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To date, the COVID-19 pandemic has claimed over 1 million human lives, infected another 50 million
individuals and wreaked havoc on the global economy. The crisis has spurred the ongoing development
of drugs targeting its etiological agent, the SARS-CoV-2. Targeting relevant protein-protein interaction
interfaces (PPIIs) is a viable paradigm for the design of antiviral drugs and enriches the targetable chem-
ical space by providing alternative targets for drug discovery. In this review, we will provide a compre-
hensive overview of the theory, methods and applications of PPII-targeted drug development towards
COVID-19 based on recent literature. We will also highlight novel developments, such as the successful
use of non-native protein-protein interactions as targets for antiviral drug screening. We hope that this
review may serve as an entry point for those interested in applying PPIIs towards COVID-19 drug discov-
ery and speed up drug development against the pandemic.
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1. Introduction

COVID-19 has become one of the most formidable public health
crises of this century. As of now, over 50 million people have been
infected with a death toll of over 1 million individuals worldwide
[1]. It has also caused global social and economic disruption, with
losses amounting to over US$ 8.5 trillion according to data from the
United Nations [2]. COVID-19 is caused by a novel coronavirus
named SARS-CoV-2 [3]. Given the urgency imposed by the crisis,
several initiatives were quickly set up to gain a better understand-
ing about the virus and to utilize that knowledge to pursue poten-
tial therapies and vaccines against the disease [4]. SARS-CoV-2
belongs to the beta-coronavirus subfamily and shares considerable
similarity with SARS-CoV and MERS-CoV at the protein level [5].
The viral architecture is essentially identical to that of SARS-CoV
and MERS-CoV, comprised of a phospholipid envelope, the
structural proteins N (nucleocapsid), M (membrane), S (spike)
and E (envelope), and non-structural proteins such as the 3C-like
protease and the RNA-dependent RNA polymerase (RdRP). In a for-
tunate turn of events, the high similarity between SARS-CoV-2 and
other coronaviruses allowed researchers to leverage knowledge
from past research to speed up development of potential therapies.
For example, the interaction between the SARS-CoV-2 S protein
and the human angiotensin-converting enzyme 2 (ACE2) receptor,
one of the most promising drug targets, was quickly elucidated
based on what was known about its SARS-CoV counterpart [6,7].

The battle against COVID-19 has been waged in several forms,
but vaccine development and drug design remain two of the most
important ones. Vaccines provide the means for large-scale immu-
nization of the population which is essential for a return to normal
life. Ye et al. provide an excellent summary of current preclinical
efforts and technologies for vaccine development against
SARS-CoV-2 [8]. However, given the scale of the pandemic, it
may be necessary to vaccinate a large percentage of the global pop-
ulation before life can return to normal. Hence, drugs designed to
combat COVID-19 will be required to ‘‘hold the fort” during the
vaccine development/production/distribution time window. Even
after successful implementation of a vaccination program, there
is still a need for anti-COVID-19 drugs to deal with sporadic cases.

Several approaches have been applied towards drug develop-
ment against COVID-19. Gil et al. provide a comprehensive over-
view of potential drug targets and therapeutic options against
SARS-CoV-2 infections [9]. The best-known approach is to inhibit
key enzymes in SARS-CoV-2 such as the RNA-dependent RNA poly-
merase (RdRp) and 3C-like protease (3CLpro). Remdesivir, a drug
which has been in the spotlight, is a prime example because it is
a nucleotide analogue which inhibits RdRp and has received emer-
gency use authorization against COVID-19 in several countries
[10,11]. Although highly effective, this approach relies on targeting
the catalytic site, which limits the chemical space that may be
explored and may reduce the chances of identifying successful hits.
A second popular approach is to disrupt the interaction between
proteins which are essential for viral processes [12,13]. In this
review, we shall focus on the second approach and discuss various
aspects of targeting protein-protein interaction interfaces (PPIIs)
for anti-COVID-19 drug discovery.
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2. Role of PPIIs in drug development

Nearly all biological processes involve some type of protein-
protein interaction (PPI). In human cells, it is estimated that more
than 300,000 PPIs participate in processes such as immunity, signal
transduction, molecules transportation, and maintenance of cellu-
lar organization [14]. Aberrations in these interactions are corre-
lated with many human disorders, including cancer, infectious
diseases, autoimmune diseases and neurodegeneration [15–20].
Other organisms, including pathogens, also have their own set of
essential PPIs. The ability to target and manipulate these interac-
tions may thus be a viable strategy for drug discovery [21]
(Table 1). Paclitaxel, more commonly known as Taxol�, is an anti-
cancer agent extracted from the Pacific yew Taxus brevifolia [22].
Paclitaxel arrests the cell cycle in the mitotic phase by inhibiting
microtubule disassembly [23]. Binding of paclitaxel to a hydropho-
bic patch in b-tubulin stabilizes the interdimer contacts between
b-tubulin molecules of adjacent protofilaments, resulting in micro-
tubule stabilization [24–26]. Colchicine, which has been used to
treat gout since 1961, utilizes a mechanism opposite to paclitaxel
[27,28]. Colchicine inhibits the assembly of microtubules by dis-
rupting the interaction between a- and b-tubulin [29–31].
Although the mechanism of action of the two drugs were eluci-
dated long after they were approved for medical use, recent studies
have proven the possibility of targeting PPIs a priori for develop-
ment of new treatments against refractory diseases [32–34].

PPIs usually involve a large and flat interaction interface
between the proteins. These protein-protein interaction interfaces
(PPIIs) typically have an area of 1500–3000 Å2 and are often com-
plementary in shape and electrostatic properties [35–37].
Although the interface is usually composed of several amino acid
residues, only a small subset of these residues, called ‘‘hot spots”,
contributes significantly to the binding free energy [38,39]. These
hot-spots are prime targets for small-molecule orthosteric PPII dis-
ruptors, such as colchicine, which act directly on the PPII. Disrup-
tion of PPIIs may also be achieved by allosteric means where the
small-molecules can bind to sites that are topologically distinct
from PPIIs (Fig. 1). BIO8898 is a small-molecule inhibitor of the tri-
meric cytokine CD40-ligand (CD40L) developed by the company
Biogen Idec targeted at autoimmune diseases [40]. The inhibitor
intercalates at the trimer interface of CD40L and allosterically dis-
rupts the CD40L/CD40 interaction associated with several types of
autoimmune diseases. Caporuscio et al. reported two novel inhibi-
tors against HIV-1 that target the Phe43 pocket in the gp120-CD4
interaction through molecular dynamics simulations, and Zhan
et al. summarized the potential compounds against a variety of
PPIs in HIV infection [41,42]. Similarly, PPII stabilizers may also
act in an orthosteric or allosteric fashion (Fig. 1). For example,
FK506 and rapamycin inhibit calcineurin and mTOR kinase activity,
respectively, by stabilizing the corresponding interactions between
FKBP12 and calcineurin or mTOR [43–45]. Both FK506 and rapa-
mycin bind first to FKBP12 and form part of the interaction inter-
face with calcineurin and mTOR, respectively, and both are
considered orthosteric PPII stabilizers [46]. On the other hand,
paclitaxel is believed to exert allosteric stabilization in addition
to its orthosteric effect in microtubules because the interface



Fig. 1. Different strategies for designing PPI modulators. Modulation of PPIs can be achieved by using inhibitors or stabilizers to target the orthosteric or allosteric sites of the
protein-protein complex. (Right) graphic expression of PPI inhibitors. Protein A binds to Protein B to form Complex 1. Orthosteric inhibitors bind directly to the PPII, which
hinders Protein B from binding with Protein A. On the other hand, allosteric inhibitors bind to a region distal from the PPII on Protein A, which induces a conformational
change to obstruct Protein B from binding with Protein A. (Left) graphic expression of PPI stabilizers. Protein C interacts with Protein D to form Complex 2. Orthosteric
stabilizers bind directly to the PPII, which enhances the binding affinity between Protein C and D. Allosteric stabilizers bind to a region distal to the PPII on protein C, which
induces a conformational change to enhance the binding affinity between Protein C and Protein D.

Table 1
Examples of PPII modulators described in the present review.

Name Protein complex PPI modulators PDB code EC50 / IC50 (lM) Ref

Paclitaxel microtubules Allosteric stabilizer 1JFF 1.41 ± 0.32 (IC50) [26]
Colchicine a- / b-tubulin Orthosteric inhibitor 1SA0 3.2 (IC50) [31]
BIO8898 CD40L/CD40 Allosteric inhibitor 3LKJ 25 (IC50) [40]
Compound 2/4 gp120–CD4 Orthosteric inhibitor N/A 22/9 (EC50) [40]
FK506 FKBP12/ calcineurin Orthosteric stabilizer 1TCO 0.047 (IC50) [44]
Rapamycin FKBP12/mTOR Orthosteric stabilizer 2RSE 0.002 (EC50) [45]
Nucleozin Influenza nucleoprotein Orthosteric stabilizer 3RO5 0.17 (IC50) [54]
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between a- and b-tubulin within the same protofilament, which is
not part of the paclitaxel binding site, is also affected by paclitaxel
binding [47,48].

Orthosteric PPII inhibitors and stabilizers are easier to design as
long as there is enough information about the interaction interface
as a guide [49]. In contrast, the design of allosteric modulators
faces difficulties in identifying a suitable target site [49,50]. How-
ever, it may sometimes be difficult to design orthosteric PPII mod-
ulators, e.g. when the interface is particularly flat and few hits are
available, and allosteric compounds may provide alternative
choices for drug design.

Non-native contact modulators comprise a particularly inter-
esting category. Nucleozin induces aggregation of influenza A
nucleoproteins in the nucleus of the host cell, which stops viral
replication [51–53]. The structure of influenza A nucleoprotein in
complex with nucleozin revealed that nucleozin exerted its antivi-
ral activity by stabilizing a non-native interface between two adja-
cent nucleoprotein trimers, leading to abnormal viral
nucleoprotein oligomerization and suppression of the influenza
virus [51,54].

3. Strategies for the design of PPII modulators

PPIIs have long been ignored as drug targets because of their flat
interacting surfaces, which is not conducive towards conventional
methods of drug discovery. Fortunately, technological advance-
ments have made it possible to design and screen potential modu-
lators of PPIIs with therapeutic potential. Several excellent and
detailed reviews have been written on the subject [55,56]. For
the sake of brevity, we only highlight a few of the strategies:

3.1. Structural studies

Structural biology is arguably one of the most important tools
for the design of PPII modulators. Unlike conventional methods
where one may not require structural information for screening
2248
of potential therapeutic molecules, targeting PPIIs requires inti-
mate knowledge of the interaction interface, which can only be
provided by its detailed atomic structure. Energetics analysis of
the structural data may provide clues about potential interaction
hot spots, which may then be experimentally validated. In recent
years, a combination of X-ray crystallography and alanine scanning
mutagenesis has become the main strategy for this purpose
[34,39]. Even when a lead has been identified, elucidation of the
structure of the proteins in complex with the lead molecule is still
desirable, since it may yield additional information useful in the
optimization process [57–59]. In addition, structural elucidation
of the protein-modulator complex is currently the only way to
identify allosteric PPII modulators.

3.2. Structure-based drug design

Once the structure of the interface is known, two different
strategies may be employed to design PPII modulators. First, novel
compounds may be generated through bioisosterism and de novo
design based on the structure surrounding the hot spots. However,
because PPIIs are often flat, a larger interaction surface between
the compound and the interface may be desired. This leads to
the second approach, peptidomimetic design, which employs small
molecules or short peptide derivatives that mimic a binding pep-
tide [60–62]. Human knowledge plays a key role in either approach
since interpretation of the structure has to be carried out manually
before the design phase.

3.3. High-throughput screening

To accelerate the development of PPII modulators, screening
methods which are amenable to a high degree of automation
may be employed. High-throughput screening (HTS) experiments
and virtual screening are widely used approaches in traditional
drug discovery [63,64]. In theory, HTS does not even require the
elucidation of the protein structures as long as a suitable valida-
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tion assay targeting the PPII is available. Virtual screening, on the
other hand, requires that the structures of the interacting proteins
are known before hand, but has the advantage of high speed and
low cost because the screening is carried out in silico. However,
both HTS and virtual screening are limited by the chemical space
represented by their compound libraries, and conventional
libraries, which were not developed for this use case, may be less
effective at screening PPII modulators. Virtual screening further
suffers from an interface degeneracy problem, because there
may be multiple potential PPIIs, but only one or a few of them
are actually physiologically relevant. Although these issues are
not trivial, both strategies have been successfully applied towards
the identification of compounds regulating PPIs in recent years
[65–67].

3.4. Fragment-based drug discovery

The hot spots on the PPII are often scattered at the interface and
do not form a continuous surface. This is often a problem because
compounds targeting a single hot spot may not bind to the protein
tightly enough. Fragment-based drug discovery (FBDD) is an alter-
native approach that may be employed to solve this problem. FBDD
starts from the identification of small fragments (~200 Da) that tar-
get a single site at the PPII. Once fragments for several sites have
been identified, they may be linked into a single molecule to obtain
a ‘lead’ which has a much higher binding affinity towards the tar-
get [68,69]. Compared to HTS, FBDD allows for the initial screening
of a smaller library, because N hits could be combined to produce
N � N leads for further screening (assuming two screening sites),
thus increasing the combinatorial space. However, optimization
of the linker between the fragments by organic methods still
requires the structure of the lead-target complex to be solved first,
which is not absolutely necessary for HTS.

3.5. Computational tools

In silico strategies offer flexibility and insights which may not
be accessible with experimental approaches. Advances in compu-
tational and systems biology, combined with the increasing
amount of structural knowledge available has ushered several
computational tools that may assist in the design of PPII modula-
tors. Databases of small-molecule PPI inhibitors, such as TIMABL
(http://www-cryst.bioc.cam.ac.uk/databases/timbal), 2P2I (http://
2p2idb.cnrs-mrs-fr) or iPPI-DB (http://www.ippidb.cdithem.fr)
contain three-dimensional structures of several protein-protein
and protein-inhibitor complexes. These databases may serve as
starting points for molecule design, or as resources to explore pos-
sible interaction ‘‘rules” at the protein-protein interface. Another
aspect is the collaborative development of new theoretical and
computational modeling approaches, such as OpenMM and other
open force-field initiatives [70]. The increasing use of machine
learning algorithms, such as those employed on the Alpha Fold sys-
tem for protein fold prediction [71], may also provide more accu-
rate predictions of binding residues at PPIIs. On the small-
molecule side, novel computational methods may help in optimiz-
ing desired pharmacophore properties (such as oral bioavailability)
and/or expanding the chemical space beyond the ‘‘rule of five” at
the initial stages of the design process [72].
4. Application to COVID-19 drug discovery

4.1. Potential candidate targets

CoVs share several proteins that are essential in the viral life
cycle. Many of these proteins form PPIs with each other or host
2249
proteins, making them attractive targets for the design of PPII
modulators (Fig. 2). A comprehensive list of potential targets is
listed below (Table 2).

4.1.1. PPIIs related to viral entry
Viral entry is initiated through the interaction between the

receptor-binding domain of viral spike glycoprotein (S-RBD) and
host receptors. Subsequently, host proteases such as TMPRSS2 or
furin cleave the S protein and activates membrane fusion. The
receptor for MERS-CoV S protein is dipeptidylpeptidase 4 (DPP4),
whereas both SARS-CoV and SARS-CoV-2 S proteins bind to ACE2
[73,74]. Being the first stage in viral infection, PPIIs involved in
the viral entry process, such as those between S and host recep-
tors/proteases, are considered to be one of the most promising
drug development targets. Several PPII inhibitors targeting the
interaction between S and host receptors have been identified.
For example, Sarafianos et al. identified three compounds that
block SARS-CoV entry from a chemical library containing 3000
compounds. One compound (designated SSAA09E2) was found to
obstruct the binding of SARS-CoV S protein to ACE2 [75]. In addi-
tion, Kao et al. identified 104 compounds that inhibit SARS-CoV-
induced cytopathic effects from a library of 50,240 small mole-
cules. 18 compounds were found to block the S-ACE2-mediated
entry of SARS-CoV, among which one compound, VE607, inhibited
plaque formation of SARS-CoV at low micromolar range [76]. In
light of these successful SARS-CoV studies, Bojadzic et al. initiated
a screen to find compounds which interfere with the PPI between
SARS-CoV-2 S protein and ACE2. They identified methylene blue as
an inhibitor of SARS-CoV-2 entry with an IC50 of 3.5 lM [77]. Kal-
hor et al. conducted structure-based virtual screening with FDA
approved drug databases to discover the PPI inhibitors against S-
ACE2 complex. They identified 6 compounds can bind to the
ACE2 binding pocket on SARS-CoV-2 S protein, from which they
further proposed Diammonium Glycyrrhizinate as the most potent
compound by MD simulation technique [78]. Hanson et al. also
developed an AlphaLISA RBD � ACE2 platform to facilitate the
screening of PPII inhibitors perturbing this host–pathogen interac-
tion. They identified corilagin as a potential inhibitor against the
ACE2 � RBD complex with an IC50 of 5.5 lM [79].

In addition to using the screening approach to find small-
molecule candidates that block the S-ACE2 interaction, macro-
molecular PPI inhibitors have also been developed. In this regard,
the most common approach is to mask the S-ACE2 interaction
through monoclonal antibodies which recognize either the S pro-
tein or ACE2 [80–82]; or through the application of recombinant
soluble proteins/peptides, which competes with normal proteins
for the binding to their respective interacting partners [83,84]. Cur-
rently, several antibodies recognizing the S protein have been
reported. For example, Shi et al. isolated two specific human mon-
oclonal antibodies from a convalescent COVID-19 patient that
exhibited SARS-CoV-2 neutralization activity in vitro. One of these
antibodies, termed CB6, further exhibited antiviral activity in a
rhesus monkey model. The mechanism behind the antiviral activ-
ity of CB6 was further revealed by structural studies, which
showed that CB6 interacted with the RBD of SARS-CoV-2 S protein
in an orthosteric fashion and interfered with the virus–receptor
interaction [80]. Yan et al. also isolated four antibodies from a con-
valescent patient which neutralized SARS-CoV-2. Two antibodies
(B38 and H4) blocked the interaction between the S-RBD and
ACE2 via binding to different epitopes on the RBD. Both antibodies
were able to relieve the symptoms of infected animals in mouse
model experiments. The crystal structure of the RBD-B38 complex
revealed that the B38-binding surface on the RBD overlaps with its
ACE2-binding interface (Fig. 3A). In addition, Chen et al. identified
three SARS-CoV-2 antibodies from 26 recovered COVID-19
patients. Two of them, 311mab-31B5 and 311mab-32D4, exhibited

http://www-cryst.bioc.cam.ac.uk/databases/timbal
http://2p2idb.cnrs-mrs-fr
http://2p2idb.cnrs-mrs-fr
http://www.ippidb.cdithem.fr


Fig. 2. Critical PPIs and proteins involved in the virus life cycle. The PPIs suitable for inhibitor design are highlighted in red. Host proteins involved in CoV processing might be
candidates that can be targeted through the PPII strategy: these include primary cellular receptors for CoV, such as ACE2 or DPP4, and host proteases, such as TMPRSS2 or
furin. Host receptors are recognized by CoV spike proteins and the binding of receptor and S1 domain of S protein subsequently activates the conformational changes of S
protein. For host proteases, the serine protease TMPRSS2 is responsible for two distinct functions during the CoV infection, including an alternative pathway for viral entry
and activation of S protein for virus-cell fusion [128]. In parallel, the protease furin, which is predominantly expressed on the trans-Golgi network and intracellular vesicles,
activates the S protein by cleaving at the S1/S2 cleavage site, thus facilitating membrane fusion [129,130]. PPII inhibitors targeting host receptors and proteases may provide a
potent way to prevent CoV from entering host cells during the early stages of infection. During later stages of infection, N protein dimerization and interaction with viral RNA
is required for formation of RNP complexes and viral assembly. Targeting N dimers using a PPII strategy is a potential mechanism of inhibiting late steps of viral production.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 2
Examples of PPII modulators against SARS-CoV/ SARS-CoV-2.

Name Virus Type Mechanism of inhibition Targets Ref

SSAA09E2 SARS-CoV Small molecule Disturbing S-ACE2 interaction PPII of S-ACE2
complex

[75]
VE607 SARS-CoV [76]
Methylene blue SARS-CoV-2 [77]
Diammonium Glycyrrhizinate SARS-CoV-2 [78]
corilagin SARS-CoV-2 [79]
CB6 SARS-CoV-2 Antibody [80]
B38 SARS-CoV-2 [81]
311mab-31B5 and 311mab-32D4 SARS-CoV-2 [85]
COVA2-15 SARS-CoV-2 [86]
IgG1 ab1 SARS-CoV-2 [87]
hrsACE2 SARS-CoV-2 Soluble peptide analogues of

ACE2
[83]

ACE2-Ig SARS-CoV-2 [88]
EK1C4 SARS-CoV-2 Lipopeptide Disturbing 6-HB formation of S

protein
S protein [90]

Arbidol SARS-CoV-2 Small molecule Modulating S protein trimerization [96,127]
S471-503 SARS-CoV Soluble peptide analogues of S Disturbing S-ACE2 interaction host ACE2 [97]
438YKYRYL443 SARS-CoV host ACE2 [98]
Chloroquine SARS-CoV-2 Small molecule atypical PPI

inhibition
[105]

Octapeptide SARS-CoV-2 Peptide-based inhibitor Disturbing intra-dimer of 3CLpro 3C-like protease [108,109]
P3 SARS-CoV-2 Small molecule Stabilizing a non-native dimer of N-

NTD
Nucleocapsid
protein

[113]

Fig. 3. Main strategies for PPI modulator design against SARS-CoV-2. (A) Hot-spot for PPI inhibitor design against RBD-ACE2 complex. Structures of SARS-CoV-2 S protein RBD
in complex with ACE2 (PDB: 6LZG), CB6 (PDB: 7C01) and B38 (PDB: 7BZ5) complex are shown in cartoon. The RBDs of each structure are aligned to show the PPI suitable for
modulator design. (B) Hot-spot for PPI inhibitor design against fusion core region of S protein. SARS-CoV-2 6-HB structure is shown in cartoon with HR1 and HR2, colored in
green and cyan, respectively (PDB: 6LXT). (C) Hot-spot for PPI modulator design against S protein trimerization. (Left) Structure of SARS-CoV-2 S protein trimer (PDB: 6VSB).
The trimeric interface is enlarged in the middle. (Right) Structure of the influenza HA in complex with arbidol (PDB: 5T6N). The arbidol target site of the trimeric interface is
enlarged in the middle. (D) Hot-spot for PPI inhibitor design against intra-dimer of 3CLpro. The structure of 3CLpro of SARS-CoV-2 (PDB:6Y2E) is aligned with that of SARS-
CoV (PDB: 1UK4). The key residues involved in dimerization are shown in stick representation. (E) Hot-spot for PPI stabilizer design against N-NTD. The structure of SARS-
CoV-2 N-NTD (PDB: 6M3M) is aligned to P3: MERS CoV N-NTD complex (PDB: 6KL6), the interacting residues are shown in sticks and highlighted in right box. The residues of
SARS-CoV-2 and MERS CoV N-NTD are shown in orange and yellow, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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neutralizing activities in host cells ectopically expressing hACE2.
Enzyme-linked immunosorbent assays (ELISA) and flow
cytometry-based blockade experiments proved that both antibod-
ies specifically bind to SARS-CoV-2 RBD and may disrupt the PPI
between RBD-ACE2 [85]. Brouwer et al. used an ELISA-based
approach with SARS-CoV-2 stabilized prefusion S protein to isolate
19 neutralizing antibodies from blood samples of three convales-
cent COVID-19 patients. One of them, COVA2-15, showed picomo-
lar neutralizing activity against infectious SARS-CoV-2. Single-
particle negative-stain electron microscopy (EM) revealed that
the COVA2-15 epitope partially overlapped with the binding region
of ACE2 in S protein, suggesting that the antibody may block recep-
tor engagement [86]. Li et al. also identified a potent monoclonal
antibody (mAb), IgG1 ab1, from large antibody libraries. ELISA
experiments revealed that IgG1 ab1 exhibited high-affinity to
RBD and competed with ACE2 in vitro. More importantly, IgG1
ab1 showed high therapeutic efficacy in an animal experiment of
SARS-CoV-2 infection [87].

Development of soluble peptide analogues of ACE2 is an alter-
native approach employed to compete with normal ACE2 for the
binding to S protein. Monteil et al. have shown that human recom-
binant ACE2 (hrACE2) reduced the replication of SARS-CoV-2 by a
factor 1000–5000 times in a cell model [83]. In addition, Hu et al.
connected the extracellular domain of human ACE2 with human
IgG-Fc to generate a novel recombinant protein (ACE2-Ig). This chi-
meric recombinant protein displayed high affinity for binding to
RBD of SARS-CoV2 and neutralized SARS-CoV-2 with potent effi-
cacy in vitro [88]. These developments highlight the promise of
using PPII inhibitors targeting the S-ACE2 complex as therapeutic
agents against SARS-CoV-2.

Another indirect way of disrupting the interaction between the
S protein and the host is by targeting regions of the protein
involved in membrane fusion (Fig. 3B). The S protein forms a 6-
helix bundle (6-HB) fusion core through two heptad repeats, HR1
and HR2, which brings the host and viral membranes close
together for fusion and infection [89]. The inhibition of the forma-
tion of viral 6-HB could be a strategy to interfere the viral entry. For
this purpose, Xia et al designed a series of lipopeptides against HR1
to disturb the formation of viral 6-HB. One of which, termed
EK1C4, showed the capacity as a potent fusion inhibitor, which
appeared to inhibit infection of several types of coronaviruses in
cells, including SARS-CoV-2 [90,91].

Based on the fact that S protein trimerization appeared to be the
rate limiting step in other types of coronavirus infections [92], it
has been suggested that manipulation of S protein trimerization
may be another strategy to block the viral entry of SARS-CoV-2
(Fig. 3C). Kalathyia et al. employed molecular dynamics simula-
tions to identify a highly conserved cavity within the S protein
homotrimer of SARS-CoV-2 which may serve as a novel drug target
for PPII inhibitor design [93]. Bongini et al. also performed molec-
ular docking to identify eight available compounds targeting the
trimer cavity which may interfere with trimerization of SARS-
CoV-2 S protein [94]. Arbidol, a broad-spectrum antiviral drug
against influenza, targets the trimerization interface of hemagglu-
tinin (HA) and inhibits virus-host cell fusion by stabilizing the pre-
fusion conformation of HA, which prevents further conformational
rearrangements required for membrane fusion [95]. Since the role
of HA in influenza is similar to S protein in SARS-CoV-2, arbidol is
now being used in a clinical trial for treatment of SARS-CoV-2. By
employing molecular dynamics and structural analysis, Vandakari
suggested that arbidol may target the SARS-CoV-2 spike glycopro-
tein employing a mechanism similar to that of influenza virus [96].

Host proteins such as ACE2, DPP4, TMPRSS2 or furin are also
considered targets for inhibition of viral entry. Liu et al. generated
a library comprising of peptides derived from S protein of SARS-
CoV for identifying the epitopes of SARS-CoV to target the ACE2
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receptors. They found one peptide, S471-503, which specifically
interfered with the interaction between the S-RBD and ACE2, and
inhibited SARS-CoV entrance in vitro [97]. By a similar approach,
Meyer et al. synthesized one hexapeptide (438YKYRYL443),
derived from SARS-CoV S-RBD, to bind to ACE2 and inhibit viral
entry [98] https://elsevier.proofcentral.com/en-us/landing-page.
html?token=c0d27m66064a67522d0470b27d0966 [99]. Several
substrate analogues have been proposed to target either furin or
TMRRSS2 for the inhibition of influenza. Although the exact mech-
anism has not been elucidated, these substrate analogues may
inhibit viral entry by inhibiting the interaction between furin
[100,101] or TMPRSS2 [102] and their respective substrates. Since
the host targets exhibit lower mutation rates, these results from
previous studies may provide an important basis to develop PPII
inhibitors against SARS-CoV-2.

It is worth noting that chloroquine, a repurposed anti-malarial
drug that has gained lots of attention in COVID-19 treatment
[103–105], has been proposed to reduce the affinity of SARS-CoV
S protein to ACE2 [106] by increasing endosomal pH. Hence,
chloroquine appears to be one atypical example for PPI inhibition
that does not directly involve PPIIs.

4.1.2. 3C-like protease (3CLpro)
The active form of 3CLpro is a dimer which cleaves the peptide

bond between a glutamine and a small amino acid (serine, alanine
or glycine). It is essential for processing the coronavirus polypro-
tein into its functional constituents [107]. In addition to the active
site, the intra-dimer PPII is also a valid target for drug development
(Fig. 3D). As a proof of concept, an octapeptide derived from the N-
terminus of SARS-CoV 3CLpro has been shown to disrupt protease
dimerization and inhibit viral replication [108,109]. The important
residues involved in dimerization of SARS-CoV 3CLpro, Arg4, Ser10,
Gly11, Glu14, Asn28, Ser139, Phe140, Ser147, Glu290, Arg298, all
are conserved in SARS-CoV-2. It is conceivable that the octapeptide
may also be active against SARS-CoV-2, and similar stratagems for
drug development against COVID-19 may be gleaned from this
example [110].

4.1.3. Nucleocapsid (N) protein
The N protein is a dimer which self-assembles with viral RNA to

form the ribonucleoprotein (RNP) particle [111,112]. Our group has
recently identified a novel non-native PPII between N protein
dimers of MERS-CoV [113]. Formation of the PPII inactivates the
N protein by occluding its essential RNA-binding site but requires
the presence of a ‘‘glue” molecule to stabilize the non-native con-
tacts. The shape of the non-native PPII is highly conserved among
other coronaviruses, making it a potential target for broad-
spectrum antivirals that may also be effective against SARS-CoV-
2 (Fig. 3E). Preliminary in vitro studies showed that at least one
compound was effective across MERS-CoV, SARS-CoV and mouse
hepatitis virus, and early studies assessing its efficacy against
SARS-CoV-2 appear to yield promising results. Elucidation of other
non-native PPIs among coronaviral proteins may contribute addi-
tional non-canonical targets for drug development.

4.1.4. PPIIs involving other proteins
The proteins listed above represent only a fraction of the possi-

ble targets for anti-COVID-19 drug development. For example, the
viral membrane (M) protein has long been known to interact with
the N protein and is also essential for virion assembly [114,115],
implying that the PPII between N-M may be another possible tar-
get. On a broader scale, Gordon et al used affinity-purification mass
spectrometry to discover 332 protein-protein interactions between
SARS-CoV-2 and humans [116]. However, these examples lack the
structural characterization of the interaction interface, thus limit-
ing their potential for PPII-based drug development.

https://elsevier.proofcentral.com/en-us/landing-page.html?token=c0d27m66064a67522d0470b27d0966
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4.2. In-silico exploration of potential PPII modulators against COVID-
19

Several computational studies have been carried out since the
early days of the COVID-19 outbreak. These can be broken down
into the following categories:

4.2.1. Identification of PPI networks
PPI networks provide a wealth of information about possible

pathogenesis mechanisms and drug interactions that may not be
evident using conventional approaches. For example, disease
mechanisms were revealed through comparative analyses of vari-
ous host-coronavirus protein interaction networks [117,118].
These PPI networks may also provide insights into possible drug
repurposing [119–121]. In addition, open PPI network databases
such as STRING-covid (https://string-db.org/cgi/covid.pl) and IMEx
coronavirus interactome [122] may provide novel potential targets
for the design of PPII modulators.

4.2.2. Modeling the interaction between potential PPII modulators and
binding proteins

Virtual screening through docking is generally cheap but does
not provide the free-energy information required for drug binding
affinity estimation. However, accurate simulations that do provide
the necessary energetic parameters for binding are usually time-
consuming and computationally (and monetary) expensive. The
Anton supercomputer developed by David Shaw and coworkers
promises to vastly reduce the computational time required to con-
duct such calculations [123]. The Anton has been used to model the
structure of several SARS-CoV-2 proteins, including the binding of
drug molecules to the trimeric S protein, and all the trajectories are
openly accessible and free of charge (for details, see https://www.
deshawresearch.com/downloads/download_trajectory_sarscov2.
cgi/). Modeling using less esoteric hardware have been carried out
for the binding of remdesivir, favilavir, and ribavirin to SARS-CoV-2
RdRp [124]. The interaction between remdesivir, chloroquine,
ciclesonide and niclosamide to ACE2 have also been modelled via
autodock simulations [125].
5. Future perspectives

The variety of approaches towards COVID-19 drug discovery
afforded by targeting PPIIs share a common goal: to find molecular
entities that can stop viral activity in its track. In fact, using a com-
bination of drugs targeting different PPIIs and conventional viral
targets in a ‘‘cocktail” formulation may provide the best chance
of inhibiting viral activity. From this perspective, the inherent vari-
ability of PPIIs provides an opportunity to diversify the chemical
space of COVID-19 drugs and may help avoid drug resistance
problems arising from the usage of drugs targeting a single mech-
anism. Another advantage to targeting PPIIs is the possibility to
develop broad-spectrum antivirals which may be useful against
other coronaviruses [113]. It is telling that three of the most impor-
tant emerging diseases of the century (SARS, MERS, and COVID-19)
are all caused by coronaviruses and having a coronavirus-specific
broad-spectrum drug may help avert the next coronavirus health
crisis.

One of the major obstacles to targeting PPIIs for drug discovery
is the lack of a starting scaffold for further development [126].
However, the case for COVID-19 is very different. Thanks to a
research intensity which has never been seen before in the history
of drug development, there are now several candidate molecules
available for repurposing tests or as leads for further development.
The main issue today is a lack of experimental validation of these
molecules. With the number of potential PPII-targeting compounds
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and biologics on the rise, there is an immediate need for increased
validation capacity among laboratories worldwide.

We believe that targeting PPIIs for drug development against
COVID-19 is a viable strategy that warrants further consideration
from the scientific community. This is especially true in the current
crisis, which unfortunately does not appear to be abating any time
soon. Development of PPII-targeting drugs may provide an addi-
tional piece in the arsenal of anti-coronaviral treatments, and we
sincerely hope that further studies in this direction will one day
help find a cure for COVID-19.
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