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A B S T R A C T   

Background: Available national public data are often too incomplete and noisy to be used directly to interpret the 
evolution of epidemics over time, which is essential for making timely and appropriate decisions. The use of 
compartment models can be a worthwhile and attractive approach to address this problem. 
The present study proposes a model compartmentalized by sex and age groups that allows for more complete 
information on the evolution of the CoViD-19 pandemic in Italy. 
Material and methods: Italian public data on CoViD-19 were pre-treated with a 7-day moving average filter to 
reduce noise. A time-varying susceptible-infected-recovered-deceased (SIRD) model distributed by age and sex 
groups was then proposed. 
Recovered and infected individuals distributed by groups were reconstructed through the SIRD model, which was 
also used to simulate and identify optimal scenarios of pandemic containment by vaccination. The simulation 
started from realistic initial conditions based on the SIRD model parameters, estimated from filtered and 
reconstructed Italian data, at different pandemic times and phases. 
The following three objective functions, accounting for total infections, total deaths, and total quality-adjusted 
life years (QALYs) lost, were minimized by optimizing the percentages of vaccinated individuals in five 
different age groups. 
Results: The developed SIRD model clearly highlighted those pandemic phases in which younger people, who had 
more contacts and lower mortality, infected older people, characterized by a significantly higher mortality, 
especially in males. Optimizing vaccination strategies yielded different results depending on the cost function 
used. As expected, to reduce total deaths, the suggested strategy was to vaccinate the older age groups, whatever 
the baseline scenario. In contrast, for QALYs lost and total infections, the optimal vaccine solutions strongly 
depended on the initial pandemic conditions: during phases of high virus diffusion, the model suggested to 
vaccinate mainly younger groups with a higher contact rate. 
Conclusion: Because of the poor quality and insufficient availability of stratified public pandemic data, ad hoc 
information filtering and reconstruction procedures proved essential. 
The time-varying SIRD model, stratified by age and sex groups, provided insights and additional information on 
the dynamics of CoViD-19 infection in Italy, also supporting decision making for containment strategies such as 
vaccination.   

1. Introduction 

Since December 2019, a virus named severe acute respiratory syn-
drome coronavirus 2, SARS-CoV-2, has rapidly affected Wuhan, China, 
and by March 2020 had already spread to nearly 200 countries [1,2]. 
WHO declared a global pandemic on 11 March 2020 [3], in this way, 
CoViD-19 quickly became one of the major case studies in all scientific 

fields: the medical one first of all, the biostatistical and engineering one, 
and obviously the strategic-political one as a consequence. 

CoViD-19 disease manifests itself with symptoms including fever, 
shortness of breath and altered sense of taste and smell, that could 
degenerate to a more severe state as pneumonia [4]. In general these 
symptoms and their severity have been observed to increase with age. In 
fact, mortality and lethality increased in age-dependent manner and 
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were higher in the male sex [5]. 
Given the high contagiousness and spread, the efforts of the scientific 

community were soon directed toward improving etiological and ther-
apeutic knowledge to diagnose and treat patients with CoViD-19. Un-
derstanding pandemic trends and the impact of protective measures has 
also been of considerable interest. Here, compartmentalized models and 
artificial intelligence have been the most widely used techniques [6–8]. 

Compartment models are the simplest models in the mathematical 
study of the dynamics of infectious diseases. They consider the average 
behavior of the system at the population level [9]. More specifically, it is 
assumed that the population is divided into compartments and that 
everyone in the same compartment has the same characteristics [10]. 

With this approach, analyzing and comparing the pandemic trend in 
different contexts is quite simple [11]. Many models, which include 
compartments of susceptible (S), infected (I), recovered (R), deceased 
(D) and exposed (E) individuals, such as the classic SIR, SIRD, SEIR 
models, but also more sophisticated compartmentalisations, have been 
implemented, depending on the type of information available 
[6,12–15]. 

This type of model can also be used to simulate pandemic contain-
ment strategies, such as lockdown schemes and/or vaccination plans. In 
particular, by stratifying the population into distinct groups, it is 
possible to understand on which population groups and to what extent 
to act, in order to achieve predefined targets, in line with political and/ 
or health choices. To achieve these objectives, the optimal decision must 
be made, with respect to some criterion, from a set of available alter-
natives. From a mathematical point of view, this can be reached by 
minimizing an objective function that takes into account health, eco-
nomic and/or social costs [16]. Such a function is called a cost or loss 
function. 

Pandemic-trend models frequently use national public data. How-
ever, public data were affected by high variability and uncertainty. In 
particular, the number of new infected individuals depends on testing 
procedure, while the number of new deaths is affected by the delays in 
their communication. Moreover, the serological test and the nasal swab, 
both PCR and antigen, have a margin of error, therefore we do not have 
reliable estimates on the population that has been affected by the 
pandemic infection, especially at the beginning of the pandemic 
[17–19]. Finally, the actual infected population is underestimated due 
to the presence of many asymptomatic cases [20–22]. 

This study first describes a model-based approach to capture more 

complete information on the evolution of the pandemic by sex and age 
group. The model was designed on Italian public data, from which is 
possible to obtain stratified information on the age and sex of new 
infected and dead people. This information alone prevents us from 
exploiting the potential of compartment models that take into account 
gender and age group, due to the lack of information on the sex and age 
stratification of daily recovered individuals who therefore need to be 
estimated. 

Based on the available and estimated Italian data, a susceptible- 
infected-recovered-deceased (SIRD) model with time-varying parame-
ters, accounting for sex and age groups, is proposed to interpret the 
pandemic trend and to optimize mitigation plans such as vaccination. 

2. Material and methods 

2.1. Epidemic model 

A time-varying epidemic model has been developed, structured by 
population groups. Because of the non-negligible proportion of infected 
individuals who die from the disease, the structure chosen for the model 
was of the SIRD type to account for the evidence that an infected person 
can either recover or die. 

Given a generic partition of the entire population into Ng distinct 
groups, the group-distributed SIRD model, sketched in the right box of 
Fig. 1, can be mathematically expressed as: 

dSk(t)
dt

= − bk(t)Sk(t)
I(t)
N

k = 1, 2,⋯,Ng (1)  

dIk(t)
dt

= bk(t)Sk(t)
I(t)
N

− gk(t)Ik(t) − mk(t)Ik(t) (2)  

dRk(t)
dt

= gk(t)Ik(t) (3)  

dDk(t)
dt

= mk(t)Ik(t) (4)  

where 
Sk(t), Ik(t), Rk(t) and Dk(t) (k = 1,2,…,Ng) are the susceptible, 

infected, recovered and deceased individuals for the kth group, 
respectively; 

Fig. 1. Orange box: SIRD distributed compartment model at each time point t; susceptible (Sk), infected (Ik), recovered (Rk), deceased (Dk) of kth group. Light blue 
box: vaccinated people of kth group (Vk). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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bk(t), gk(t) and mk(t) are the time-varying model parameters thus 
defined: bk(t) = ck(t)β, represents the product between the average 
number of contacts per time unit, ck(t), of a subject belonging to group k, 
and the probability, β, of the infection transmission by contact between a 
susceptible and an infected individual, while gk(t) and mk(t), are the 
group-dependent recovery and death rate, respectively. 

Note how equations (1) and (2) account for infectious contacts 
among groups through the total number of infected individuals, I(t) =
∑

kIk(t), interacting with susceptible individuals. 
The box to the left of the SIRD model, in Fig. 1, represents the use of 

the model in an application for a mitigation strategy that can be 
implemented, for example, with a vaccination program, as will be 
detailed below. Clearly, in this case, equations 1–4 will have to be 
coherently rewritten to account for the added box that, for each group k, 
subtracts from eq.1 the quantity vk(t)Sk(t) and introduces the following 
new differential equation: 

dVk(t)
dt

= vk(t)Sk(t) (5)  

where Vk(t) and vk(t) represent the vaccinated individuals and the 
vaccination rate of group k, respectively. 

To relate the group-distributed SIRD model back to the classical 
global population model, just apply the following equivalences: 

b(t)S(t) =
∑Ng

k=1
bk(t)Sk(t)

g(t)I(t) =
∑Ng

k=1
gk(t)Ik(t)

m(t)I(t) =
∑Ng

k=1
mk(t)Ik(t)

(6)  

where b(t) = c(t)β, g(t), and m(t) are the global population model pa-
rameters, and c(t) is the overall number of contacts. A similar equiva-
lence applies to the vaccination compartment. 

Based on equations 1–4 of the previous SIRD model, the group- 
dependent effective reproduction number, Rtk(t), can be expressed as: 

Rtk(t) =
−

dSk(t)
dt

dRk(t)
dt +

dDk(t)
dt

=
bk(t)Sk(t) I(t)

N

gk(t)Ik(t) + mk(t)Ik(t)
(7) 

From eq. (7) it is easy to observe that Rtk is a time-varying dimen-
sionless ratio, representing the number of people (for each kth group) 
who become infected, per infected person at time t [23]. When Rtk > 1, 
the number of positive cases in that group will continue to increase, but 
when Rtk < 1, the infected cases in the group will tend to zero [24,25]. 

2.2. Data collection 

National public data from Italian Istituto Superiore di Sanità (ISS), 
which publishes an approximately weekly bulletin, and from the Prote-
zione Civile (PrCi), which publishes daily data, were used to estimate the 
parameter of the SIRD model [26,27]. The age, stratified in 10-year 
group, and sex of the new infected and dead individuals were extrac-
ted from the ISS bulletins. Additional information was extracted from 
the PrCi database which provides statistics regarding the total number of 
infected, dead and recovered individuals, as well as other useful data 
such as the number of nasal swabs and hospitalizations. 

Analysis of this data requires special care, as the two data sources 
may not be perfectly synchronized. In addition, both sources are quite 
inaccurate, especially in the early period of the pandemic, due to lack of 
knowledge, low level of screening, and low accuracy of early swabs. 
Finally, PrCi daily data show high variability due to both delays in 
reporting deaths and test results and the difference between the number 
of tests performed on weekdays and holidays. 

The time series analyzed in this study range from February 24, 2020, 

to January 23, 2021. 

2.3. Data pre-processing 

To obtain daily data grouped by gender and age, the PrCi daily data 
were distributed into groups according to the available ISS quasi-weekly 
distributions. Specifically, the distribution by sex and age groups, 
applied to each daily data, was that of the quasi-weekly bulletin 
including each specific day considered. 

Then, PrCi data were filtered to reduce noise and excess variability, 
using a 7-day moving average filter. The first six days of pandemic were 
averaged over a shorter period, beginning with day 1. The number of 
points in the moving average window is a critical issue. A wider window 
would allow a greater noise filtering effect, but this may result in the loss 
of capturing significant rapid changes of the pandemic data. Moreover, 
one week roughly corresponds to the mean value of the incubation 
period of CoViD-19 [28]. Therefore, a 7-day windows can be taken as a 
fair smoothing compromise to account also for fluctuations in individ-
ually dependent incubation period. 

2.4. Discrete-time data for the SIRD model 

2.4.1. Publicly available Italian data 
The pre-processed discrete data were used to implement the discrete 

time equations. 
In particular, given the sampling time T = 1 day, useful available 

data at the discrete time j =
def 

jT (j = 1,2, …, Nd; Nd = number of days) 
were:  

• number of infected individuals I(j);  
• number of group-distributed new infections Ik,new(j);  
• total of recovered individuals up to j, R(j);  
• total group-distributed deaths up to j, Dk(j); 

where k ranges between 1 and the number, Ng, of groups considered, 
Ng = 20 (i.e. 10 age groups per gender). 

Hence, the following associations allow the model equations 1–4 to 
be partly re-written in discrete time: 

Sk(t) ≡ Sk(j) = Sk(j − 1) − Ik,new(j) (8)  

where Sk(0) = Nk − Ik,new(0) and Nk is the total population in kth group 

dSk(t)
dt

≡ − Ik,new(j) (9)  

dDk(t)
dt

≡
ΔDk(j)

T
=

Dk(j) − Dk(j − 1)
T

(10) 

To fully define the discrete-time group-distributed equations of the 
SIRD model, it is necessary to know the group distribution of the 
recovered individuals, Rk(j), and infected individuals, Ik(j). 

2.4.2. Estimates of group-distributed recovered and infected individuals 
The estimates of group-distributed recovered individuals were based 

on the assumption of equal removal (i.e. recovery plus death) rate for all 
groups, that is: 

g(j)+m(j) =
ΔR(j) + ΔD(j)

I(j)
=

ΔRk(j) + ΔDk(j)
Ik(j)

=
Rk(j) − Rk(j − 1) + ΔDk(j)
Nk − Sk(j) − Rk(j) − Dk(j)

(11) 

Eq. (11) allows to estimate recursively the unknown term Rk(j), for 
each k group, once the initial value Rk(0) is known and must of course be 
nil, as: 
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Rk(j) =
Rk(j − 1) + [g(j) + m(j) ]∙[Nk − Sk(j) − Dk(j) ] − ΔDk(j)

1 + g(j) + m(j)
(12) 

Once Rk(j) was estimated, the number of infected individuals in the 
kth group was calculated as: 

Ik(j) = Nk − Sk(j) − Rk(j) − Dk(j) (13)  

2.4.3. Parameter estimation 
Model parameters, daily distributed across Ng groups, are estimated 

using a moving average approach, such as: 

bk(j) =
N
q
∙
∑

Ik,new(q)
Sk∙I(q)

(14)  

gk(j) =
1
q
∙
∑

ΔRk(q)
I(q)

(15)  

mk(j) =
1
q
∙
∑

ΔDk(q)
I(q)

(16)  

where: q > 1 is an integer numbers of days, representing the moving 
average window length; I(q) and Sk∙I(q) are the mean values of I and the 
product Sk∙I, respectively, over the interval [j–q + 1, j]; 

∑
Ik,new(q), 

∑

ΔRk(q) and 
∑

ΔDk(q) are the sums of new infected, recovered and 
deceased individuals, respectively, detected in the kth group over the 
same interval. 

2.5. Simulation of a vaccination program 

The SIRD model was applied to show the impact of alternative 
vaccination plans by simulating various scenarios. Each of these sce-
narios considers a specific date chosen during the actual course of the 
pandemic as the starting point of the simulation; therefore, both the 
conditions and model parameter values set at the beginning of the 
simulation correspond to a real-world context. The expected length of 
time to complete the simulated vaccination plan was set at 60 days. At 
the end of this period, the model response was studied for an additional 
60 days to observe the effect of the considered vaccination plan on the 
time course of the pandemic once the vaccination phase was completed. 
A total number of vaccine doses equal to 20% of the Italian population 
was taken. Vaccine administration was assumed to be evenly distributed 
over the 60-day period (constant mitigation rate), resulting in approxi-
mately 200,000 daily doses administered. This is just one of the count-
less possible simulations we have chosen to show the potential of the 
age-distributed SIRD model in a realistic situation, certainly not 
exhaustive. 

Only 5 age groups (0–19 years, 20–39 years, 40–59 years, 60–79 
years, >79 years) were considered because people within these groups 
showed a fairly uniform lethality. The influence of the sex was not 
considered. Simulations return the percentage of vaccines to be 
administer in each age group. 

During the simulation, the parameters bk(t), gk(t) and mk(t) were 
estimated on a day-by-day basis using the moving average approach 
described above, where k ranges from 1 to 5. 

Vaccination outcomes were assessed by considering three cost 
functions to be minimized: the number of individuals who have been 
infected, the number of deaths, and the number of quality-adjusted life 
years (QALYs) lost [29]. The QALY is a measure of the burden of disease 
often used in cost-utility analyses to guide decisions for the allocation of 
limited health resources. Since health is a function of length and quality 
of life, the QALY combines these attributes into a single numerical value. 
This value is obtained by multiplying the expected life years by a nu-
merical coefficient between 0 and 1, which takes into account the weight 
of health-related quality of life. This coefficient, commonly referred to as 
the utility score, has been assigned different values for each age group, 
based on data from the literature [29,30]. 

Exhaustive full-grid simulations were performed reproducing all 
possible combinations of vaccination percentages for each group at a 2% 
step and the minimum was detected for each cost function. 

The Matlab software package, version R2019b, was used for the 
numerical implementation of the SIRD model. 

3. Results 

3.1. Data pre-processing 

Fig. 2 shows that the PrCi data are highly noisy, especially in the 
compartment related to recovered individuals (frame c). Smoothing the 
data with a 7-point moving average filter (red line) provided significant 
noise reduction without causing excessive smoothing in the pandemic 
curves. Analyzing the trend of the pandemic curve we can observe two 
peaks of the epidemic, one in March and the other in November (see 
frame b). The peak observed in November is considerably higher than 
that observed in March and follows the summer period in which the 
pandemic had shown a significant slowdown. Also in frame d of Fig. 2, 
which shows the curve of the new deaths recorded day by day, two peaks 
are evident, but, in this case, their amplitude is similar. This could be 
due to the fact that in the first months of the pandemic the infected were 
poorly monitored, especially those with few or no symptoms, and this 
could have led to a significant underestimation of their actual numbers. 

Fig. 3 shows the number of people in the compartments of infected 
and deceased individuals by sex and age. The number of infected in-
dividuals is similar in males and females, while the number of deceased 
is markedly different in the two groups. In fact, females presented about 
a quarter fewer death than males. During the second and highest peak of 
the pandemic, the groups with the greatest number of infected in-
dividuals were those aged 50–59 years and 40–49 years, for both males 
and females. In contrast, the greatest number of deaths occurred in the 
older groups and in particular in males and females aged 80–89 years. 
The age group with the largest differences between males and females is 
the >89 years. Since absolute frequencies are shown in Fig. 3, females 
have such a high number of deaths only because they are much more 
than men in this group (73% vs. 27%) [31]. 

3.2. Parameter estimates 

The analysis of the model estimates of the bk parameters grouped by 
age, shown in Fig. 4a, allows us to focus on key points about the tem-
poral evolution of the pandemic. First of all, it shows that at the 
beginning of the pandemic the oldest individuals had the highest values 
of bk, which would seem to indicate that they had more contact with 
infected individuals. This result is probably due to the fact that the 
elderly suffered from the worst symptoms and in that age group the few 
nasal swabs available were mainly used, neglecting the younger ones, 
mostly asymptomatic. During August and September, however, younger 
people (i.e., those younger than 40 years of age, but especially those 
aged 20–29 years) were those with the highest bk estimates, indicating 
that they had more contacts and, consequently, were the most infected. 
Later, during the November peak, the bk value also rose significantly in 
older persons. Young people probably contracted the virus during the 
summer due to a lack of attention to contacts, and then they transmitted 
it to the older relatives, especially coming back from vacations where 
the epidemic was stronger. 

Fig. 4b shows the time courses of the death rate estimates in the 
various age groups considered. It clearly indicates that, throughout the 
time period under review, the death rate was consistently higher in the 
older age groups. In particular, the maximum daily value of mk(t) has 
always been observed in the age group between 80 and 89 years. On the 
contrary, the recovery rate assumes lower values in the older age groups 
and remains constantly the lowest in the age group with 90 years or 
more (see Fig. 4c). 
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3.3. Vaccination program 

Five different starting scenarios were chosen to analyze the respec-
tive results obtained with the simulation model. Each of these initial 
scenarios corresponds to an actual condition recorded at a given time 

during the pandemic phase observed to date in Italy. Fig. 5 depicts the 
starting point chosen in each of the five simulations performed (vertical 
dashed gray lines) in relation to the actual trend of both Rt and b pa-
rameters (Fig. 5a and b, respectively), the daily number of new in-
fections detected (Fig. 5c) and the daily number of deaths (Fig. 5d). 

Fig. 2. Daily time-behavior of change in susceptibles (a), change in infected (b), recovered (c), deceased (d). In black the Protezione Civile real data, in red the moving 
average filtered data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Gender and gender-age grouped infected and deceased people.  
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Table 1 details the initial conditions for each age group at each starting 
point. It also provides, for the various age groups, the vaccination per-
centages corresponding to the minima of the three chosen cost functions, 
identified through model simulation. 

The first simulation starts on April 14, 2020, which represents the 
containment phase of the pandemic due to the lockdown imposed by the 
Italian government. At that date, the scenario was characterized by a 
mean Rt value of about 1.8, a number of about 100,000 infected in-
dividuals and a very high number of daily deaths in the most advanced 
age groups. With this starting scenario, the optimal vaccination plan is 
the same, whatever the chosen cost function. In particular, the minimum 
value of the cost function is always obtained by vaccinating 100% of 
people in the highest age group (i.e. those over 79 years old) and 
administering the remaining vaccine doses to people in the immediately 
preceding age group (i.e. aged between 70 and 79 years). If the chosen 

goal is to minimize the number of deaths or the number of QALYs lost, 
this strategy is likely due to the number of deaths recorded in mid-April 
in those age groups which is far greater than in other age groups (see 
Fig. 5d). If, on the other hand, the chosen goal is to minimize the overall 
number of infections and, therefore, the daily number of new cases of 
infection, the strategy of vaccinating 100% of the oldest individuals is 
due to the very high value of b in this age group, which is about six times 
that observed in the 60–79 age group, i.e., the second highest at that 
date (see Fig. 5b). 

The second simulation starts from the scenario observed on August 
12, 2020, which corresponds to a phase of the pandemic in which new 
cases of infection and deaths are few. At that date, however, individuals 
under 60 had a value of Rt greater than 1, while in the older age groups 
the Rt value was still below the critical threshold of 1 (see Fig. 5a). In 
particular, the highest value of Rt, which is observed in the age range of 

Fig. 4. Moving average estimated age-grouped parameters during the pandemic.  

Fig. 5. Daily time-behavior of the pandemic distributed across five age groups: Rt parameter (a); b parameter (b); new infections (c) deaths (d). Vertical gray dashed 
lines indicate the starting date of the vaccine simulations. 
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the youngest, is equal to 3 times that observed in the age group ranging 
from 60 to 79 years and about 7 times that observed in people aged 80 or 
older. Moreover, at that date, the 20–39 age group had the highest value 
of parameter b, which was about twice as high as the second highest 
value found in the age group of the youngest (0–19 years). Older people 
showed significantly lower values of b (see Fig. 5b). Despite the Rt and b 
values, the goal of minimizing the number of deaths is also achieved in 
this context by vaccinating 100% of persons in the highest age group (i. 
e., those over 79 years) and administering the remaining doses of vac-
cine to persons in the immediately preceding age group (i.e., those aged 
70–79 years). On the other hand, the optimal strategy changes 
dramatically if the goal is to minimize the number of QALYs lost or the 
overall number of infections. To achieve either of these goals, available 
vaccine doses must be used to vaccinate the first two younger age 
groups. Specifically, if the goal chosen is to minimize the number of 
QALYs lost, the algorithm suggests vaccinating 100% of the first age 
group, i.e., the one with the highest Rt value, whereas if the goal is to 
minimize the overall number of infections, it is necessary to vaccinate 
almost all people aged 20–39 years, i.e., the age group with the highest b 
value. 

The third simulation starts from the data collected on September 2, 
2020. On this date, the estimated values of Rt and b in the 20–39 age 
group are the highest of all. It should be noted, however, that while the 
value of b in that age group is much higher than that observed in all 
other age groups, the value of Rt, while being the highest, is not 
dramatically greater than those observed in the two adjacent age groups, 
i.e., 0–19 years and 40–59 years (see Fig. 5a and b). The largest number 
of new infections is also observed in the 20–39 year age group (see 
Fig. 5c), while the greatest number of deaths, although still low, are 
found in individuals aged 80 and over (see Fig. 5d). Again, the goal of 
minimizing the number of deaths is achieved by vaccinating 100% of 
people in the highest age group and administering the remaining doses 
of vaccine to people in the age group immediately before that. If, on the 
other hand, the chosen goal is to minimize the number of infections the 
suggested strategy requires vaccinating predominantly people 
belonging to the age group with the highest b value. Finally, minimizing 
lost QALYs requires vaccinating 100% of the individuals in the youngest 

age group and administering the remaining doses of vaccine to the oldest 
group of individuals. The choice to vaccinate all persons aged 0–19 years 
is probably due to the fact that this age group is the one to which the 
highest value of expected QALYs corresponds and has an Rt not far from 
the highest observed at that date. On the other hand, the strategy of 
using the remaining vaccines in the over-80-year-old group could be 
explained by the combination of a significantly high Rt value (almost 
twice as high as 1) and a drastically high lethality rate that characterizes 
this age group. 

At the start date of the fourth simulation (November 4, 2020), the Rt 
value was dramatically high and very similar in all age groups (see 
Fig. 5a). Consequently, at the time, the number of infected individuals 
and the number of daily deaths were growing rapidly (see Fig. 5c and d). 
In this situation, where the Rt value is quite similar in the five age groups 
considered, the strategy suggested to minimize the number of deaths or 
that of QALY lost is the mass vaccination of over 80 s and the use of the 
remaining doses in individuals of the immediately preceding age group 
(i.e. between 60 and 79 years). Minimizing the number of infections, on 
the other hand, again requires vaccinating primarily those between the 
ages of 20 and 39 and does not include vaccinating the older population. 
In fact, even in early November, the highest value of parameter b was 
observed in the 20- to 39-year-old age group (see Fig. 5b). 

The results referring to the simulation starting from the scenario 
recorded on December 20, 2020, show that the optimization of the cost 
function that takes into account the number of deaths or the number of 
QALYs lost leads to a result identical to that obtained in the simulations 
performed starting from November 4, 2020: the suggested strategy is to 
vaccinate 100% of the over-80s and to use the remaining doses of vac-
cine for the 60–79 age group. Although starting from very different 
initial contexts, these simulations have in common the fact that Rt, while 
dramatically high on November 4 and significantly below 1 on 
December 20, assumes in the two scenarios rather similar values in the 
five age groups considered. This seems to indicate that when the value of 
Rt is uniform within the population, the choice to vaccinate the elderly 
pays off not only in terms of the number of deaths, but also in terms of 
QALYs lost. Different results are obtained if the cost function to be 
optimized takes into account the number of infections. Even in the initial 

Table 1 
Initial conditions for each of the simulations performed and corresponding optimal percentages of vaccination in each age group. The dates in the first row represent 
the starting points of the simulations. The first two columns of each simulation report the starting conditions, i.e. the initial value of the Rt parameter and the total 
number, in thousands, of susceptible (S), infected (I), recovered (R) and deceased (D) individuals, respectively. The third column shows the simulation results, i.e., the 
percentage of people to be vaccinated within each age group to reach the minimum of each of the three cost functions considered (number of deaths, QALYs lost and 
number of infections).  

Age 
group 

Apr 14th Aug 12th Sep 2nd Nov 4th Dec 20th 

Rt S,I,R,D 
(×103) 

Dead, 
QALY, 
Infected 

Rt S,I,R,D 
(×103) 

Dead, 
QALY, 
Infected 

Rt S,I,R,D 
(×103) 

Dead, 
QALY, 
Infected 

Rt S,I,R,D 
(×103) 

Dead, 
QALY, 
Infected 

Rt S,I,R,D 
(×103) 

Dead, 
QALY, 
Infected 

0–19 1.9 10,717.0 0% 2.7 10,712.0 0% 4.2 10,708.9 0% 5.4 10,637.8 0% 0.6 10,488.5 0% 
2.0 0% 1.5 100% 3.8 100% 61.2 0% 86.5 0% 
0.8 0% 6.3 0% 7.0 0% 20.8 0% 144.7 0% 
0.0  0.0  0.0  0.0  0.0  

20–39 1.8 13,091.4 0% 2.2 13,073.2 0% 5.0 13,065.2 0% 5.6 12,940.8 0% 0.6 12,647.2 0% 
12.9 0% 3.7 10% 9.8 0% 107.1 0% 165.0 0% 
5.5 0% 33.0 92% 34.9 92% 61.9 92% 297.5 4% 
0.0  0.1  0.1  0.1  0.2  

40–59 1.4 18,492.2 0% 1.3 18,463.4 0% 4.2 18,459.3 0% 6.3 18,314.3 0% 0.6 17,894.1 0% 
32.9 0% 4.0 0% 6.5 0% 125.5 0% 229.7 0% 
14.9 0% 72.1 0% 73.7 0% 99.5 0% 414.3 38% 
0.9  1.5  1.6  1.7  2.8  

60–79 1.2 13,383.4 56% 0.9 13,363.9 56% 3.2 13,362.3 56% 6.3 13,292.3 56% 0.7 13,060.0 56% 
31.3 56% 2.5 0% 3.2 0% 60.6 56% 126.5 56% 
9.0 56% 52.7 0% 53.5 0% 65.0 0% 222.2 0% 
8.4  13.0  13.0  14.1  23.4  

>79 2.7 4,408.6 100% 0.4 4,381.2 100% 1.8 4,380.6 100% 6.2 4,353.9 100% 0.8 4,248.3 100% 
22.8 100% 1.9 0% 1.9 26% 23.4 100% 57.9 100% 
0.6 100% 38.3 0% 38.8 0% 41.6 0% 95.2 100% 
10.0  20.6  20.8  23.0  40.7   
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December 20 scenario, however, the strategy chosen to minimize the 
number of infections confirms the priority of vaccinating age groups 
with a higher b value. 

Fig. 6 provides quantitative information on the outcomes that can be 
obtained by applying the different vaccination plans suggested by the 
optimization of each cost function considered. In particular, for each 
cost function considered, the model outcome obtained by applying the 
optimal strategy is compared with the corresponding one obtained by 
assuming that no intervention, both behavioural and vaccinal, is carried 
out on the system to contain the pandemic. The comparison was made 
starting from the initial conditions recorded on a predetermined date 
and following the evolution of the pandemic predicted by the model in 
both hypothesized situations over the following 120 days. Two starting 
scenarios were examined corresponding to the dates of August 12 and 
November 4, 2020. In the figure, outcomes obtained in different age 
groups are marked with different colours. In particular, each solid line 
indicates the outcome obtained with the optimal strategy and the dashed 
one indicates what would have happened by letting the pandemic evolve 
without any containment intervention. 

With the goal of minimizing the number of deaths, the strategy 
suggested by the simulation model, by reducing the number of daily 
deaths in the two older age groups, significantly reduces the total 
number of deaths at the end of the 120-day period. Starting from the 
most critical scenario recorded on November 4, Fig. 6 shows that, 
without any containment intervention, the number of daily deaths in the 
two oldest age groups would have increased linearly with a high slope, 
reaching at the end of the 120 days of observation a number of daily 
deaths in the oldest individuals equal to 560, i.e. more than 10 times 
greater than that obtained globally in the three youngest age groups. It is 
therefore obvious that in such a situation, the strategy to be followed to 
minimize deaths is to vaccinate the oldest. The result obtained with this 
strategy is a substantial containment of the number of daily deaths 
which, at the end of the 120 days of observation, are about 30% less than 
those that would have been observed in the absence of the vaccination 
plan. A similar behavior, although much less dramatic, is also obtained 
starting from the scenario recorded on August 12, 2020. 

The decision to use the strategy based on the optimization of the cost 

function that takes into account the number of QALYs lost leads in both 
cases shown in Fig. 6 to choose a vaccination plan that gives priority to 
vaccinate those age groups to which, in the absence of any containment 
strategy, would correspond at the end of 120 days of observation the 
highest daily losses of QALYs. In particular, it is interesting to note that, 
starting from the scenario observed on August 12, the strategy suggested 
by the simulation model (see Table 1) indicates to vaccinate both the age 
group between 0 and 19 years and that between 20 and 39 years. In fact, 
the choice to totally vaccinate the first class might have been intuitive on 
August 12, because already at that date this group of people corre-
sponded to the maximum of lost QALYs. In contrast, the choice to 
vaccinate the 20–39 age group was far from trivial, because with the 
data available on August 12, one could reasonably have chosen to 
vaccinate the 60–79 age group. This choice would have proved to be 
wrong in retrospect, because, in the absence of containment strategies, 
at the end of the 120-day observation period the number of daily QALYs 
lost in the 20–39 age group significantly exceeds that corresponding to 
the 60–79 age group. Undoubtedly, in the present case, vaccinating a 
small group of people aged 20–39 years did not lead to a meaningful 
outcome at the end of 120 days because the number of available vac-
cines was limited and only 10% of that age group could be vaccinated 
with the available doses. However, the simulation approach had un-
doubtedly identified the way forward, which would have led to a sig-
nificant result if more vaccine doses were available. 

Finally, in the two situations shown in Fig. 6, the goal of minimizing 
the number of infections is achieved using an identical strategy (see 
Table 1). In this case, while the strategy suggested by the model is 
clearly intuitive with respect to the choice made from the scenario 
observed on August 12, it is more difficult to explain the strategy sug-
gested by the model from the November 4 scenario. However, in the 
latter case, the result obtained with the suggested strategy is really 
interesting, since at the end of the 120 days of observation the number of 
new daily infections decreased by about a quarter compared to what it 
would be in the absence of a containment strategy. 

Fig. 6. Vaccine simulation of the age-grouped SIRD model, starting from initial conditions identified from actual Italian CoViD data on August 12 and November 4. 
Dashed and solid lines represent simulation results without and with the best vaccination plan, respectively. 
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4. Discussion 

Compartmental models, although based on stringent assumptions, 
have long been used to effectively explain the dynamics of epidemic 
phenomena and simulate their evolution, under a variety of different 
conditions [10]. 

Calafiore et al. also developed a time-varying SIRD model based on 
Italian public data, but the model does not account the differences be-
tween age and sex groups. Furthermore, while we propose the model for 
optimizing pandemic containment strategies, such as vaccination, 
starting from real conditions, Calafiore et al. focused on the consistency 
between the actual data and the predictions made [6]. 

The use of time-varying parameters allows the modeling of pandemic 
trends in which conditions change due to containment strategies such as 
lockdown, vaccination campaigns, changing characteristics of health 
care and infectious conditions, changes in recovery and mortality rates 
due to new therapies or increased infectivity resulting from genetic 
mutations, rule transgression, etc. 

Having applied the model to vaccine strategy choices is an example 
aimed at concretely illustrating the utility of a SIRD model stratified by 
age groups. Age groups can also be traced to specific social and occu-
pational activities, that are associated with increases or decreases in 
infections. For example, analyzing the age-group behavior of children 
and adolescents in open school conditions may allow to identify and 
quantify possible effects of increased infections and speculate on the 
appropriateness and effectiveness of targeted measures, such as school 
closures. 

The choice of a SIRD-type model made it possible to reach a satis-
factory compromise between the possibility of approximating Italian 
public data and the availability/quality of the latter in terms of disag-
gregation by sex and age groups. Given the general uncertainties about 
data collection, in terms of poor quality of available data, incomplete-
ness, noise, temporal asynchrony, lack of precise and complete distri-
butions by age group and sex, etc. [17], it seemed inadvisable to propose 
more complex models such as the SEIRD model, because the exposed 
individuals, E, are difficult to define with sufficient accuracy and far 
from easy to identify [12,13]. On the other hand, simpler models, such 
as the SIR model, appeared limiting because differentiated data were 
available between healed and deceased, the latter also distributed by sex 
and age. 

A major problem in the collection of daily data is their poor quality in 
terms of misses, delays in collection, and reporting [17,18]. 

Our proposed model is not able to correct for data underreporting 
and under-ascertainment, which conversely other approaches address 
[32]. In general, techniques for the reconstruction of missing data are 
based on a priori assumptions that represent a weakness point. Our 7- 
days moving average window allows the influence of such biases on 
time-varying parameter estimates, which are more pronounced in the 
early stages of the pandemic, to be quickly forgotten. As time goes by, 
their impact tends to fade, thanks to more careful and effective testing 
procedures. 

Daily fluctuations with an almost weekly periodicity, led us to pre- 
process the data with a 7-day moving average filter, as a suitable 
compromise between noise reduction and preservation of information 
regarding the correct dynamics of the phenomenon. Also another Italian 
institute (National Institute of Nuclear Physics), had already used the 
moving average technique to follow the pandemic trend in time and to 
reduce the variability, but using a period of 14 days [33]. 

As mentioned earlier, compartment epidemic models are based on 
stringent assumptions. The first concerns the fact that the system must 
be closed, with no contact with the outside world, which in the present 
case corresponds to contacts with neighboring nations or resulting from 
international transport. This hypothesis, during the CoViD-19 
pandemic, is sufficiently respected as the States have closed the 
boundaries and reduced to a minimum the international contacts. In 
Italy, people have been often limited in the movements between 

different regions. 
A second assumption underlying the compartmental models con-

cerns the homogeneous distribution of individuals within compart-
ments, which assumes that all individuals in the various compartments 
are equally likely to contact each other [9]. By dividing susceptible in-
dividuals into age and sex groups, we mitigated possible in-
homogeneities in contact behavior by assigning different mean number 
of contacts, different recovery rate, and different mortality rate to the 
various classes. 

The time-varying parameters of the SIRD model were estimated from 
the actual data using a simple moving average approach. A limitation of 
this approach is that it does not account for the uncertainty in the 
parameter estimates. Other more sophisticated techniques could be used 
to estimate time-varying parameters and to control noise, such as linear 
regression, Monte Carlo Markov Chains, recursive least squares tech-
niques, etc. [6]. In addition, a sensitivity analysis would allow quanti-
fying the effects of imprecise estimates on the simulation results, which, 
however, is beyond the scope of this paper. In fact, the parameter esti-
mates, which we obtained from the real data, reproduce truthful initial 
conditions for the simulation, which fully satisfy the aims of the present 
study. 

The model’s assumption of an equal distribution of removal rates for 
each class function was necessary to estimate group-distributed recov-
ered individuals, without which a model grouped by age and gender 
could not have been employed. Other hypotheses could have been made, 
regarding the different number of removed individuals in the different 
classes, possibly supported by specific literature data. To the best of our 
knowledge, no data have been published on the of sex- and age- 
distribution recovered individuals. This may be due to the less 
emphasis on recovered individuals and greater difficulty in accurately 
identifying them. Especially on this last point, there are discordant 
opinions regarding the recovered individuals who did not need hospital 
care. The period from the date of diagnosis to the date of discharge may 
give information about the recovery time; thus, the hypothesis could be 
improved. However, there is no uniformity on this aspect. Yan-ni Mi 
et al. estimated a cure time of 14.6 days (95% confidence interval 
6.9–21.0); Manash et al. estimated a recovery rate of 25 days (95% 
confidence interval 16.1–33.9), however the sample was constituted by 
hospitalized subjected so they may be the ones with more severe 
symptoms [34,35]. 

Another problem related to recovery time is the identification of 
disease onset because several days can pass between the time CoViD-19 
was contracted, the onset of symptoms, and diagnosis. Having more 
information available, such as national or international data dis-
aggregated by age group and sex, we could have estimated the param-
eters more accurately and avoided making reconstructive assumptions 
that, however, are not unrealistic. 

The simulation of an optimized vaccination plan was proposed to 
concretely illustrate the usefulness of an age-distributed SIRD model. We 
decided to consider and show the results for three simple cost functions: 
the number of new infections, deaths and QALYs lost. Of course, other 
different cost functions could have been chosen. Other scenarios could 
have also been simulated, such as a different vaccination period/rate 
and a larger number of available doses. 

The results obtained clearly showed that the optimal vaccination 
plan depends not only on the type of cost function chosen, but also on 
the initial conditions, such as the values of the model parameters, esti-
mated from the real data at the beginning of the simulated vaccination 
program. 

Although the identification of an optimal vaccine plan is only one 
example to assess the potential of the proposed modeling approach, the 
achieved results nevertheless provide some interesting information and 
confirmations. Thus, for example, if the goal is to minimize the number 
of deaths, the modeling approach indicates that regardless of the sce-
nario taken as a starting point, the vaccination plan always requires 
vaccinating as many people as possible in the highest age groups. This is 
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far from surprising, because it means that to minimize the number of 
deaths, it is always necessary to start vaccination from the age groups 
with the highest lethality rates. On the other hand, this is the vaccination 
strategy that has been chosen in many countries, such as Italy. 

Less trivial is the fact that the choice to vaccinate the elderly also 
pays off in terms of lost QALYs when the Rt value is uniform within the 
population and, even more so, when it is higher in older age groups. Of 
course, the result changes if it is the young people who have the highest 
Rt values. 

5. Conclusions 

The approach proposed to decipher the course of the CoViD-19 
pandemic in Italy, based on the time-varying SIRD compartment 
model, stratified by sex and age groups, allowed observing and quanti-
fying group-dependent distributions of susceptible, infected, recovered, 
and deceased people, as well as rates of contact, recovery, and death. 

Due to the poor quality and insufficient stratified availability of data 
collected by national and international authorities, ad hoc reconstruc-
tion and filtering procedures of existing data were developed. 

An application for model simulation of optimal vaccination cam-
paigns has shown interesting results, consistent with the specific fea-
tures of the phenomenon. In particular, various scenarios represented 
starting from different phases of the pandemic and using different cost 
functions (amount of infected, lost QALY and deceased people), have 
provided outcomes highly dependent on initial and boundary 
conditions. 

In conclusion, the proposed model seems to be a useful decision 
support tool, allowing predicting quantitatively the effects of ad hoc 
strategies to combat epidemics/pandemics, based on actions differen-
tiated by population groups. 
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