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A novel algorithm to detect 
non‑wear time from raw 
accelerometer data using deep 
convolutional neural networks
Shaheen Syed1*, Bente Morseth2, Laila A. Hopstock3 & Alexander Horsch1

To date, non-wear detection algorithms commonly employ a 30, 60, or even 90 mins interval or 
window in which acceleration values need to be below a threshold value. A major drawback of such 
intervals is that they need to be long enough to prevent false positives (type I errors), while short 
enough to prevent false negatives (type II errors), which limits detecting both short and longer 
episodes of non-wear time. In this paper, we propose a novel non-wear detection algorithm that 
eliminates the need for an interval. Rather than inspecting acceleration within intervals, we explore 
acceleration right before and right after an episode of non-wear time. We trained a deep convolutional 
neural network that was able to infer non-wear time by detecting when the accelerometer was 
removed and when it was placed back on again. We evaluate our algorithm against several baseline 
and existing non-wear algorithms, and our algorithm achieves a perfect precision, a recall of 0.9962, 
and an F1 score of 0.9981, outperforming all evaluated algorithms. Although our algorithm was 
developed using patterns learned from a hip-worn accelerometer, we propose algorithmic steps that 
can easily be applied to a wrist-worn accelerometer and a retrained classification model.

Accelerometer-based motion sensors have become a popular tool to measure and characterise daily physical 
activity (PA)1–4. The use of accelerometers in research and consumer applications has grown exponentially5, as 
accelerometers offer versatility, minimal participation burden, and relative cost efficiency6–8. As a result, accel-
erometers have become the standard tool for measuring PA in large epidemiological cohort studies9.

One essential step in the processing of accelerometer data is the detection of the time the accelerometer is 
not worn (non-wear time)10. Non-wear time can occur during sleep, sport, showering, water-based activities, or 
simply when forgetting to wear the accelerometer. Non-wear detection algorithms developed for count-based 
accelerometer data typically look for periods of zero acceleration within specified time intervals, such as 30, 60, 
or 90 mins intervals11–13. Unfortunately, the accuracy of current count-based non-wear algorithms is sub-optimal 
as they frequently misclassify true wear time as non-wear time (type I error)14, especially during episodes of 
sleep and sedentary behaviour15–18.

During recent years, with technological advances, accelerometers are able to record and store raw acceleration 
data (in gravity units [g]) over three axes with sample frequencies up to 100Hz or more5. The use of raw data 
opens up new analytical methods and, in contrast to count-based methods8, could enable a direct comparison of 
the data obtained from different accelerometer devices5. However, the development of non-wear algorithms for 
raw acceleration data has received little attention, despite the widespread adoption of raw accelerometer sensors 
in PA related studies. These algorithms typically examine the standard deviation (SD) and acceleration value 
ranges of the acceleration axes within a certain time interval and associate low values with non-wear time19,20. In 
addition, a recent study has evaluated and proposed other means of determining non-wear time, such as inspect-
ing acceleration values when filtering the data (high-pass filter), or by inspecting changes in tilt angles (slope)21.

However, all current algorithms employ a rather long minimum time interval (e.g. 30, 60, or even 90 mins) 
in which a specific measure (e.g. the SD, vector magnitude unit (VMU) or tilt) needs to be below a threshold 
value. The underlying rationale for using such a time interval is arguably based on analytic approaches adopted 
from traditional count-based algorithms5. A major drawback of algorithms employing a time interval is that 
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any non-wear episode shorter than the interval cannot be detected. This would negatively impact the recall 
(also referred to as sensitivity) performance and can cause an increase in false negatives or type II errors; true 
non-wear time inferred as wear time. In other words, it is rather safe to assume that an interval of 60 mins of no 
activity can be considered non-wear time, albeit that this assumption comes at a cost.

To remedy the above, and to fully unlock the potential of raw accelerometer data, this paper explores an 
analytical method frequently employed in activity type recognition studies. That is, the use of deep neural 
networks to detect activity types such as jogging, walking, cycling, sitting, and standing22–27, as well as more 
complex activities such as smoking, eating, and falling28,29. Following this line of research, we hypothesise that 
episodes of non-wear time precede and follow specific activities or movements that can be characterised as tak-
ing off the accelerometer and placing it back on, and that such activities can be detected through the use of deep 
neural networks. In doing so, we can distinguish episodes of true non-wear time from episodes that only show 
characteristics of non-wear time, but are in fact wear time.

We utilised a gold-standard dataset with known episodes of wear and non-wear time constructed from two 
accelerometers and electrocardiogram (ECG) recordings14. This gold-standard dataset contains thus ground-truth 
labels of wear and non-wear time that were detected by calculating discrepancies between two accelerometers 
worn at the same time, including one which additionally recorded ECG and derived heart rate14. We trained 
several convolutional neural networks to classify activities that precede and follow wear and non-wear time. In 
doing so, we aimed to develop a novel algorithm to detect non-wear time from raw acceleration data that can 
detect non-wear time episodes of any duration, thus removing the need for currently employed time intervals. 
To evaluate the performance of our algorithm, we compared it with several baseline and previously developed 
non-wear algorithms that work on raw data19–21.

Methods
Gold‑standard dataset.  The gold-standard dataset was constructed from a dataset containing raw accel-
erometer data from 583 participants of the Tromsø Study, a population-based cohort study in the municipality 
of Tromsø in Norway, and includes seven data collection waves taking place between 1974 and 201630,31. Our 
dataset was acquired in the seventh wave of the Tromsø Study. Tromsø 7 was approved by the Regional Commit-
tee for Medical Research Ethics (REC North ref. 2014/940) and the Norwegian Data Protection Authority, and 
all participants gave written informed consent. The usage of data in this study has been approved by the Data 
Publication Committee of the Tromsø Study. Furthermore, all methods were carried out in accordance with 
relevant guidelines and regulations (i.e. Declaration of Helsinki).

The dataset contains, for each of the 583 participants, raw acceleration data recorded by an ActiGraph model 
wGT3X-BT accelerometer (ActiGraph, Pensacola, FL) with a dynamic range of ±8 g (1g = 9.81 ms−2). The 
ActiGraph recorded acceleration in gravity units g along three axes (vertical, mediolateral and anteroposterior) 
with a sampling frequency of 100Hz. In addition, this dataset contains data from the simultaneously worn Acti-
wave Cardio accelerometer (CamNtech Ltd, Cambridge, UK) with a dynamic range of ± 8 g that recorded raw 
acceleration data along three axes, as well as a full single-channel ECG waveform. The dataset consisted of data 
from 267 (45.8%) males and 316 (54.2%) females aged 40–84 (mean = 62.74; SD = 10.25). The participants had 
a mean height of 169.81 cm (SD = 9.35), a mean weight of 78.31 kg (SD = 15.27) and a mean body mass index 
of 27.06 kg/m2 (SD = 4.25).

Based on this dataset, a gold-standard dataset with labelled episodes of true non-wear time was constructed by 
training a machine learning classifier that focused on discrepancies between the various signals. The procedure 
is explained in detail in our previous study14, and also details information regarding the frequency of non-wear 
episodes, their duration and distribution over the course of a day. The constructed gold-standard dataset contains 
start and stop timestamps for episodes of true non-wear time derived from raw triaxial 100 Hz ActiGraph accel-
eration data, and will serve as ground truth labels in subsequent steps of our proposed algorithm. Henceforth, the 
Actiwave Cardio data has not been used since it was only used in the construction of the gold-standard dataset.

Finding candidate non‑wear episodes.  The proposed raw non-wear detection algorithm works on the 
basis of candidate non-wear episodes that are defined as episodes of no activity that show characteristics of true 
non-wear time but cannot yet be classified as true non-wear time. Candidate episodes occur during actual non-
wear time, in which a candidate episode becomes an episode of true non-wear time, but they can also occur 
during sedentary behaviour or sleeping since the accelerometer records no movement for a certain amount of 
time. For illustrative purposes, acceleration data with several candidate non-wear episodes are shown in the 
Supplementary Fig. S1.

Candidate non-wear episodes were detected by calculating the SD of the raw triaxial data for each 1-min 
interval. By visual inspection of the data, a SD threshold of ≤ 4.0 mg (0.004 g), recognisable by horizontal or flat 
plot lines, was found appropriate to obtain candidate non-wear episodes. More concretely, lowering this threshold 
would not detect any episode of physical inactivity, meaning that 4.0 mg is very close to the accelerometer’s noise 
level. Consecutive 1-min intervals were grouped into candidate non-wear episodes. Additionally, a forward and 
backward pass over the acceleration data for each of the candidate non-wear episode were performed to detect 
the edges on a 1-s resolution, that is, the exact point in which an episode of no activity (i.e. SD ≤ 4.0 mg) follows 
or precedes some activity (i.e. SD > 4.0 mg). For each candidate episode, the exact start and stop timestamp on 
a 1-s resolution was recorded.

Creating features.  The next step in the construction of the non-wear algorithm was to detect the activity 
associated with taking off the accelerometer and putting the accelerometer back on, from background activity (i.e. 
activity that occurs before and after a candidate non-wear episode that is not true non-wear time). In doing so, 
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we extracted a segment or window of raw triaxial acceleration data right before (i.e. preceding) and right after 
(i.e. following) a candidate non-wear episode, and used the raw triaxial acceleration data as features.

Different features were created by varying the window size from 2–10 s, since the optimal window size was 
unknown at that point. Technically, a preceding feature is extracted from tstart − w up to tstart , where tstart is the 
start timestamp of the episode in seconds and w is the window size in seconds. The following feature is extracted 
from tstop until tstop + w , with tstop marking the end of an episode; for example, a preceding feature with a 5-s 
window would yield a (100 Hz × 5 s) by (3 axes) = (500 × 3) matrix. In addition, by utilising our labelled gold-
standard dataset, each constructed feature was either given the label 0, if it preceded or followed wear time, or 1, 
if it preceded or followed non-wear time; no differences were made between start and stop events. To illustrate 
this, Fig. 1 displays several start and stop segments from candidate non-wear episodes from where the features 
were extracted. Importantly, no additional filtering or pre-processing was performed on the raw data, and features 
belonging to the minority classes were up-sampled by random duplication so as to create a class balanced dataset.

Training a deep neural network.  Convolutional neural networks (CNN) are designed to process data in 
the form of multiple arrays32. CNNs are able to extract the local dependency (i.e. nearby signals that are likely to 
be correlated) and scale invariant (i.e. scale-invariant for different paces or frequencies) characteristics from the 
feature data27. The 1-dimensional (1D) CNN is particularly suitable for signal or sequence data such as accel-
erometer data32 and, to date, 1D CNNs have successfully been applied for human activity recognition28,33, and 
outperform classical machine learning models on a number of benchmark datasets with increased discrimina-
tive power34.

A total of four 1D CNN architectures were constructed and trained for the binary classification of our features 
as either belonging to true non-wear time or to wear time episodes. Figure 2 shows the four proposed architec-
tures labelled V1, V2, V3, and V4. The input feature is a vector of w × 3 (i.e. three orthogonal axes), where w is 
the window size ranging from 2–10 s (note that a single second contains 100 datapoints for our 100Hz data). In 
total, 9 × 4 = 36 different CNN models were trained. CNN V1 can be considered a basic CNN with only a single 
convolutional layer followed by a single fully connected layer. CNN V2 and V3 contain additional convolutional 
layers with different kernel sizes and numbers of filters. Stacking convolutional layers enables the detection of 
high-level features, unlike single convolutional layers. CNN V4 contains a max pooling layer after each convolu-
tional layer to merge semantically similar features while reducing the data dimensionality32. A CNN architecture 
with max pooling layers has shown varying results, from increased classification performance33 to pooling layers 
interfering with the convolutional layer’s ability to learn to down sample the raw sensor data34. All proposed CNN 
architectures have a single neuron in the output layer with a sigmoid activation function for binary classification.

Training was performed on 60% of the data, with 20% used for validation and another 20% used for testing. 
All models were trained for up to 250 epochs with the Adam optimiser35 and a learning rate of 0.001. Loss was 
calculated with binary cross entropy and, additionally, early stopping was implemented to monitor the valida-
tion loss with a patience of 25 epochs and restore weights of the lowest validation loss. This means that training 
would terminate if the validation loss did not improve for 25 epochs, and the best model weights would be 

Figure 1.   Start or the stop segments of candidate non-wear episodes where features of a length of 2–10 s were 
extracted; (a) start or stop episodes of true non-wear time, (b) start or stop episodes of wear time.
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restored. All models were trained on 2 × Nvidia RTX 2080TI graphics cards and programmed in the Python 
library TensorFlow (v2.0)36.

Inferring non‑wear time from raw acceleration data.  At this stage, the trained CNN model can only 
classify the start and stop windows of a candidate non-wear episode. To fully detect non-wear episodes from raw 
acceleration data, the following four steps were applied to the algorithm.

Detecting candidate non‑wear episodes.  As discussed in the previous section, detecting candidate non-wear 
episodes was based on a forward pass through the raw acceleration data to detect 1-min intervals in which the 
acceleration has a SD of ≤0.004 g. Consecutive 1-min intervals below this threshold are merged together and 
considered a single candidate non-wear episode; these episodes formed the basis of the non-wear detection 
algorithm.

Merging bordering candidate non‑wear episodes.  Due to artificial movement, a potentially longer non-wear 
episode might be broken up into several candidate non-wear episodes that are in close proximity to each other. 
More concretely, the forward search for 1-min intervals with ≤ 0.004 g SD threshold would not include the 
1-min interval in which artificial movement (i.e. a spike in the acceleration) occurred. As a result, when merg-
ing together consecutive 1-min intervals, the artificial movement stops this consecutive sequence. The duration 
of the artificial movement can also vary; for example, moving the accelerometer from the bathroom to the 
bedroom will take longer than a nudge or touch while the accelerometer lies on a table or nightstand. The first 
hyperparameter of the algorithm defines the merging length, and five different values of 1, 2, 3, 4, and 5 mins 
were explored; for example, a merging length of 2 mins means that two candidate non-wear episodes that are no 
more than 2 mins apart are merged together into a single longer candidate non-wear episode.

Detecting the edges of candidate non‑wear episodes.  Candidate non-wear episodes were detected with a minute 
resolution (i.e. by using a 1-min interval). However, as it was necessary to determine what happened immedi-
ately before (preceding) or immediately after (following) an episode, this resolution was too low. To find the 
exact timestamp when a candidate non-wear episode started and stopped, a forward and backwards search on 
a resolution of 1-s was performed. More concretely, the edges were incrementally extended, and the SD was 
calculated for each extended 1-s interval. When it remained ≤ 0.004 g, the search was continued. This was done 
forwards to find the exact end of an episode, and backwards to find the exact start of an episode.

It is important to note that the detection of candidate non-wear episodes could have been performed with 
1-s intervals, rather than with 1-min intervals. The latter, however, is computationally faster and eliminated the 
detection of a high number of unwanted candidate non-wear episodes that were only a few seconds in duration.

Classifying the start and stop windows.  Activity preceding the start of a candidate non-wear episode was 
extracted with a window length of 2–10 s, as well as activity that followed from the end of the candidate non-
wear episode with a window length of 2–10 s. The exact window length was dependent on the best F1 clas-
sification performance measured on the (unseen) test set of the CNN model constructed and described in the 
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Figure 2.   Overview of the four convolutional neural network architectures used for binary classification of start 
and stop features extracted from wear and non-wear episodes. Before the first fully connected layer, the output 
data from the previous layer is flattened.
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previous section. After class inference of both the start and stop activity, two logical operators AND and OR were 
inspected to determine if both sides or a single side resulted in a better detection of true non-wear time. This 
logical operator was the second hyperparameter to be optimised, and it can take on two different values: AND for 
both sides and OR for a single side. In addition, candidate non-wear episodes can occur at the start or the end 
of the acceleration signal and, as such, a preceding or following window cannot be extracted since there is no 
data. It was also investigated if such cases should default to wear or non-wear time. Default classification for the 
beginning or end of the activity data was the third hyperparameter to be optimised and this could default to two 
different values: non-wear time or wear time.

A total of 5 × 2 × 2 = 20 different combinations of hyperparameter values were tested to explore their clas-
sification performance on the gold-standard dataset. To prevent these parameterisations from overfitting to the 
dataset, their performance on a random sample of 50% (training set) of the participants from our gold-standard 
dataset was explored, that is n = 291, as well as their classification performance on the remaining unseen 50% 
(test set) of the participants. In doing so, the aim was to provide hyperparameter values that can generalise to 
other datasets.

Calculating classification performance.  The classification performance is calculated when applying the 
CNN classification model and the steps described in the previous section to the gold-standard dataset compris-
ing raw acceleration data from 583 participants. True non-wear time inferred as non-wear time contributed to 
the true positives (TP), and true wear time inferred as wear time contributed to the true negatives (TN). Both 
TPs and TNs are necessary to obtain a high accuracy of the non-wear time algorithm, as they are the correctly 
inferred classifications. True non-wear time inferred as wear time contributed to the false negatives (FN), and 
true wear time inferred as non-wear time contributed to the false positives (FP). The FPs, TPs, FNs, and TNs 
were calculated by looking at 1-s intervals of the acceleration data and comparing the inferred classification with 
the gold-standard labels. This process is graphically displayed in Supplementary Fig. S2.

Both FNs and FPs will result in an overall lower accuracy, which is calculated by TP+TN
TP+TN+FP+FN  . Besides 

accuracy, we calculated three other classification performance metrics: (i) Precision was calculated as TP
TP+FP , (ii) 

recall as TP
TP+FN  , and (iii) F1 as the harmonic mean of precision and recall, 2× precision×recall

precision+recall . Recall represents 
the fraction of correctly inferred non-wear time in relation to all the true non-wear time—in medicine, this 
is also known as sensitivity. Precision shows the fraction of correctly inferred non-wear time in relation to all 
inferred non-wear time.

Evaluating classification performance.  Our proposed non-wear algorithm was evaluated against the 
performance of several baseline and existing non-wear detection algorithms19,20.These baseline algorithms 
employ a similar analytical approach commonly found in count-based algorithms11–13, that is, detecting episodes 
of no activity by using an interval of varying length.

The first baseline algorithm detected episodes of no activity when the acceleration data of all three axes 
had a SD threshold of ≤ 0.004 g, ≤ 0.005 g, ≤ 0.006 g, and ≤ 0.007 g and the duration did not exceed an interval 
length of 15, 30, 45, 60, 75, 90, 105, or 120 mins. A similar approach was proposed in another recent study as 
the SD_XYZ method21, although the authors fixed the threshold to 13 mg and the interval to 30 mins for a wrist 
worn accelerometer. Throughout this paper, the first baseline algorithm is referred to as the XYZ algorithm.

The second baseline algorithm was similar to the first baseline algorithm, albeit that the SD threshold was 
applied to the vector magnitude unit (VMU) of the three axes, where VMU is calculated as 

√

acc2x + acc2y + acc2z  , 
with accx , accy , and accz referring to each of the orthogonal axes. A similar approach has recently been proposed 
as the SD_VMU algorithm21. Throughout this paper, this baseline algorithm is referred to as the VMU 
algorithm.

Last, our algorithm is evaluated against the Hees algorithms (details of which can be found in the open source 
library GGIR37) with a 30 mins interval19, a 60 mins interval20, and a version with optimised hyperparameters 
and a 135 mins interval14. Throughout this paper, these three algorithms are referred to as HEES_30, HEES_60, 
and HEES_135, indicating their interval length in minutes. Additionally, the sliding window used in the Hees 
algorithms has been lowered to 1 min, instead of the default 15 mins, to make it similar to the sliding window 
used in the other evaluated algorithms.

Results
Convolutional neural network.  Figure 3 presents the classification performance of the four evaluated 
CNN architectures. The V2 CNN architecture obtains near perfect F1 scores on the training (60%), validation 
(20%) and test set (20%) with window sizes ranging from 3–7 s. Also, with similar training, validation, and test 
scores, the models show no signs of overfitting to the training data. The V2 architecture also outperforms the V1, 
V3, and V4 proposed architectures in terms of accuracy, precision, recall, and F1. The simpler V1 architecture—
consisting of a single convolutional layer and a single fully connected layer—outperforms the more complex 
architectures V3 and V4, though all architectures were trained for a sufficient number of epochs. This improve-
ment holds for all datasets (training, the validation, and test set). The V4 architecture, that implements max 
pooling layers as a way to downsample the features and is otherwise identical to V2, does not seem to perform 
as well as the V2 architecture in terms of performance measured during the training, validation, and test sets.

Looking at the V2 architecture, a window size of 3 s provides a marginal increase in F1 performance on the test 
set (0.995) when compared to the 2 s window (0.987). Further increasing the window to 7 s shows a very minor 
increase in F1 performance on the test set (0.996), however, taking into account the 95% confidence interval 
for the 7 s window (± 0.00512), the difference between the CNN models with a 3–6 s window is not statistically 
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significant. For the remainder of the results, the V2 CNN model with a window size of 3 s was selected as the 
CNN model to infer if start and stop segments of candidate non-wear time belong to true non-wear time or to 
wear time episodes. Furthermore, by using a 3-s window, compared to a 7-s window, there is a reduction in the 
input feature dimensions from (700 × 3 axes) to (300 × 3 axes) for 100 Hz data, resulting in the CNN model 
having 144,031 parameters instead of 344,031. An overview of the training and validation loss, including the 
performance metrics accuracy, precision, recall, F1, and area under the curve (AUC) are presented in the Sup-
plementary Fig. S3.

Non‑wear time algorithm hyperparameters.  The ability to classify start and stop segments of a can-
didate non-wear episode is one function of the proposed algorithm. As outlined in the “Methods” section, there 

Figure 3.   Accuracy, precision, recall, and F1 performance metrics for training data (60%), validation data 
(20%), and test data (20%) for the four architectures evaluated. All CNN models were trained for a total of 
250 epochs with early stopping enabled, a patience of 25 epochs, and restoring of the best weights when the 
validation loss was the lowest.
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are remaining steps that involve traversing the raw triaxial data and handling the following cases: (i) artificial 
movement by merging neighbouring candidate non-wear episodes; (ii) inspecting two logical operators AND 
and OR to determine if the start and stop segments combined (i.e. AND) or a single side (i.e. OR) results in a better 
detection of true non-wear time; and (iii) candidate non-wear episodes at the beginning or end of the accelera-
tion signal that have no preceding start or following end segment. Table 1 presents the classification performance 
of detecting true non-wear time episodes from a random sample of 50% (i.e. training data) of the participants 
from the gold-standard dataset when utilising the CNN v2 architecture with a window size of 3 s and exploring 
20 combinations of hyperparameter values.

The best F1 score (0.9997 ± 0.0013) on the training set was achieved by: (i) merging neighbouring candidate 
non-wear episodes that are a maximum of 5 mins apart from each other, (ii) using the logical operator AND 
(meaning both start and stop segments need to be classified as non-wear time to subsequently classify the can-
didate non-wear episode into true non-wear time), and (iii) default start and stop segments to non-wear time 
when they occur right at the start or end of the acceleration signal. Using these hyperparameter values on the 
remaining 50% of our gold-standard dataset (i.e. test data) achieved similar results: accuracy of 0.9999 (± 0.0006), 
precision of 1.0 (± 0.0), recall of 0.9962 (± 0.005), and F1 performance of 0.9981 (±0.0035). In summary, the 
proposed algorithm is able to achieve near perfect performance on the training and test dataset when detect-
ing non-wear episodes, both in terms of the ability to correctly classify an episode as true non-wear time (high 
precision), as well as the ability to detect all available non-wear time episodes present in the dataset (high recall).

Non‑wear time algorithm steps.  Based on the results presented in Table 1, and the steps outlined in the 
“Methods” section, the complete algorithm is presented below.

Detect candidate non‑wear episodes.  Perform a forward pass through the raw acceleration signal and calculate 
the SD for each 1-min interval of each axis. If the standard deviation is ≤ 0.004 g for all axes, record this 1-min 
interval as a candidate non-wear interval. After all of the 1-min intervals have been processed, merge consecu-
tive 1-mins intervals into candidate non-wear episodes and record their start and stop timestamps.

Merge bordering candidate non‑wear episodes.  Merge candidate non-wear episodes that are no more than 5 
mins apart and record their new start and stop timestamps. This step is required to capture artificial movement 
that would typically break up two or more candidate non-wear episodes in close proximity.

Table 1.   The classification of accuracy, precision, recall, and F1 performance metrics when applying the new 
algorithm on 50% of the available data (n = 291/583) while exploring 20 combinations of hyperparameter 
values; 95% confidence intervals are shown between parentheses. Merge (mins) = the merging of neighbouring 
candidate non-wear episodes to handle artificial movement. Logical operator = AND if both start and stop 
segments or OR if only one side of a candidate non-wear episode needs to be classified as true non-wear time to 
subsequently classify the candidate non-wear episode as an episode of true non-wear time. Edge default = the 
default classification of a candidate non-wear episode that has no start or end segment, such cases that occur 
right at the beginning or end of the acceleration data and default to wear or non-wear time.

Merge (mins) Logical operator Edge default Accuracy Precision Recall F1

5 AND Non-wear time 1.0 (± 0.0003) 0.9995 (± 0.0019) 1.0 (± 0.0) 0.9997 (± 0.0013)

4 AND Non-wear time 0.9997 (± 0.0013) 0.9995 (± 0.0019) 0.9889 (± 0.0085) 0.9941 (± 0.0062)

4 OR Wear time 0.999 (± 0.0026) 0.9551 (± 0.0168) 0.9993 (± 0.0022) 0.9767 (± 0.0123)

3 OR Wear time 0.9989 (± 0.0026) 0.9552 (± 0.0168) 0.9979 (± 0.0038) 0.9761 (± 0.0124)

5 OR Wear time 0.9989 (± 0.0027) 0.9498 (± 0.0177) 1.0 (± 0.0) 0.9742 (± 0.0129)

3 AND Non-wear time 0.9974 (± 0.0041) 1.0 (± 0.0) 0.8785 (± 0.0265) 0.9353 (± 0.02)

2 OR Wear time 0.9971 (± 0.0044) 0.9437 (± 0.0187) 0.9203 (± 0.022) 0.9319 (± 0.0205)

1 OR Wear time 0.9962 (± 0.005) 0.9158 (± 0.0225) 0.9037 (± 0.0239) 0.9097 (± 0.0233)

3 OR Non-wear time 0.9955 (± 0.0054) 0.828 (± 0.0306) 0.9979 (± 0.0038) 0.905 (± 0.0238)

2 OR Non-wear time 0.9954 (± 0.0055) 0.8244 (± 0.0309) 0.9971 (± 0.0044) 0.9026 (± 0.0241)

1 OR Non-wear time 0.9949 (± 0.0058) 0.8184 (± 0.0313) 0.9805 (± 0.0112) 0.8922 (± 0.0252)

4 OR Non-wear time 0.9948 (± 0.0059) 0.8045 (± 0.0322) 0.9993 (± 0.0022) 0.8913 (± 0.0253)

5 OR Non-wear time 0.9944 (± 0.0061) 0.7924 (± 0.0329) 1.0 (± 0.0) 0.8841 (± 0.026)

2 AND Non-wear time 0.9954 (± 0.0055) 1.0 (± 0.0) 0.7862 (± 0.0333) 0.8803 (± 0.0264)

1 AND Non-wear time 0.994 (± 0.0063) 1.0 (± 0.0) 0.7202 (± 0.0364) 0.8373 (± 0.03)

5 AND Wear time 0.9908 (± 0.0077) 0.9991 (± 0.0025) 0.5736 (± 0.0401) 0.7288 (± 0.0361)

4 AND Wear time 0.9906 (± 0.0078) 0.9991 (± 0.0025) 0.5625 (± 0.0403) 0.7197 (± 0.0365)

3 AND Wear time 0.9888 (± 0.0086) 1.0 (± 0.0) 0.4763 (± 0.0405) 0.6452 (± 0.0388)

2 AND Wear time 0.9887 (± 0.0086) 1.0 (± 0.0) 0.4742 (± 0.0405) 0.6433 (± 0.0389)

1 AND Wear time 0.9873 (± 0.0091) 1.0 (± 0.0) 0.4082 (± 0.0399) 0.5797 (± 0.0401)
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Detect the edges of candidate non‑wear episodes.  Perform a backward pass with a 1-s step size through the accel-
eration data from the start timestamp of a candidate non-wear episode and calculate the SD for each axis. The 
same is applied to the stop timestamps with a forward pass and a step size of 1 s. If the SD of all axes is ≤ 0.004 
g, include the 1-s interval in the candidate non-wear episode and record the new start or stop timestamp. Repeat 
until the SD of the 1-s interval does not satisfy the SD threshold ≤ 0.004 g. This results in the resolution of the 
edges now being recorded on a 1-s resolution.

Classifying the start and stop windows.  For each candidate non-wear episode, extract the start and stop segment 
with a window length of 3 s to create input features for the CNN classification model. For example, if a candidate 
non-wear episode has a start timestamp of tstart , a feature matrix is created as (tstart−w : tstart) x 3 axes (where w 
= 3 s), resulting in an input feature with dimensions of 300 × 3 for 100 Hz data. If both start and stop features 
(i.e. logical AND) are classified (through the CNN model) as non-wear time, the candidate non-wear episode can 
be considered true non-wear time. If tstart is t = 0 , or tend is at the end of the acceleration data, those candidate 
non-wear episodes do not have a preceding or following window to extract features from, the start or stop can 
be, by default, classified as non-wear time.

Evaluation against baseline and existing non‑wear algorithms.  Figure 4 presents the F1 perfor-
mance of the two baseline algorithms as outlined in the “Methods” section. Figures S4 and S5 in the Supplemen-
tary Information provides, in additional to the F1 scores, the performance metrics accuracy, precision, and recall 
for the XYZ and VMU baseline algorithms respectively. As shown in Fig. 4, increasing the SD threshold from 
0.004 g to a higher value resulted in an F1 performance loss for both the XYZ and VMU baseline algorithms. The 
XYZ algorithm achieved the highest F1 score with a SD threshold of ≤ 0.004 g and an interval length of 90 mins; 
further increasing the interval to 105 or 120 mins is associated with lower F1 scores, 0.836 and 0.829 respectively. 
The use of longer intervals resulted in non-wear episodes that were shorter than the interval to not be detected, 
which caused the recall score to be lower. At the same time, shortening the interval length resulted in a higher 
recall but a lower precision score (Supplementary Fig. S4). The optimal F1 score for the VMU baseline algorithm 
(0.839) was achieved with a SD threshold of ≤ 0.004 g and an interval length of 105 mins. The VMU algorithm 
shows a similar pattern to the XYZ algorithm with respect to balancing the trade-off between capturing more 
non-wear time (higher recall) with shorter intervals, at a cost of lowering the precision (Supplementary Fig. S5), 

Figure 4.   The F1 classification performance of the XYZ baseline algorithm (left), and the VMU baseline 
algorithm (right). Note that a SD threshold of 0.003 g performed poorly as it is below the accelerometer noise 
level and is therefore not shown. See Supplementary Figs. S4 and  S5 for accuracy, precision, and recall scores.

Figure 5.   A comparison of the classification performance metrics of the best performing baseline models 
XYZ_90 (i.e. calculating the standard deviation of the three individual axes and an interval length of 90 
mins), VMU_105 (i.e. calculating the standard deviation of the VMU and an interval length of 105 mins), the 
HEES_30 algorithm with a 30 mins interval, the HEES_60 with a 60 mins interval, the HEES_135 with tuned 
hyperparameters and a 135 mins interval, and the proposed CNN algorithm. Error bars represent the 95% 
confidence interval.
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or using longer intervals to detect less overall non-wear time (lower recall), in favour of being more certain that 
the inferred non-wear time is true non-wear time (higher precision).

Besides baseline algorithms, the raw non-wear algorithms developed by van Hees and colleagues with a 30 
mins interval19 (HEES_30), a later published 60-mins interval20 (HEES_60), and one with a 135-mins interval and 
tuned hyperparameters14 (HEES_135) were also evaluated. Figure 5 presents an overview of the obtained clas-
sification performance data (precision, recall, and F1) of all evaluated non-wear algorithms against the proposed 
CNN algorithm. The HEES_135 algorithm with tuned hyperparameters outperformed the default HEES_30 and 
HEES_60 algorithms with an F1 score of 0.885. In addition, HEES_135 outperformed the best performing base-
line algorithm, XYZ (F1 = 0.84) with a 90-mins interval (i.e. XYZ_90), as well as the VMU baseline algorithm, 
(F1 = 0.839) with a 105-min interval (i.e. VMU_105). However, the proposed CNN method outperformed all 
evaluated non-wear algorithms with a near perfect F1 score of 0.998.

Discussion
In this paper, we proposed a novel algorithm to detect non-wear time from raw accelerometer data through the 
use of deep convolutional neural networks and insights adopted from the field of physical activity type recogni-
tion 22–29. We utilised a previously constructed gold-standard dataset14 with known episodes of true non-wear 
time from 583 participants, and were able to achieve an F1 score of 0.998, outperforming baseline algorithms 
and existing non-wear algorithms19,20.

The main advantage of the proposed algorithm is the absence of a minimum interval (e.g. 30 mins or 60 mins) 
in which a specific metric (e.g. SD) needs to be below a threshold value (e.g. 4 mg). Currently, all existing raw 
and epoch-based non-wear algorithms adopt a minimum interval and have to balance between precision and 
recall14. In other words, a short interval increases the detection of all present non-wear time (higher recall), at 
the cost of incorrectly inferring wear time as non-wear time (lower precision). Alternatively, a longer interval 
decreases the detection of all present non-wear time (lower recall), but those detections are more certain to be 
true non-wear time (higher precision); this trade-off has been discussed at length in our previously published 
study14. A similar finding is shown in Fig. 5, where HEES_30 achieved a better recall score (0.85) compared to 
HEES_60 (0.808) but performed poorly on the precision metric (0.234) in comparison to HEES_60 (0.772); 
here both HEES_30 and HEES_60 are identical algorithms with the only difference being the interval length.

In line with the above, a larger interval caused a stronger increase in precision scores than a decrease in recall 
score, subsequently resulting in an overall higher F1 score. In other words, larger intervals perform better in the 
overall detection and correct classification of both wear and non-wear time; which is what is captured by the F1 
metric. In fact, as can be seen from Fig. 5, some of the evaluated baseline and existing non-wear algorithms were 
able to achieve very high precision scores of 0.971 (VMU_105), 0.967 (XYZ_90), and 0.98 (HEES_135). These 
results show that the evaluated algorithms can be near perfect in their ability to correctly classify an episode into 
true non-wear time without too many false positives (type I error). However, a major drawback is that longer 
intervals cannot detect episodes of non-wear time shorter than the interval. This is a major shortcoming of non-
wear algorithms to date and causes their ability to detect all the available non-wear time within the data to be 
sub-optimal. As a direct consequence, true non-wear episodes shorter than the interval will be inferred as wear 
time, which can result in an increase of false negatives or type II errors. For datasets with a high frequency of 
short non-wear time episodes, this can cause derived PA summary statistics to be incorrect, especially summary 
statistics that are relative to the amount of activity detected. Our proposed CNN algorithm did not perform better 
on the precision score, however, by not relying on an interval, it was able to detect even the shortest episodes of 
non-wear time; this enabled the recall score to be high and, as a consequence, resulted in a higher F1 score as well.

As per our analysis, the CNN v2 architecture achieved the highest F1 score on the training, validation, and 
test set, making it superior to the CNN v3 architecture with a higher number of convolutional kernels and filters 
in each layer. The CNN v3 architecture starts to overfit to the training data and results in lower classification 
performance on the validation set; which cause model training to stop with early stopping enabled. Although 
not explored, regularization methods such as several dropout layers38 will likely prevent overfitting and can 
potentially increase the performance of the CNN v3 architecture. The CNN v4 architecture with max pooling 
layers, which essentially down-samples the features, shows sub-optimal performance compared to the architec-
ture without max pooling layers (i.e., CNN v2). This effect is in line with previous research where max pooling 
layers weakens the classification performance of the model34.

Hyperparameter values.  The explored hyperparameter “Edge default” has the risk of being dataset spe-
cific, despite our efforts to train on 50% of the data and test on the remaining, unseen, 50%. Its default classifica-
tion to wear time for episodes without a start or stop segment (those at the beginning or end of the activity data) 
can be linked to the study protocol and might not translate to other datasets unquestionably. For example, if 
accelerometers are initialised and start recording before given to the participants, it might be assumed that the 
recordings after initialisation are non-wear time since the accelerometer still needs to be worn, either shortly 
thereafter or at a later stage when sent to participants via postal mail. In such cases, a preceding segment can 
default to non-wear time. However, if accelerometers are initialised to record at midnight (i.e. 00:00), and worn 
before recording starts, defaulting to non-wear time might not be automatically correct. For example, the par-
ticipant might sleep before recording starts and, as a result, can obtain a recording at t = 0 that does not exceed 
the ≤ 0.004 g SD threshold; in such cases, defaulting to non-wear time would be incorrect.

Additionally, the hyperparameter “merge (mins)”, that merges nearby candidate non-wear episodes to capture 
and include artificial movement, could unintentionally merge true non-wear and wear time episodes if they occur 
very close to each other (i.e. < 5 mins). For example, if the accelerometer was worn during sleep but removed 
right after waking up, two candidate non-wear episodes could be detected and merged incorrectly. Although this 
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did not occur in our dataset, reducing the “merge (mins)” hyperparameter to 4 mins would further reduce the 
risk of incorrect merging and, given our results, still achieved an F1 score of 0.9941 (± 0.0062) on our training 
set (Table 1).

Limitations and future research.  Care must be given to the nature of the PA patterns that we detected 
in the preceding and following windows of a candidate non-wear episode. As per our results, the CNN model 
was able to differentiate true non-wear time from wear time segments with near perfect performance based on 
features taken 3 s before the episode started and 3 s after the episode ended. Longer feature segments, of 4 or 5 
s, yielded similar statistical results since, effectively, a shorter segment remains a subset of a longer segment. The 
activity patterns of taking off the accelerometer (preceding feature) or putting it back on (following feature) were 
distinguished from activity patterns that proceeded or followed a candidate non-wear episode that was deemed 
wear time. In the latter, the CNN model learned patterns that were associated with movement during episodes 
of no activity, but those where the accelerometer was still worn. Such patterns are, for example, rotating the body 
during sleep, and during sedentary time, changing sitting positions. All learned patterns were captured from an 
accelerometer positioned on the right hip. Moreover, the accelerometer was mounted with an elastic waist belt, 
which could have an additional effect on the learned movement patterns, compared to having a (belt) clip or 
another way of mounting the accelerometer on the hip. We further suspect the activity patterns to be different for 
accelerometers positioned on the wrist, since this can be associated with higher movement variability4.

A natural next step would thus be to employ a similar approach of detecting non-wear time through activity 
type recognition by means of deep neural networks for accelerometers positioned at different locations, such as 
the wrist. With the use of raw accelerometer data, we are confident that our algorithm is invariant to different 
types of accelerometer brands positioned on the hip, even when data was sampled at different frequencies, as 
they can easily be resampled to 100 Hz39. However, other accelerometers may have a different standard deviation 
threshold value to detect episodes of no activity. Our dataset contained accelerometer data from the ActiGraph 
wGT3X-BT, which is the most commonly used accelerometer for PA studies8,17. A careful analysis revealed that 
a threshold of 0.004 g is close to the accelerometer’s noise level and sufficiently low enough to detect episodes of 
no activity. This threshold value should, however, be explored for other accelerometers when using our proposed 
algorithm.

Although raw accelerometer data has shown promising results in terms of detecting non-wear time, care must 
be given to sources of uncertainty and error when handling and processing raw accelerometer data. As previously 
mentioned, resampling to other sample frequencies can be considered, for example 30 to 100 Hz. However, the 
effects of resampling are ill understood. Sampling algorithms that interpolate make underlying assumptions with 
respect to interpolation errors and coefficient quantization errors, and as a result, are limited in their ability to 
correctly resample39. How resampling effects the typically multi-axial acceleration values of accelerometers is an 
interesting directive to explore. Another potential source of error is the acceleration sensor calibration. Typically, 
this calibration is done during manufacturing in which the recorded acceleration values should not exceed the 
local gravitational acceleration during non-movement episodes. However, in some cases it is worth re-calibrating 
the accelerometer data with a process called auto-calibration40. How auto-calibration effects the activity patterns 
which are required for accurate non-wear detection is worth exploring as well.

Conclusion
In this paper, we proposed a novel algorithm that utilises a deep convolutional neural network to detect the 
activity types of taking off the accelerometer and placing it back on to enable the detection of non-wear time from 
raw accelerometer data. Though current raw non-wear time algorithms show promising results in terms of pre-
cision scores, their employed interval prevents them from detecting non-wear time shorter than this interval, 
resulting in a sub-optimal recall score. By classifying activity types, our proposed algorithm does not employ 
a minimum interval and allows for non-wear time detection of any duration, even as short as a single minute. 
As per our results, this significantly increased the recall ability and led to a near perfect F1 score (0.998) on our 
gold-standard test dataset. Although our algorithm was developed for movement associated with a hip-worn 
accelerometer, future research can be directed at training a CNN for movement associated with a wrist-worn 
accelerometer, including the optimisation of our algorithm’s hyperparameters.

Data availability
The legal restriction on data availability are set by the Tromsø Study Data and Publication Committee in order 
to control for data sharing, including publication of datasets with the potential of reverse identification of de-
identified sensitive participant information. The data can however be made available from the Tromsø Study 
upon application to the Tromsø Study Data and Publication Committee. All Python code that supports this study 
is openly available on S.S.’s GitHub page at https://​github.​com/​shahe​en-​syed/​ActiG​raph-​ActiW​ave-​Analy​sis. A 
Python implementation of the CNN non-wear algorithm can be found at https://​github.​com/​shahe​en-​syed/​
CNN-​Non-​Wear-​Time-​Algor​ithm.
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