, the original IsRNA model outperforms Ren’s model18 

with average RMSDs of 2.49 Å (IsRNA) vs. 3.53 Å (Ren’s model) for 7 cases and the 

HiRE-RNA model21 with average RMSDs of 1.69 A (IsRNA) vs. 3.39 Å (HiRE-RNA) for 9 

cases, respectively. However, when compared with the SimRNA20,59 model with an average 

RMSD of 2.08 Å over all the 15 cases, the performance of the original IsRNA model 

(average RMSD of 2.29 Å) is slightly worse (see Fig. 3).

In detail, Ren’s model17,18 uses a simple harmonic function to describe the local bond 

stretching and bond angle energies, a set of pairwise distance-dependent energy functions to 

represent the base-base interactions, and a simplified non-interacting ideal gas reference 

state to parameterize the force field. The HiRE-RNA21 model uses harmonic potentials for 

the local bond stretching and bond angle energies and describes the base-base interactions in 

a many-body fashion, but the reference state is not explicitly simulated during the 

parameterization. In contrast, the SimRNA20 model depends on 3D statistical potentials for 

different base-base contacts to directly account for base-base interactions and uses the quasi-

chemical approximation as the reference state. Therefore, the fact that IsRNA model 

outperforms the previous Ren’s model and HiRE-RNA model for all the cases in de novo 
folding of small RNAs suggests that a more rigorous reference state approach instead of the 

simple ideal gas reference state may be important for the construction of an accurate CG 

RNA force field. Moreover, accurate potential functions for the local covalent energy terms, 

such as those used in IsRNA1 model (see SI Section I), are also important. Furthermore, an 

accurate description of the base-base interactions (including base-pairing and base-stacking 

interactions) goes beyond pairwise distance-dependent interactions used by most previous 

models. For example, the SimRNA model employs direct base-base contact energies instead 

of simple pairwise energies along with sufficient sampling based on 80 replicas for each 

case. In conclusion, in addition to the rigorous reference state calculation (in IsRNA/

IsRNA1), accurate descriptions of base-pairing and base-stacking interactions are also 

important for modeling RNA folding, and the current upgraded IsRNA1 considers the above 

key factors.
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Tertiary structure folding of RNAs with 2D structure constraints.

As indicated by our previous work26, for RNA molecules with relatively large size and 

complicated topology, folding simulations starting from an extended single strand without 

any 2D structure constraints will experience several intermediate and misfolded states and 

can be easily trapped into local minimums. Thus, when searching for native-like 

conformations, 2D structure constraints in tertiary structure folding of RNA molecules can 

substantially improve the sampling efficiency and accuracy. These improvements are more 

pronounced for large RNAs, where conformational sampling is a significant challenge for 

structure prediction. Starting from a coil state and using 2D structure constraints, an IsRNA-

IsRNA1 CG MD simulation pipeline can predict near-native tertiary structures from the 

sequences (See “Materials and Methods” and SI Table S7 for details). Benchmark tests were 

performed for 65 RNAs (“dataset-65”) whose sequence lengths range from 22 to 78 nts, 

covering structural topologies such as stem-loops, pseudoknots, multi-way junctions, loop-

related kissing tertiary structures, and other highly complex tertiary folds. As previous 

tests20 suggest that the SimRNA model can provide comparable or better results than other 

similar methods such as iFoldRNA14 and FARNA/FARFAR60,61, here we selected 

SimRNA20,59 as the state-of-the-art CG model for comparison.

In the IsRNA-IsRNA1 pipeline, the IsRNA1-guided CG MD simulations (the second step in 

the pipeline) results in notable structure refinements with smaller RMSDs for 37 out of 65 

test cases relative to the first IsRNA step. For 15 of the remaining 28 cases, comparable 

results with a slight RMSD difference ΔRMSD0 = RMSDIsRNA1 − RMSDIsRNA ≤ 0.5 Å are 

observed. The complete detailed results are given in the SI Table S8. Overall, the average 

RMSD for the 65 test cases decreases from 6.38 ± 3.73 Å to 5.93 ± 3.21 Å after the 

IsRNA1-guided structure refinement, as shown in Fig. 4 and the SI Table S8. Compared with 

the SimRNA model, the IsRNA-IsRNA1 pipeline gives improved predictions for 26 cases 

(ΔRMSD = RMSDsimRNA − RMSDIsRNA1 ≥ 0.5 Å) and comparable results with slight 

RMSD differences (|ΔRMSD| ≤ 0.5 Å) for 18 cases (see SI Table S8). For all 65 test cases, 

the average RMSD given by SimRNA is 6.40 ± 3.95 Å, which is close to the IsRNA-based 

result 6.38 ± 3.73 Å, but is larger than the IsRNA1-based result 5.93 ± 3.21 Å (see Fig. 4), 

suggesting that the original IsRNA performs comparable to SimRNA and IsRNA1 provides 

further improvement.

To uncover the underlying advantages and limitations of the IsRNA-IsRNA1 pipeline, we 

investigated the structure prediction results for different RNA groups classified by the 

sequence length or 3D structural topologies (see Fig. 4).

Specifically, according to the sequence length, 65 test RNAs were divided into two groups, 

one group including 35 small RNAs of size smaller than 40 nts, and the other group 

including 30 relatively large RNAs of size larger than 40 nts. For RNAs in the small-size 

group, because of the limited conformational space and relatively simple topology (such as 

stem-loop and H-type pseudoknot), tertiary structures predicted by a number of accurate CG 

models with the restraints of 2D structures can achieve near-atomic resolution, and de novo 
folding from the sequence is viable (such as the results shown in Fig. 3). Here, for 35 test 

RNA molecules in the small-size group, the average RMSDs given by SimRNA, IsRNA, and 

IsRNA1 are 4.35 ± 2.11 Å, 4.70 ± 1.91 Å, and 4.38 ± 1.88 Å, respectively (see Fig. 4), 
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which indicates that IsRNA1 performs comparably relative to SimRNA for RNAs of 

relatively small size. For large RNAs, tertiary structure folding by CG simulations is 

generally hampered by inefficient conformational sampling (because of high flexibility of 

loop segments) and complicated intra- and inter-loop interaction networks. In such 

situations, an accurate force field becomes more important to guide conformational sampling 

and to simulate the interaction networks. For 30 test RNAs in the large-size group, the 

average RMSDs are 8.79 ± 4.27 Å, 8.33 ± 4.36 Å, and 7.74 ± 3.50 Å for SimRNA, IsRNA, 

and IsRNA1, respectively (see Fig. 4 and SI Table S8), which suggests that IsRNA1 may 

improve the performance in tertiary structure folding for relatively large RNAs.

In regard to the structural topology, the 65 test RNAs include 34 stem-loops, 14 

pseudoknots, and 17 complicated structures of multi-way (3-way and 4-way) junctions and 

loop-kissing tertiary interactions. (i) For stem-loops containing only helices and hairpin/

internal/bulge loops, many RNA 3D structure prediction programs can achieve a satisfactory 

accuracy, especially for the simple structures of small size (e.g., < 40 nts). As shown in Fig. 

4, tertiary structure folding by SimRNA, IsRNA, and IsRNA1 give the average RMSDs of 

4.86 ± 2.73 Å, 4.74 ± 2.21 Å, and 4.60 ± 2.23 Å for the 34 test stem-loop structures, 

respectively. (ii) For the H-type pseudoknot, due to the intercalated base-pairing interactions 

between two stems, an accurate tertiary structure folding simulation is quite challenging as 

the rich loop-helix non-canonical base-base/base-backbone interactions62–64 and the 

potential environment effects, such as metal ions and ligand binding65, can play important 

roles in folding. For 9 of 14 listed H-type pseudoknots, the IsRNA-IsRNA1 pipeline is able 

to predict 3D structures at near-atomic resolution with RMSDs to the native structures < 5 Å 

(see SI Table S8 for details). The average RMSDs for all the pseudoknots given by 

SimRNA, IsRNA, and IsRNA1 are 4.81 ± 1.80 Å, 5.22 ± 1.48 Å, and 4.92 ± 1.51 Å, 

respectively (see Fig. 4). (iii) Due to the large conformational degrees of freedom for loops, 

intricate loop-related interaction networks, and the effects from surrounding 

environment8,66–70 (for instance, ions and ligand binding), computational modeling of 

complicated RNA systems containing multi-way junctions and/or long-range tertiary 

interactions (such as loop-loop kissing71,72) is a bottleneck for structure prediction. Here, for 

17 test RNAs of complicated structures with size from 41 to 76 nts, the IsRNA-IsRNA1 

pipeline gives improved predictions (ΔRMSD > 0.5 Å) relative to SimRNA for 10 cases, and 

the average RMSD for the whole group decreases from 10.77 ± 4.13 Å by SimRNA to 9.42 

± 3.37 Å by IsRNA1 (see Fig. 4).

A large-scale benchmark for RNA 3D structure prediction.

To further test the performance on 3D structure prediction by IsRNA1 model for relatively 

large RNAs of complicated topologies, a large-scale benchmark test on a dataset of 130 

relatively large RNA molecules (“dataset-130”) was performed and compared with other two 

CG models, namely iFoldRNA14,15 and SimRNA20,59 (see SI Table S9 for detailed results). 

In this benchmark dataset, the RNA size ranges from 40 to 161 nts, and there are 44 stem-

loops, 43 multi-way (3-way, 4-way, and 5-way) junctions, and 43 structures of long-range 

tertiary interactions.
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To enhance the sampling efficiency, here we combined IsRNA1 with the template/loop-

based algorithms Vfold3D48/VfoldLA49 to predict 3D structures of large RNAs. 

Specifically, with the sequence and 2D structure as input, Vfold3D and VfoldLA programs 

were used to generate up to three 3D structures as the initial structures of the subsequent CG 

MD simulations in IsRNA1 model. For fairness, the native structure and its related entries 

were excluded from the template/loop database when generated the initial structures. 

Assuming the generated initial structures represent states near the native conformation, 

relatively short REMD simulations with 2D structure constraints were run in IsRNA1 model 

to predict the final 3D structures (see “Materials and Methods” and SI Table S7 for 

simulation details). For 12 of the 17 overlapped cases between “dataset-65” (for the IsRNA-

IsRNA1 pipeline) and “dataset-130” (for the Vfold3D/Vfoldl_A-IsRNA1 pipeline), short 

(50 or 1.5 ns per replica) REMD simulations in the Vfold3D/VfoldLA-IsRNA1 pipeline 

provide comparable or slightly better 3D structure predictions (ΔRMSD < 0.5 Å) than the 

long (400 ns per replica) simulations in the IsRNA-IsRNA1 pipeline (see SI Tables S8 and 

S9). The results indicate that the combination of template/loop-based Vfold3DA/foldLA 

models and IsRNA1 MD simulations can indeed enhance sampling efficiency and quality for 

3D structure prediction.

Apart from RMSD for global fold, two additional metrics were also used to assess the 

structural qualities of the predicted 3D structures. The first one is the Interaction Network 

Fidelity73 for all the canonical and non-canonical base-pairing and base-stacking 

interactions, denoted as INFall. In general, INFall measures the accuracy of the interaction 

networks in the predicted structures. INFall of 1.0 means the predicted structure perfectly 

reproduce the interaction networks in the native structure. The second metric is the clash 

score74 to characterize the number of serious steric overlaps between all-atom contacts and a 

lower clash score represents a better structural quality. The three metrics were calculated 

using RNA-Puzzles toolkit75 (for RMSD and INFall) and RNAssess server76 (for clash 

score).

Results of this large-scale benchmark test are summarized in Table 1. For the 130 RNAs, the 

average/median RMSDs for the predicted top 1 structure by IsRNA1, SimRNA, and 

iFoldRNA are 9.51/8.12 Å, 11.26/10.95 Å, and 11.87/11.37 Å, respectively, which further 

suggests the improved performance of the IsRNA1 model for large RNAs. The average/

median INFall of 0.75/0.75 by IsRNA1 is slightly better than that of 0.73/0.73 by SimRNA 

and that of 0.67/0.68 by iFoldRNA. And the average/median clash score of 4.0/2.7 by 

IsRNA1 is lower than that of 139.7/140.0 by SimRNA and that of 170.4/174.6 by 

iFoldRNA. Additionally, considering the top 3 predicted structures, the average RMSDs for 

the best model predicted by IsRNA1, SimRNA, and iFoldRNA are 8.34 Å, 9.73 Å, and 

10.88 Å, respectively. And their average INFall are 0.76 (IsRNA1), 0.72 (SimRNA), and 

0.67 (iFoldRNA), respectively. The detailed results for RNAs containing stem-loops, multi-

way junctions, and tertiary interactions are also given in Table 1 and illustrated below.

Stem-loop structures.—As the most frequently occurring RNA motif, the stem-loop 

structure has a simple topology. The challenge for 3D structure prediction of large stem-loop 

structures mainly comes from the presence of multiple large internal/bulge loops. For the 44 

test stem-loop structures of relatively large size in the “dataset-130”, the average RMSD, 
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INFall, and clash score of the predicted top 1 structure by IsRNA1 are (5.79 Å, 0.80, 2.0), 

better than (7.21 Å, 0.77, 129.4) by SimRNA and (7.90 Å, 0.70, 153.2) by iFoldRNA. When 

the best of top 3 predictions is considered, the average structural qualities for IsRNA1 

improves only slightly, with the average RMSD decreasing from 5.79 Å (top 1 prediction) to 

5.15 Å (the best of top 3 predictions) (see Table 1), which indicates the top 1 prediction can 

represent the best structure in the sampled conformational ensemble for the majority of the 

stem-loop structures. In particular, for the 78-nt HIV-1 dimerization initiation site in the 

extended-duplex dimer77 (PDB ID: 2d1a, see Fig. 5A) containing 4 internal loops and the 

77-nt HCV IRES domain II78 (PDB ID: 1p5p, see Fig. 5B) containing 6 bulge/internal/

hairpin loops, IsRNA1 provides better predictions (best of top 3 predictions) with RMSDs of 

4.12 Å (2d1a) and 6.89 Å (1p5p) compared to RMSDs of 10.71 Å (2d1a) and 11.17 Å 

(1p5p) by SimRNA and 18.57 Å (1p5p) by iFoldRNA (see SI Table S9). The result for 2d1a 

by iFoldRNA cannot be obtained because the iFoldRNA server does not deal with multiple 

chains. The RMSDs for those large stem-loop structures mainly come from the accumulative 

deviations caused by mis-configured loops containing complicated interaction networks.

Multi-way junctions.—For 3D structure prediction of multi-way junctions, a major 

difficulty lies in the spatial arrangement of helices which can involve coaxial stacking 

interactions between helices. The underlying difficulty is the prediction of the non-canonical 

base-pairing interactions in multibranched loops. For 43 multi-way junctions tested here, as 

shown in Table 1, IsRNA1 performs better than SimRNA and iFoldRNA, as shown by the 

average RMSDs for the top 1 prediction given by these three models: 12.93 Å (IsRNA1), 

14.91 Å (SimRNA), and 15.85 Å (iFoldRNA), respectively. Regarding the other two 

structural quality metrics, IsRNA1 also shows the highest average INFall of 0.71 (compared 

to 0.69 for SimRNA and 0.64 for iFoldRNA) and the lowest average clash score of 4.2 

(compared to 143.3 for SimRNA and 180.7 for iFoldRNA). When the top 3 predictions by 

IsRNA1 are considered, the average RMSD is improved from 12.93 Å (top 1 prediction) to 

10.88 Å (the best of top 3 predictions), while the average INFall and clash score are nearly 

unchanged (see Table 1). For SimRNA and iFoldRNA, the same tendencies are observed for 

the average structural qualities summarized in Table 1. Therefore, for all the CG models, 

consideration only the top 1 structure may miss the best structure, and multiple candidates, 

such as top 3 structures, are recommended for 3D structure prediction of RNA junctions. 

Particularly, for the 3-way junction rRNA fragment in the S15-rRNA complex79 (PDB ID: 

1dk1, 57 nts) shown in Fig. 5C, IsRNA1 performs better than SimRNA and iFoldRNA in 

terms of RMSDs of 5.37 Å (IsRNA1), 6.38 Å (SimRNA) and 6.46 Å (iFoldRNA), 

respectively. And for the 4-way junction RNA substrate and hairpin ribozyme complex80 

(PDB ID: 1m5o, 113 nts) shown in Fig. 5D, IsRNA1 performs better than SimRNA as 

shown by the RMSDs of 5.99 Å (IsRNA1) and 12.05 Å (SimRNA), respectively, while 

iFoldRNA cannot deal with this RNA of multiple chains. As it is shown, the configuration of 

junction loops, which is controlled by the interloop noncanonical base pairing interaction 

network, plays a key role in determining of the spatial arrangement of helices and dominates 

the predicted RMSD value.

Structures containing tertiary interactions.—Due to the lack of suitable templates in 

the database, 3D structure prediction for RNAs containing long-range tertiary interactions 
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remains a challenge for many successful template-based approaches, including MC-sym81, 

Vfold3D48, and 3dRNA82. Thus, the development of new template-free approaches, such as 

the present IsRNA1 model here, is much needed for understanding structures and functions 

of many important RNAs, such as riboswitches3. For 43 cases containing long-range tertiary 

interactions in the large-scale benchmark “dataset-130”, the average RMSD for (the top 1)/

(the best within the top 3) structure predicted by IsRNA1 is 9.89/9.05 Å, which is smaller 

than the average RMSDs 11.75/10.28 Å and 11.60/11.22 Å predicted by SimRNA and 

iFoldRNA, respectively. Similarly, a moderate improvement in RMSD for the top 3 

predictions from 9.89 Å to 9.05 Å by IsRNA1 demonstrates the necessity to consider 

multiple candidates for RNAs containing long-range tertiary interactions. Moreover, the 

average INFall of 0.75 for the best of the top 3 predictions by IsRNA1 is higher than 0.71 by 

SimRNA and 0.66 by iFoldRNA, and the average clash score of 5.7 for the best of the top 3 

predictions by IsRNA1 is lower than 147.9 by SimRNA and 175.2 by iFoldRNA. For 

example, for the 77-nt PreQ1-N riboswitch83 (PDB ID: 5d5I, see Fig. 5E), the RMSD of the 

best of top 3 predictions by IsRNA1 is 6.54 Å, which is smaller than 16.48 Å by SimRNA 

and 14.08 Å by iFoldRNA. As another example, for the 74-nt twister ribozyme84 (PDB ID: 

4qjh, see Fig. 5F), IsRNA1 also shows improved predictions with an RMSD of 4.20 Å 

compared with 13.39 Å (by SimRNA). We note that iFoldRNA does not treat this multi-

chain RNA. In determining of RNA 3D structure with tertiary interactions, the tertiary base 

pair constraints play a key role on global folding profile, while the interloop interaction 

networks (contain rich noncanonical base-pairing interactions) dominate the configuration of 

local segments. As shown in Fig. 5E and 5F, although the 3D structures predicted by 

IsRNA1 show similar global folds to the native structures, there are several misplaced 

segments associated with the interaction networks in the loops.

Compared with the initial 3D structures generated by Vfold3D/VfoldLA (see SI Table S10), 

the best model among the top 3 predictions by IsRNA1 generally improves with the average 

RMSD decreasing from 5.87 Å to 5.15 Å for stem-loop structures and from 10.68 Å to 9.05 

Å for RNAs containing long-range tertiary interactions. These results suggest that the 

IsRNA1-bases simulation can indeed refine the template/loop-based models and the 

Vfold3D/VfoldLA template-based models improve folding efficiency. Furthermore, for the 

test multi-way junctions, the Vfold3D/VfoldLA-predicted models have an average RMSD of 

9.27 Å (see SI Table S10) better than the final predictions (the best of top 3) by IsRNA1 

with an average RMSD of 10.88 Å. The results suggest that for RNA junction structures, 

further optimization for the initial template-predicted and the IsRNA1 simulation-generated 

3D structures would be useful.

Both IsRNA1 and SimRNA models can fold multi-strand. For 35 test cases containing 

multiple chains in the large-scale benchmark dataset, as summarized in Table 1, the IsRNA1 

approach gives lower average RMSDs (8.72 Å vs. 12.10 Å for top 1 prediction), a slightly 

better average INFall (0.78 vs. 0.77), and a smaller average clash score (3.4 vs. 137.7).

RNA 3D structure prediction for RNA-Puzzles.

As a collective and blind test for RNA 3D structure prediction, the “RNA-Puzzles” (http://

www.rnapuzzles.org/) provides a primary platform for the assessment of leading-edge RNA 
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structure prediction programs. Up to now, 21 challenges have been published85–88 with RNA 

size ranging from 41 to 188 nts, covering most of the typical RNA structural topologies and 

motifs. To further explore the boundary of IsRNA1 for 3D structure prediction, we used the 

2D structures extracted from the native folds as constraints and the Vfold3D/VfoldLA 

generated 3D structures (top 3 structures) as the initial states to run IsRNA1-guided MD 

simulations on the RNA-Puzzles challenge problems (see SI Table S7 for the simulation 

details). If available, highly scored (highly reliable) templates identified by Vfold3D48 from 

known homologous structures (for challenges #4, #9, and #18) or given in advance as known 

information (for challenge #2) were also used as constraints in IsRNA1 structure modeling. 

For each challenge problem, we selected the top 5 predictions from the IsRNA1 simulation 

results.

As shown in Table 2, based on CG MD simulations only, for 12 of the 21 challenges, 

IsRNA1 provides better or comparable predictions (ΔRMSD < 0.5 Å) compared to the 

original Chen group results. And for 8 of them, predictions by IsRNA1 are better than or 

comparable to the best models predicted by all the groups. For example, for the Varkud 

satellite ribozyme89 (puzzle #7, 185 nts, PDB ID: 4r4p) containing three 3-way junctions 

and the 5-hydroxytryptophan aptamer90 (puzzle#9, 71 nts, PDB ID: 5kpy) containing 

tertiary interactions, IsRNA1 provides improved 3D structure predictions of RMSDs of 

16.27 Å and 5.01 Å relative to 20.37 Å (23.48 Å) and 6.06 Å (6.06 Å) for the best model 

from all the groups (from the Chen group), respectively. To some extent, the overall 

performance of IsRNA1 (an average RMSD of 10.48 Å for the 21 challenges) compared to 

the best model from all the groups (an average RMSD of 6.59 Å for the 21 challenges) is 

expected, because template-based algorithms, template-free approaches, data-driven models, 

and even human efforts are involved in the submissions by all the groups and the 

performance of the different approaches varies for the different challenges85–88.

To explore the underlying reasons for the fair performance of IsRNA1 on 3D structure 

prediction of RNA-Puzzles challenges, we analyze the sampling (whether the near-native 

conformations are sampled) and scoring (whether the native/near-native structures are 

identified as top candidates) issues. Specially, the best candidate of the lowest RMSD in the 

top 10% low-energy structures, which were used for conformational clustering, was 

examined (see Table 2). For 11 (17) of the 21 challenges, IsRNA1 can sample better or 

comparable conformations (ΔRMSD < 0.5 Å) relative to the best model from all the groups 

(from the Chen group) in the top 10% low-energy structures. For the 10 challenges where 

IsRNA1 fail to sample conformations close to the best model from all the groups, there are 

five cases of quite large size and complicated topologies, including puzzle #5 with 188 nts, 

#6 with 168 nts, #8 with 96 nts, #10 with 96 nts, and #12 with 125 nts. For these large-size 

RNAs, the sampling issue is challenging even with the 2D structure as the input constraint 

for the simulations.

Blind screening of good predictions in RNA-Puzzles by IsRNA1 protocol.

As indicated by the blind test results in RNA-Puzzles85–88, the performances of 

computational approaches in blind tests/challenges vary with RNAs. For instance, for the 

recent two challenges #20 and #21, the INFwc values of the corresponding 68 and 41 
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submitted 3D models from all the participating teams vary in the range [0.0, 1.0] and [0.39, 

0.91], respectively, and RMSDs vary in the range [4.7, 25.4] Å and [3.8, 18.1] Å, 

respectively. Thus, if the target native structure at atomic resolution is experimentally 

unavailable, a filtering protocol to identify good predictions from various candidate 

structures generated by different computational approaches would be highly valuable. To 

this end, a blind screening protocol based on IsRNA1 model was developed here to 

recognize good predictions of relatively lower RMSDs and higher INFWC values from the 

structure pool without the knowledge of the native structures.

Using the 3D candidate structures as the initial structures and their own 2D structures as 

constraints, 5 duplicates (with different initial velocities) of short 0.5-ns conventional MD 

simulations were run in the IsRNA1 model for each 3D model (simulation details are given 

in SI Table S7). In such a way, not only the candidate structure but also its neighboring 

conformations having an RMSD of < 5 Å from the concerned structure were collected to 

calculate a conformational ensemble-averaged energy for blind assessment of a candidate 

structure. Compared with energy evaluation (scoring function) based on a single candidate 

structure, the conformational ensemble-averaged energy as a filtering protocol has two main 

advantages. First, it can eliminate the possible deviations/errors of local geometries and/or 

possible steric overlaps between atom contacts. Second, it can possibly capture the effect of 

loop flexibility.

The IsRNA1 blind screening protocol above was tested using the RNA-Puzzles challenges 

(details for challenges are summarized in SI Table S11). For instance, for the 41 submitted 

predictions in the recent challenge #21 shown in Fig. 6A, Pearson correlations between the 

conformational ensemble-averaged energy E and RMSD (R = 0.33) and between E and 

INFWC (R = −0.30) are calculated. As the value of INFWC is directly related to the 2D 

structure of the model, a higher INFWC value means a better predicted 2D structure and a 

roughly lower folding free energy (a negative correlation coefficient between E and INFWC). 

Therefore, the quality of a 3D model measured by INFWC, an assessment of the 2D structure 

prediction, is expected to be directly coupled with the energy E. As shown in the bottom 

panel of Fig. 6B, the Pearson correlation coefficient R(E, INFWC) of the submitted models 

in 10 typical RNA-Puzzles challenges ranges from −0.23 to −0.86, and the average 

correlation is −0.59. Complete results for all the challenges are given in the SI Table S11. 

The strong correlations R(E, INFWC) indicate that, based on the IsRNA1 energies, good 

predictions of relatively higher INFWC values or of more accurate 2D structures can be 

selected/filtered from the submitted candidate models.

Here, we consider our algorithm as a classification problem to filter good structures of lower 

RMSDs from a pool of candidate structures. Specifically, the candidate models are classified 

into good and poor classes based on the RMSDs relative to their native structures. The good 

class contains the best model of the lowest RMSDmin as well as other comparable models of 

RMSDs not greater than RMSDmin + 5 Å (see Fig. 6A), and the remaining models are 

considered as the poor class. In this way, on average about 35% of the candidate models are 

classified as good models for all the 19 RNA-Puzzles challenges. While the IsRNA1 

protocol predicts the class of a model according to a predefined energy threshold 0.975 * 

Emin. The model of the lowest energy Emin and those of energies Ei ≤ 0.975 * Emin are 
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predicted into the good class, and the remaining models are predicted into the poor class (see 

Fig. 6A). On average, about 34% of the candidate models are predicted as good structures 

according to the above energy-based classification (see SI Table S11 for details). The 

performance of the above IsRNA1-based screening protocol was quantified using sensitivity 

TPR and precision PPV (see the top panel in Fig. 6B). For example, for challenge #21 

illustrated in Fig. 6A, 39% of the 46 models (of RMSDs 3.83~18.09Å) are classified as good 

models (with RMSDs from 3.83 to 7.24 Å), and 20% of the models are predicted as good 

models by our IsRNA1-based screening protocol. The sensitivity score TPR=0.44 means 

that 44% of true good models are selected by the filtering protocol and the precision 

PPV=0.89 means that 89% of the IsRNA1-predicted good models are true good ones. For 

the 10 RNA-Puzzles challenges shown in Fig. 6B, moderate (TPR=0.4) to high (TPR=1.0) 

sensitivity values are observed, while the precision also ranges from the moderate 

(PPV=0.33) to high (PPV=1.0) values except for challenge #5 (PPV= 0.18 and TPR= 1.0). 

And the average sensitivity and precision are TPR= 0.65 and PPV= 0.62, respectively. 

Overall, the results indicate that the IsRNA1-based blind screening protocol can identify 

good models of relatively lower RMSDs (good 3D structures) and relatively higher INFWC 

values (good 2D structures) from a pool of candidate models without knowledge of the 

native structures.

4. DISCUSSION

Over the years, remarkable advances in the development of CG models for RNA structure 

prediction have been made8,11, however, the challenges for large RNAs of complicated 

topologies remain. An accurate scoring function or force field for CG modeling of large 

RNAs of complicated topologies is required not only for the evaluation of the structural 

candidates, but also for guiding effective sampling. Here, based on MD simulation for 

conformational sampling and statistical potentials extracted from the known RNA structures 

as the force field, we developed an upgraded CG model, the IsRNA1 model, suitable for 

large and complicated RNA studies. The IsRNA1 model has several advantages.

1. Instead of simple harmonic potentials in conventional force fields functions for 

local structural variables (including bond stretching, bond angle, and torsion 

angle), a set of much more sophisticated energy functions are used to capture a 

broader conformational sampling for the backbone, which is particularly 

valuable for modeling of large and complicated RNAs.

2. The simulated reference state approach for the statistical potential in IsRNA1 

allows the consideration of correlations between different energy terms as well as 

the inherent chain connectivity and the excluded volume effects.

3. Because the energy function is extracted from simulated conformational 

distributions (over the energy landscapes), the IsRNA1 energy function may 

account for both native and nonnative interactions.

4. Compared with the fixed ideal A-form helix in many template-based 

approaches48,85,91, a set of combined energy functions in Eq. (2) can accurately 

describe canonical base-pairing and base-stacking interactions for the sampling 

of flexible helical conformations.
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5. The MD simulations, including conventional, simulated annealing, and replica-

exchange techniques, in IsRNA1 model is implemented in the open source 

software LAMM PS47 (with modified source code), and a variety of restraints 

can be readily incorporated into the conformational sampling through the 

simulation platform.

Taken together, these advantages make the IsRNA1 a promising CG model to study the 

folding of RNAs of relatively large size and complicated structural topologies.

The IsRNA1 model was extensively tested on de novo folding of small RNAs, tertiary 

structure folding for relatively large RNAs given the 2D structures, 3D structure prediction 

for a large-scale benchmark dataset, and blind screening of 3D structural candidates. In 

detail, a blind screening protocol based on the IsRNA1 force field can identify good 3D 

structures of relatively lower RMSDs and higher INFWC values from a pool of structural 

candidates predicted by different computational models. These results support the validity of 

the IsRNA1 force field as a potentially reliable scoring function. Based on the enhanced MD 

simulations to sufficiently sample the conformational space, the IsRNA/IsRNA1 model can 

de novo fold 15 small RNA molecules (≤ 36 nts) into the near-native structures with an 

average RMSD of 2.29 Å, and fold 65 medium-sized RNAs (22-78 nts) into the native-like 

3D structures with an average RMSD of 5.93 Å given the native 2D structure constraints. 

Compared with previous CG models, though different models show different performances 

for the different RNA structures, IsRNA1 shows its promise to provide improved predictions 

(as indicated by the lower average RMSD in Fig. 4) for RNAs of relatively large size (>40 

nts) and more complicated topology, such as long-range tertiary interactions, while 

maintaining similar overall performance to other models for other RNAs, including small 

stem-loop and H-type pseudoknot structures. These results confirm the importance of the 

use of rigorous reference states and accurate descriptions of base-pairing and base-stacking 

interactions in the development of CG force fields.

Using templated-based 3D structures (with 2D structures as input) as initial states for the 

simulations, the Vfold3D/VfoldLA-IsRNA1 pipeline can improve the sampling efficiency in 

the simulations toward the native structure and refine the predictions by Vfold3D/VfoldLA 

for relatively large RNAs. Based on 130 RNAs of relatively large size (40-161 nts) and 

different structural topologies, a large-scale benchmark test for RNA 3D structure 

predictions by the Vfold3D/VfoldLA-IsRNA1 pipeline further confirms the improved 

performance of the IsRNA1 model for large RNAs as compared with other existing CG 

models. Specifically, for large stem-loop structures, multi-way junction structures, and 

RNAs containing long-range tertiary interactions, IsRNA1 provides improved predictions 

with lower RMSDs, higher INFs, and much lower clash scores, while the intricate 

interaction networks in loops pose a challenge for further improvement of 3D structure 

prediction. Moreover, for the real-world challenges in RNA-Puzzles, IsRNA1 is able to 

sample improved or comparable results than the best predictions of all the submissions from 

the different approaches for 8 of 21 challenge problems solely based on CG MD simulations 

with 2D structures as constraints, and identify the near-native folds for 8 cases. In summary, 

with the continuous improvements in force field, sampling method, and model selection 
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strategy, the current IsRNA1 model may provide a useful new approach for RNA structure 

prediction.

Limitations and future improvements of the IsRNA1 model.

Future improvements in IsRNA1 would focus on the further refinement of non-canonical 

base-base and base-backbone interactions, the design of more efficient conformational 

sampling techniques for large RNA molecules, and the consideration of the effects of in vivo 
environment.

First, unlike high-resolution CG models, such as SimRNA, the 2-bead CG representation for 

pyrimidine bases in the current IsRNA1 model cannot fully capture the various non-

canonical base-pairing interactions in the cis-/trans-conformations. Thus, for many small 

stem-loop and H-type pseudoknot structures involving non-canonical interaction networks in 

the loops, the IsRNA1 model performs worse than SimRNA. To circumvent this limitation in 

the future, in the next generation of the IsRNA/IsRNA1 model, a more accurate CG 

representation is required to enable more accurate descriptions of various non-canonical 

base-pairing interactions. Moreover, in construction of an accurate force field for both 

canonical and non-canonical base-pairing interactions, we may consider the statistical 

frequency and physical strength simultaneously when parameterizing the energy functions, 

especially for the rare non-canonical interactions.

Second, due to the lack of atomic details and the simplification of the free energy landscape 

in the CG representation, simulations in CG model may lead to mispredicted configurations 

for junction loops and misplaced loop segments in complicated structures. A possible 

remedy for future improvement would be to resample the misfolded segments at the all-atom 

level with sufficient conformational sampling, such as the stepwise Monte Carlo method 

with a unique add-and-delete move set to predict non-canonical interactions92.

Third, for RNA puzzles of large size and complicated topology, CG MD simulations in the 

IsRNA1 model may suffer from insufficient conformational sampling even with 2D structure 

constraints. In such cases, integration of various experimental data93, such as properly 

interpreted SHAPE reactivity29, multidimensional chemical probing data94, cryo-EM 

maps95, into the IsRNA1 model is feasible and may significantly improve the sampling 

efficiency and accuracy for 3D structure prediction.

Finally, in the future development of the model, we would further calibrate the energy 

function using experimental thermodynamic data such as Turner parameters for RNA helices 

and simple loops. If successful, we can apply the model to explore the folding kinetics from 

extended coil state for large RNAs and study the folding thermodynamics from the 

nucleotide sequence.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of the coarse-grained representation in IsRNA1 model and the structural variables 

used in the energy functions for canonical base-pairing interactions. (A) The backbone is 

defined by two beads P and S located at the P and C4’ atoms, respectively, and (B-D) the 

purine and pyrimidine bases are represented by three and two beads positioned at the center-

of-mass of the grouped heavy atoms, respectively. Three canonical base-pairing interactions 

are accurately described by the combined covalent energy functions based on the selected 

reaction coordinates: (B) G-C base pair with ϕ1 = ϕ(RC − GO − GN− CN) and ϕ2 = ϕ(GN − 

GO − CN − Yc), (C) A-U base pair with ϕ1 = ϕ(RC − Ac − AN − UO) and ϕ2 = ϕ(AC − AN − 

UO − YC), and (D) G-U base pair with ϕ1 = ϕ(RC − GO − GN − UO) and ϕ2 = ϕ(GN − GO − 

UO − YC).
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Figure 2. 
The flowchart of the parameterization procedure for energy functions in the IsRNA1 model.
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Figure 3. 
De novo folding of small RNA molecules with simple topology into native structures by the 

original IsRNA model. For comparison, the root-mean-square deviation (RMSD) data from 

the original works in Ren’s model and HiRE-RNA model are also given. For the SimRNA 

model, the top 1 prediction given by the SimRNAweb (https://genesilico.pl/SimRNAweb/) 

using the default parameters is chosen. The RMSDs are calculated over all the CG beads.
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Figure 4. 
Tertiary structure folding of medium size RNAs (22~78 nts) with the assistance of 2D 

structures by the IsRNA-IsRNA1 pipeline (top 1 structure only). Performances on different 

RNA groups classified by the sequence length and 3D structural topologies are summarized 

in terms of average RMSDs. The numbers of cases involved in each group are given in 

parentheses, and the standard deviations serve as error bars. For SimRNA, the data are 

collected from the original paper, if available. Otherwise, the top prediction given by 

SimRNAweb (https://genesilico.pl/SimRNAweb/) using the default parameters is chosen. 

Calculations of RMSD are based on all-heavy atoms. Complete detailed data are given in the 

SI Table S8.
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Figure 5. 
Predicted 3D structures by IsRNA1 model for several representative RNA molecules. (A) 

78-nt HIV-1 dimerization initiation site in the extended-duplex dimer77 (PDB ID: 2d1a), (B) 

77-nt HCV IRES domain II78 (PDB ID: 1p5p), (C) 57-nt rRNA fragment in the S15-rRNA 

complex79 (PDB ID: 1dk1), (D) 21-nt RNA substrate and 92-nt RNA hairpin ribozyme 

complex80 (PDB ID: 1m5o), (E) 77-nt PreQ1-ll riboswitch83 (PDB ID: 5d5l), and (F) 74-nt 

twister ribozyme84 (PDB ID: 4qjh). The predicted structures of lowest RMSD from the top 3 

predictions given by IsRNA1 (in red) are superposed onto the native structures (in blue). 
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Secondary structures used to impose constraints on IsRNA1 modeling are also. RMSDs over 

all heavy atoms are 4.12 Å, 6.89 Å, 5.37 Å, 5.99 Å, 6.54 Å, and 4.20 Å, respectively.
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Figure 6. 
Blind screening of good predictions in RNA-Puzzles challenges by IsRNA1 protocol 

without knowledge of native structures in prior. (A) The plot of RMSDs to energies given by 

IsRNA1 (E, with e.u. as energy unit) for all the submitted models in challenge #21, along 

with the INF for canonical base-pairing interactions (INFWC) displayed in a color map. The 

RMSD threshold (RMSDmin + 5 Å) used to classify relatively good predictions and the 

predefined energy value (0.975 * Emin) used to predict good models are shown in magenta 

dash lines, where RMSDmin is the lowest RMSD of all submitted structures relative to the 

native structure, and Emin is the lowest energy evaluated by IsRNA1 protocol from all the 

predictions. TP, TN, FP, and FN are the numbers of true positives, true negatives, false 

positives, and false negatives, respectively. (B) Performances of the IsRNA1 protocol in 

blind screening of the submitted models in a series of RNA-Puzzles challenges without prior 

knowledge of the native structures are characterized by the Pearson correlation coefficient 

R(E, INFWC) between the evaluated energies and INFWC values (bottom panel), and by 

sensitivity TPR=TP/(TP+FN) and precision PPV=TP/(TP+FP) (top panel).
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Table 1.

Benchmark test results for 3D structure prediction by IsRNA1, SimRNA, and iFoldRNA for 130 relatively 

large RNAs (40-161 nts) with native 2D structures as constraints. Average/median (in boldface) structural 

quality assessments in terms of RMSD, INFall, and clash score are shown. The results are classified according 

to the structural topologies for the top-1 prediction and the best of the top-3 predictions (if available). The 

numbers of the test cases are given in parentheses. The prediction results for iFoldRNA and SimRNA were 

collected from iFoldRNAv2 webserver (https://dokhlab.med.psu.edu/ifoldrna/#/) and SimRNA program 

provided by authors (https://ftp.users.genesilico.pl/software/simrna/) using default parameters, respectively. 

RMSDs were calculated over all-heavy atoms. INFall is the Interaction Network Fidelity for all the canonical 

and non-canonical base-pairing and base-stacking interactions.

Dataset and folding model Top 1 prediction Best of top 3 predictions

RMSD (Å) INFall Clash Score RMSD (Å) INFall Clash Score

Stem-loop

IsRNA1 (44) 5.79/5.08 0.80/0.82 2.0/1.4 5.15/4.57 0.81/0.82 1.8/1.3

SimRNA (44) 7.21/5.49 0.77/0.79 129.4/128.5 6.58/5.06 0.77/0.79 128.5/128.3

iFoldRNA (32) 7.90/5.57 0.70/0.73 153.2/143.1 7.29/5.17 0.71/0.73 151.4/143.1

Multi-way junction

IsRNA1 (43) 12.93/11.33 0.71/0.73 4.2/2.9 10.88/10.6 0.72/0.73 4.7/2.8

SimRNA (43) 14.91/13.36 0.69/0.69 143.3/144.4 12.42/11.48 0.69/0.70 143.7/144.4

iFoldRNA (34) 15.85/14.57 0.64/0.65 180.7/181.0 13.98/12.74 0.64/0.64 183.7/183.8

Tertiary interaction

IsRNA1 (43) 9.89/8.16 0.74/0.73 5.7/4.8 9.05/7.62 0.75/0.75 5.7/4.8

SimRNA (43) 11.75/10.91 0.73/0.73 146.5/150.7 10.28/8.94 0.71/0.72 147.9/144.9

iFoldRNA (29) 11.60/11.76 0.67/0.69 177.4/178.9 11.22/11.48 0.66/0.68 175.2/180.0

All

IsRNA1 (130) 9.51/8.12 0.75/0.75 4.0/2.7 8.34/7.13 0.76/0.76 4.07/2.45

SimRNA (130) 11.26/10.95 0.73/0.73 139.7/140.0 9.73/8.92 0.72/0.73 139.9/139.6

iFoldRNA (95) 11.87/11.37 0.67/0.68 170.4/174.6 10.88/10.46 0.67/0.68 170.2/173.1

Multiple chains

IsRNA1 (35) 8.72/7.93 0.78/0.79 3.4/2.3 7.78/6.24 0.79/0.79 3.5/2.4

SimRNA (35) 12.10/12.91 0.77/0.76 137.7/136.7 10.22/9.60 0.77/0.77 138.4/137.8
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Table 2.

The results for the IsRNA1-predicted RNA 3D structures for RNA-Puzzle challenges using sequences and the 

native 2D structures as input. The all heavy-atom RMSDs for the best candidates from the top 10% lowest 

energy structures (column “Best of top 10% structure”) and from the top 5 predictions by IsRNA1 (column 

“Best of top 5 predictions”) are shown for each challenge. For comparison, the best RMSDs for all the 

submissions (column “Best of all groups”) and for the Chen group submissions (column “Best of Chen 

group”) are also given. Predictions with RMSD less than or comparable to (ΔRMSD < 0.5 Å) the best of Chen 

group are marked in boldface, and those better than or comparable to the best of all the groups are printed in 

italics.

Puzzle (PDB id) Length (nts) Topology Best of all 
groups

Best of Chen 
group

Best of top 10% 
structures

Best of top 5 
predictions

1 (3mei) 46 stem-loop 3.41 4.33 2.33 3.12

2 (3p59)
a 100 stem-loop 2.50 2.83 2.12 2.23

3 (3owz) 84 3-way junction 7.01 7.01 5.30 5.57

4 (3v7e)
b 126 tertiary interaction 3.35 3.35 2.43 3.35

5 (4p8z) 188 tertiary interaction 8.97 25.61 24.54 27.23

6 (4gxy) 168 tertiary interaction 11.60 22.13 23.94 34.22

7 (4r4p) 185 3-way junction 20.37 23.48 14.68 16.27

8 (4l81) 96 tertiary interaction 4.80 11.29 12.43 14.25

9 (5kpy)
c 71 tertiary interaction 6.06 6.06 4.32 5.01

10 tBox (4lck) 96 stem-loop 6.02 13.21 9.16 14.10

11 X-ray (5lys) 57 stem-loop 4.99 4.99 5.75 8.33

12 (4qlm) 125 tertiary interaction 10.06 16.06 12.15 14.99

13 71 tertiary interaction 5.55 6.55 4.67 7.61

14 Bound (5ddp) 61 3-way junction 5.12 7.64 6.28 6.97

14 Free (5ddo) 61 3-way junction 6.89 9.36 7.66 10.13

15 (5di4) 68 3-way junction 7.12 8.51 6.61 7.26

17 (5k7c) 62 tertiary interaction 7.16 9.45 10.67 11.78

18 (5tpy)
d 71 tertiary interaction 3.21 3.74 2.72 3.87

19 (5t5a) 62 3-way junction 5.52 5.52 4.08 5.19

20 (5y85) 68 4-way junction 4.70 13.37 11.17 13.56

21 (5nz6) 41 pseudoknot 3.93 3.83 4.01 5.02

Average 6.59 9.92 8.43 10.48

a
: 3D coordinates of the nucleotides in the four inner strands were provided and kept rigid in the simulation.

b
: template extracted from 3IQP was used for nucleotides 1-48, 87-102, and 113-126.

c
: template extracted from 3DS7 was used for nucleotides 19-27 and 47-55.

d
: template extracted from 4PQV was used for nucleotides 1-24 and 42-50.
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