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Reaction-diffusion in a growing 3D domain of skin
scales generates a discrete cellular automaton
Anamarija Fofonjka1,2 & Michel C. Milinkovitch 1,2✉

We previously showed that the adult ocellated lizard skin colour pattern is effectively gen-

erated by a stochastic cellular automaton (CA) of skin scales. We additionally suggested that

the canonical continuous 2D reaction-diffusion (RD) process of colour pattern development

is transformed into this discrete CA by reduced diffusion coefficients at the borders of scales

(justified by the corresponding thinning of the skin). Here, we use RD numerical simulations

in 3D on realistic lizard skin geometries and demonstrate that skin thickness variation on its

own is sufficient to cause scale-by-scale coloration and CA dynamics during RD patterning. In

addition, we show that this phenomenon is robust to RD model variation. Finally, using

dimensionality-reduction approaches on large networks of skin scales, we show that animal

growth affects the scale-colour flipping dynamics by causing a substantial decrease of the

relative length scale of the labyrinthine colour pattern of the lizard skin.
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In fish, amphibians and reptiles, dermal chromatophores1–3 are
pigmentary cells (melanophores, xanthophores and ery-
throphores that accumulate brown/black, yellow and red pig-

ments, respectively) as well as iridophores that contain spatially-
organised lattices of guanine nanocrystals4 generating structural
colours by light interference5. Mammals and birds do not exhibit
iridophores but produce brown, black and reddish melanic pig-
ments that their melanocytes transfer to hair or feathers6. In birds,
quasi-periodic arrays of keratinised nanostructures and/or melanin
granules additionally produce a large set of structural colours7,
whereas the skin colour of snakes and lizards, dominated by dermal
chromatophores, can also be supplemented by structural (generally
iridescent) colours due to ‘nanogratings’, i.e., submicron-sized
periodic skin-surface deformations8.

In many animals, these colours form a collection of shapes,
such as stripes, spots, tessellations or meanders, that collectively
make a symmetry-breaking skin pattern. These patterns form
because chromatophores spatially segregate during development
through short-range and long-range interactions9–11. Note that
individuals typically exhibit a fixed pattern. Indeed, although
movements of pigmentary intracellular compartments12, and
possibly active tuning of photonic crystal geometry within
iridophores4,13, can generate (within minutes) behavioural
changes of skin brightness and hue (for camouflage, thermo-
regulation and display; ref. 14), the geometry of the pattern itself
generally remains unchanged. On the other hand, skin patterns
can dramatically change at larger time scales, i.e., it takes a sub-
stantial time for the patterning process to reach steady state. In
many amniote species, the pattern is established during
embryonic development and remains fixed after birth. In others,
however, the skin colour pattern dramatically changes after birth,
i.e., they exhibit drastically-different juvenile and adult patterns.
These species provide the opportunity to readily investigate the
dynamics of skin colour pattern formation, mitigating the general
inaccessibility of embryos (especially in amniotes) in other species
whose skin colour pattern development is completed before birth.

Whereas the underlying microscopic dynamical system
involves discrete biological cells9–11, the process of macroscopic
pattern development can be considered continuous and quanti-
tatively investigated (using nonlinear partial differential equa-
tions; PDEs) as a canonical reaction-diffusion (RD) system15,16,
well-known to generate various patterns at specific spatial
scales17–20. For example, the network of short- and long-range
activations and inhibitions among chromatophores that controls
the development of the zebrafish striped colour pattern can be
translated into a system of PDEs that accurately reproduce zeb-
rafish patterns of wild-type and mutant lines21. Note that, ‘cells-
as-agents’ approaches22–24 (referred to as ‘agent-based’ (AB)
below), some of them23 incorporating the likely important role of
iridophores25,26, have also been successfully applied to model
colour pattern formation in zebrafish.

Yet, some (but not all) species of snakes and lizards exhibit skin
colour patterns made of juxtaposed skin scales of different colours,
whereas each individual skin scale is monochromatic. This obser-
vation seems to conflict with the autonomous self-organisational
patterning process predicted both by RD and AB models. Recently,
our investigation of the post-hatching development of such a
‘pointillist’ skin colour pattern in the ocellated lizard (Timon lepi-
dus) generated the following three realisations27.

First, we identified27 that the juvenile pattern of brown skin
with white spots gradually transforms, on the dorsal trunk of the
animal, into an adult labyrinthine pattern made of contrasting
black and green chains of scales (Fig. 1). More specifically, high-
resolution dorsal skin 3D geometry and colour-texture recon-
structions in individual lizards at multiple time-points across the
4 years of their pattern development identified that an initial

phase of transformation of all juvenile white, light-brown and
dark-brown scales into green or black scales is followed by a
continuous, but rate-decreasing, process of green to-black and
black-to-green colour switching of individual scales. These
dynamics gradually generate a spatial distribution of green and
black scales far from randomness27, indicating that the colour
switching process is not scale autonomous.

Second, our analysis of these time series of scale-colour
switching indicated that the lattice of skin scales in ocellated
lizards is a probabilistic cellular automaton (CA; refs. 28–31) that
dynamically computes the adult labyrinthine pattern27, i.e., the
colour state of each scale iteratively changes as a function of the
states of its neighbours. This result was the first evidence that von
Neumann’s cellular automata, long considered as entirely abstract
computational systems, have actually been generated by biological
evolution27.

Third, we demonstrated that, in a system of continuous RD
equations, reduction of all diffusion coefficients by a factor >80%
along the scale boundaries produces the emergence of not only a
scale-by-scale colour pattern, but also discrete CA dynamics of
scale-colour switching: the colour of individual scales tends to
remain either homogeneously green or homogeneously black but
can rapidly switch between these two states without maintaining
intermediate values27. During this process, each scale remains, at
all times, essentially monochromatic, whereas abrupt spatial
variations between green and black skin always take place at scale
boundaries, despite that the system is controlled by continuous
RD equations. These observations indicate that each of the three
interacting morphogens effectively exhibits an homogeneous
concentration within a scale (because of large diffusion rates),
allowing us to formally derive, from Turing’s continuous RD
equations, a discrete RD model (with skin scales as discretisation
units) by renormalising the diffusion term27. In other words, the
skin 3D geometry would transform a Turing continuous RD
system of microscopic nonlinear interactions among chromato-
phores into a discrete macroscopic von Neumann CA (at the
spatial scale of skin scales) that computes a pattern.

As all our previous RD simulations27 included only two spatial
dimensions (2D), the entirety of our demonstration relied on the
explicit assumption that variations in the third spatial dimension
of the ocellated lizard’s skin (i.e., the presence of thick skin scales
with much thinner borders) justifies a substantial reduction (by a
factor 1-P > 0.8) of the continuous RD diffusion coefficients at the
one-dimensional edges of 2D scales, effectively decoupling the RD
dynamics inside versus between scales. Here, we test the validity
of this key assumption by performing RD numerical simulations
in a three-dimensional (3D) domain of skin scales such that we
‘let the 3D geometry do the job’, i.e., we dispense with the need to
use an artificial diffusion-reduction factor at scale borders. Given
their high computational intensity, these 3D numerical simula-
tions are ported on GPUs.

Our results show that this scheme produces a scale-by-scale
colouring and a CA behaviour, not only with 3D lattices of
idealised hexagonal prisms, but also with realistic quasi-
hexagonal lattices of 3D scales reconstructed from episcopic
microscopy data. In other words, solution of the system of RD
equations on the reconstructed actual 3D geometry of the skin
scales produces a spatially-discrete pattern exactly superposed on
the lattice of scales, validating the central assumption used in our
previous study27. We also show here that the ‘snapping’ of the
pattern to the borders of the scales is robust to variation of the RD
model, i.e., it occurs with vastly different sets of PDEs.

To facilitate future exploration of patterning dynamics gener-
ated by various RD models and geometries in scaled skins, we
then propose a dimensionality-reduction approach that allows
performing the simulations in 2D while integrating skin thickness
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as position-dependent RD components’ concentrations and
effective diffusion coefficients. This scheme is slightly less accu-
rate than bona fide 3D simulations but is more realistic than the
reduction of diffusion coefficients along 1D edges of a 2D lattice
of polygonal scales. Yet, we also show that the emergence of a CA
behaviour is robust to alterations of the real skin geometry as all
approaches generate very similar qualitative outcomes, i.e., non-
trivial reduction of skin thickness at scale boundaries is sufficient
for a transition between continuous and discrete patterns.

Finally, given that RD systems are known not to scale (i.e., the
absolute length scale of the pattern should remain invariant), we
explore the effect of growth on the skin colour patterning process
in ocellated lizards. We show that the growth of the animal,
across 3 years after hatching, deeply affects the dynamics of scale-
colour change and produces a gradual decrease of the relative
length scale of the pattern (measured in number of scale dia-
meters) and a substantial increase of the average curvature of the
pattern motifs. These results indicate that growth impacts form
not only because of mechanical aspects of development32,33 but
also in the emergence of anatomies controlled by RD-like
systems.

Results
We use the interaction network and system of partial differential
RD equations of Nakamasu et al.21 (see Methods) that efficiently
reproduce in 2D both zebrafish skin colour patterns21 and the
dynamics of ocellated lizard skin colour pattern development27. We
extend this framework by implementing a 3D GPU-based finite-
difference numerical approach34 to test whether 3D geometry alone
can explain the emergence, in a RD system, of a scale-by-scale
coloration and CA dynamics of pattern development in the ocel-
lated lizard. Our objective is to test whether these phenomena
emerge in a 3D domain with periodic thickness variation when
diffusion coefficients are maintained constant everywhere in the
domain. In other words, we test if our hypothesis of applying a
factor of diffusion reduction at scale borders of a 2D model27 is
entirely justified by the 3D geometry of the skin.

Geometry transforms continuous RD into discretised systems.
First, we simulate the network of 3D scales as a regular lattice of
hexagonal prisms (Fig. 2) of height h connected by inter-scale
domains of height hp. Trivially, when hp/h= 1 (Fig. 2A), there is
no variation of thickness in the simulated 3D skin such that, at
steady state, the Turing pattern is continuous and identical in top
and bottom views (Fig. 2B) and coloration does not co-vary with

the positions of scale borders (Fig. 2C). On the other hand, when
hp/h is reduced (Fig. 2D), the steady-state pattern becomes dis-
crete (Supplementary Fig. 1). For example, when hp/h= 0.3 (i.e.,
the approximate value observed in real scales), the concentration-
gradient maxima of all RD components sharply co-localise with
the positions of scale borders such that each scale, in top view, is
either homogeneously green or homogeneously black (Fig. 2E, left
panel; Fig. 2F). Note that, because inter-scale diffusion is
unconstrained in the most basal part of the simulation domain,
the concentration-gradients maxima less sharply coincide with
the scale borders when the simulated skin is observed in bottom
view (Fig. 2E, right panel). However, because the inter-scale skin
thickness (hp) is much smaller than the pattern length scale, the
patterns in bottom and top views are highly similar, i.e., the effect
generated by the separation of prisms in the upper part of the
simulation domain propagates essentially all the way down to the
base of the skin (Fig. 2F, bottom panel).

Second, we test the potential generality of the causal relation-
ship between 3D geometry and the continuous-to-discrete
transition of RD systems. In other words, we analyse whether
thickness periodic variation of the 3D domain is sufficient for a
RD system to generate a scale-by-scale pattern, irrespective of the
specific system of nonlinear PDEs that are used. Figure 2G–J
shows that both the Grey-Scott35,36 and the Schnakenberg37 two-
component RD models (see Methods) generate a discrete pattern
with transitions in components’ concentrations that sharply
coincide with the positions of hexagonal 3D prism borders. Note
that the same phenomenon of scale-by-scale coloration is
generated with alternative initial conditions (Supplementary
Fig. 2). We therefore conclude that the effect of 3D geometry
on pattern formation is likely to be very general, i.e., robust to
variations of the RD model. Given that skin thickness variation
affects the resulting pattern, the length scale of the steady-state
patterns in a domain of constant thickness can easily be derived,
for all these RD systems (three-component Nakamasu et al.21, as
well as two-component Grey-Scott35,36 and Schnakenberg37

models), from the simulations without scale boundaries (Fig. 2C
and right panels in Fig. 2G, I) and compared to the size of the
hexagonal elements.

Actual skin geometry generates a discretised pattern in ocel-
lated lizards. Third, because one could argue that the dis-
cretisation of the pattern obtained with hexagonal prisms is
artificially enforced by the sharp transitions among neighbouring
prisms (Fig. 2D), we simulate the same three-component RD
model in a domain consisting in a quasi-hexagonal lattice of 3D
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Fig. 1 Colour pattern ontogeny in ocellated lizards. A Adult ocellated lizards (here, a 3-year-old male) exhibit a labyrinthine dorsal pattern made of
contrasting black and green chains of scales; we ignore here the lateral blue ocelli and the ventral scales. B–D Dorsal pattern time evolution from the
juvenile brown skin with white ocelli to the nearly adult pattern. Note that remnants of the initial pattern organisation (mostly the position of white ocelli)
are somewhat visible at the age of 106 weeks (D) but get obliterated in older lizards. Scale bars: 5 mm.
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scales with realistic geometries. To this end, we used optical high-
resolution episcopic microscopy (HREM38) to reconstruct the
exact 3D geometry of a patch of skin, of size 4 by 8 scales,
sampled from a young adult ocellated lizard. The sample was
fixed, dehydrated and then infiltrated and embedded in a rigid
resin dyed with eosin. The block was then sectioned with an
HREM device including a motorised microtome and a digital
camera mounted on a microscope for automated image acquisi-
tion of successively-exposed block surfaces. We then recon-
structed the 3D geometry of the RD domain by using the
intrinsically-aligned images for volume rendering. As xantho-
phores and iridophores occupy the top portions of the dermis,
while melanophores are able to reach somewhat deeper zones of
the skin (especially in green scales27), one could argue that the
simulation 3D field should be restricted to the region occupied by
chromatophores (instead of using the whole skin thickness).
Hence, we used the OpenCV computer vision library39 to iden-
tify, in each of the HREM eosin-contrasted 2D images (Fig. 3A),
the top (St) and bottom (Sb) surfaces of the skin, as well as pixels
occupied by black pigments (Fig. 3B). We then plotted, for each

vertical line of pixels on all sections, the average position of black
pixels against the thickness (TS) of the skin (Fig. 3C). This pro-
cedure allows to easily distinguish green and black scales char-
acterised, respectively, by low and high average positions of black
pixels in the skin. We then estimated the portion of the skin
populated by melanocytes by fitting a fourth-order polynomial to
the lower bound of the three-standard deviation (3-std) interval
around the average pigment position for all scales. Hence, this
analytical expression defines the lower boundary of the domain
occupied by chromatophores (Fig. 3D) in the ocellated lizard’s
actual skin. Continuous RD numerical simulations (with the same
RD model parameters as in Fig. 2A–F) in that restricted 3D
domain (Fig. 3E) or in the whole skin (Fig. 3F) both generate
discrete steady-state patterns with a scale-by-scale colouration,
confirming that (i) the actual geometry of the ocellated lizard skin
is sufficient for the phenomenon to occur and (ii) this scale colour
discretisation is robust to variations of the ratio between inter-
scale and scale skin thicknesses. Note that HREM does not allow
to reconstruct the geometry of a skin sample more than about
1 to 2 cm. To overcome the limitation of performing 3D

Fig. 2 Geometry transforms continuous RD into discretised systems. A–C When the domain does not exhibit variation of thickness (A), the steady-state
RD pattern does not vary between top and bottom views of the simulated skin (B), and the concentrations of RD components show continuous spatial
variation (C; concentration profile at y=0 averaged across z) and no variation in the z direction (bottom panel in C). D–F When the domain thickness is
substantially smaller (hp) in between (T) than within (h) prisms (D; hp/h= 0.3), a prism-by-prism coloration emerges (E) with sharp transitions of
concentrations of RD components at prisms’ borders (F; average concentrations at y= 0; shaded regions are minimum-maximum concentration intervals
in the z direction). Broader gradients at borders of prisms in bottom view (see also bottom panel of F) are due to unconstrained diffusion in the basal part
of the simulation domain. G–J Variation of domain thickness (hp/h= 0.3 in H and J) also transforms simpler two-component continuous RD models into
discrete systems (H, J). Profiles of average concentrations (at the y coordinate indicated by the white dotted lines) are shown; shades in (H, J) are
minimum-maximum concentration intervals in the z direction.
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simulations in such small lattices of 3D scales, we applied the skin
thickness statistics obtained by HREM to a large patch of skin
whose surface geometry was acquired using a shape-from-
shading approach40,41 (Supplementary Fig. 3 and see Methods).
Numerical simulations using these reconstructed large lattices of
3D skin, both with a chromatophore-accessible domain (Fig. 3G)
and with a full skin domain (Fig. 3H), generate scale colour
switching dynamics and steady-state patterns very similar to
those observed in real ocellated lizards.

Dimensionality-reduction is accurate and computationally
efficient. Fourth, given that one primary interest of numerical
simulations lies in the possibility to perform multiple com-
parative analyses, e.g., to study the effects of varying RD
model parameters and geometry, we propose computationally-
efficient 3D-to-2D dimensionality-reduction approaches

inspired from the Fick–Jacobs42 and Bradley43 2D to 1D
methods, i.e., with or without a position-dependent effective
diffusion coefficient (See Methods). In short, we assume
dominance of transport in the plane of the skin (a likely
reasonable assumption given the much smaller thickness of
the skin in comparison to its two other dimensions) while skin
thickness variation is integrated as a correction of the mean
concentrations of the RD components in the corresponding
2D simulation node. These approaches, aim at combining the
best of two worlds: the high-precision of using the actual 3D
skin geometry and the low computational cost of 2D numer-
ical simulations. We therefore quantified both the loss of
accuracy and the gain in computational efficiency of the
dimensionality-reduction methods over bona fide 3D simu-
lations. Using a network of Gaussian bumps (Fig. 4A), we
show that 2D-reduced simulations produce steady-state

Fig. 3 Actual skin geometry generates a discretised pattern in ocellated lizards. A HREM section in a black scale (left) and a green scale (right). Scale
bar= 200 µm. B Automated detection of top (St) and bottom (Sb) skin surfaces (red) and of black pixels (marked in blue) corresponding to melanin in
melanophores. Cyan line= linear fit (lf) to Sb. For each point on the top surface (e.g., green spot), skin thickness (yellow double-headed arrow, Ts) and
average height (yellow spot) among all black pixels falling on the line l perpendicular to lf were computed. C Black pixel height versus skin thickness in
HREM sections from four black and four green skin scales (>250,000 data points, 150 bins in each direction). Red dashed line= linear fit to average
pigment height. Plain red line= fourth-order polynomial fit to lower bound of 3-STD interval around the average pigment position. Inset: histogram for Ts=
0.63 revealing two peaks corresponding to black and green scales. Height and thickness are normalised by the maximum observed value. D Diagram of a
skin scale with full skin and chromatophore-restricted domains indicated. E, F 3D numerical simulations in the domain restricted to melanophore (E) or in
the full skin (F) both generate a scale-by-scale steady-state colour pattern. Red lines indicate positions of the corresponding sections. G, H 3D numerical
simulations in extended network of scales; surface geometry was inferred by shape-from-shading scanning of a large patch of lizard skin whereas
chromotophore-restricted 3D domain (G) or full skin domain (H) was generated by applying statistics from HREM data.
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patterns that are qualitatively very similar to that of a corre-
sponding 3D simulation with the same initial condition
(Fig. 4B). In terms of accuracy, the 2D simulations based on
the Fick–Jacobs and Bradley methods of dimensionality
reduction produced patterns displaying respectively 6.4 and
1.5% of the scales with the wrong colour (black instead of
green or vice versa). This result is confirmed when comparing
the two methods with 3D simulations for a wide range of hp/h
values (from 0.06 to 0.56): for each simulation, we project on a
2D plane the average steady-state green colour intensity (see
Methods) across the z direction of each (xi, yi) position in the
3D domain and subtract the image produced at steady state by
one or the other dimensionality-reduction method. These
comparisons indicate that 2D simulations are 10 to 20 times
faster than 3D simulations (typically, 2 min instead of 30 min),
but produce an average 7.0 and 2.2% of colour difference per
simulation element, for the Fick–Jacobs and Bradley’s meth-
ods, respectively.

Growth affects patterning dynamics. Fifth, we quantitatively
compare the theoretical and observed effect of growth on the
dynamics of the skin pattern length-scale variation. Indeed, in
principle, the length scale of a RD system is invariant because it is
determined by the diffusion coefficients and reaction rates.
Although one could imagine that these coefficients and rates vary
with the age of animals, the most parsimonious conjecture is that,
as an animal grows, new geometrical elements of similar type
(e.g., spots in a spotted pattern, stripes in a striped pattern)
are introduced to maintain a pattern length scale of constant
absolute value, i.e., a pattern of decreasing length scale relative
to the size of the animal. This prediction of relative period
doubling was observed in the Pomocanthus semicirculatus and
P. imperator angel fishes44: in juveniles of both species, new
stripes appear between pre-existing semi-circular stripes as the
animal is growing. Similarly, in the second species, after the
juvenile pattern transforms into a sub-adult set of horizontal
stripes, additional stripes are added, as the animal continues to

Fig. 4 Dimensionality-reduction is accurate and computationally efficient. A A parametrised hexagonal lattice of 3D scales (two left panels) is generated
by using, for each scale, the two-dimensional Gaussian function (inset) with heights of scales centres h and scales borders heights hp; the domain surface
geometry is produced by fitting the constants a and b of the Gaussian function and keeping the standard deviations identical in the X and Y directions
(σX= σY, symmetrical Gaussian bumps). The height information (right panel) is then used to perform 2D simulations with two different dimensionality-
reduction approaches. B Starting with identical initial conditions, 2D-reduced simulations (with hp/h= 0.31) on a lattice of 450 × 417 elements with the
Fick–Jacobs (left panel) and Bradley (central panel) methods, as well as 3D simulations (right panel), produce qualitatively very similar steady-state scale-
by-scale patterns. Individual scales (white circles) with colour states opposite to those observed in the bona fide 3D simulation (green or black instead of
black or green) amount to 6.4 and 1.5% of the scales for the Fick–Jacobs and Bradley methods, respectively. Parameter values are ɛ= 3, σ= 8, h= 16, Du=
Dv= 11.25 and Dw= 135. C Profiles of components’ concentrations are shown for the y coordinate indicated by the red dotted lines in the corresponding
panels in (B); shades in right panel are minimum-maximum concentration intervals in the z direction (plain line is the average).
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grow, through a series of stripe extensions and branching-point
displacements44.

Here, we use numerical simulations to analyse, in ocellated
lizards, how growth is expected to affect the dynamics of
labyrinthine pattern development, especially the length scale of
the pattern. Using the most-accurate dimensionality-reduction
approach described above, we use a large patch of dorsal skin to
perform RD simulations in a growing 3D domain. Making the
reasonable assumption that RD equilibrium is reached much
faster than the skin is growing, we use a quasi-static technique
where the simulation domain is grown, and corresponding
dimensionality-reduction parameters are updated, incrementally
each time RD steady state is attained (see Methods). Using the
pattern of a 18 weeks old ocellated lizard (i.e., around the

transition between the juvenile brown pattern and the subadult
green and black pattern) as initial condition, and the growth
curve derived from that same animal (inset of Fig. 5A), the
simulation generates an average relative width of green
labyrinthine stripes (i.e., the mean relative length scale of the
pattern measured in number of scale diameters; Supplementary
Fig. 4) that monotonously decreases by 27% as the simulation
domain grows (green line in Fig. 5A and Supplementary Movie 1).
Moreover, the average curvature of the pattern borders increases
by 40% (green line in Supplementary Fig. 5), indicating that the
pattern is becoming more labyrinthine as the simulation domain
grows. Remarkably, these dynamics are quantitatively highly
similar to those observed in the corresponding real ocellated
lizard (red dots in Fig. 5 and Supplementary Fig. 5), suggesting
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Fig. 5 Growth affects patterning dynamics. A Growth (inset: growth curve of the animal) causes a monotonous decrease in the mean relative length scale
of the pattern both in the real animal (red spots= 18, 28, 30, 32, 41, 45, 71 and 106 week-old animal) and in a quasi-static growth simulation (green line;
initial condition= 18-week-old observed pattern). The purple line shows the time evolution of the pattern mean length scale averaged among 20
independent simulations starting form different random initial conditions (30% randomly-distributed black skin scales); error bars= 3 standard deviation
intervals. Simulations were performed in 2D by applying dimensionality reduction on the 3D chromatophore domain (Fig. 3D). The size of simulation
domains is normalised to the skin patch size at 18 weeks. B, C Comparisons between real and simulated patterns for normalised domain sizes of ≈1.15
(B) and ≈1.95 (C). Top panels show the patterns with detected borders (indicated in red) and bottom panels show the distance (expressed in average skin
scales) of each green scale to the border. The observed and simulated patterns both exhibit green labyrinthine stripes that are 2–3 and 1–2 skin scales wide
in B and C, respectively. Scale bars= 2mm. Time evolution of the pattern length scale is also illustrated in Supplementary Movie 1.
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that the observed length-scale reduction and ‘labyrinthinisation’
of the pattern are exclusively due to growth and not to age-related
variation of the dynamical system parameter values. Note that the
phenomenon linking growth, pattern length scale and curvature
is robust to variation of initial conditions as the relative length
scale of the pattern consistently decreases by about 25%, and the
average border curvature consistently increases by 34%, in 20
independent simulations (purple line in Fig. 5 and Supplementary
Fig. 5) starting with different initial patterns of 30% randomly-
distributed black scales (i.e., the observed approximate proportion
of black scales at 18 weeks of age).

These results also indicate that, despite growth, the ocellated
lizard body scales remain smaller (even in the adult) than the
length scale of the RD pattern in the plane, hence, each body scale
takes a uniform colour. To obtain a pattern within scales, the
diffusion coefficients should be smaller or scales should be larger.
The second possibility does exist in ocellated lizards: larger tail
scales are often dichromatic (Supplementary Fig. 6A). Our RD
model is compatible with this observation as it produces a pattern
within tail scales whose genuine 3D geometry was reconstructed
with HREM (Supplementary Fig. 6B, C).

Discussion
Assuming that a substantial reduction of RD diffusion coefficients
at the borders of ocellated lizard’s polygonal 2D scales is justified
by spatial variation of the actual skin geometry in the third spatial
dimension (i.e., the presence of thin skin in between thicker
scales), we previously demonstrated27 that this ad hoc parameter
transforms a Turing continuous RD system into discrete mac-
roscopic von Neumann CA dynamics that computes a labyr-
inthine skin pattern of black and green scales. These dynamics are
highly similar to the actual post-hatching self-organisational skin
patterning process observed in that species27. Here, we quanti-
tatively validate the above-mentioned conjecture by confirming
that variation of skin thickness in bona fide RD numerical
simulations (with constant diffusion coefficients) performed in
realistic 3D domains produces a scale-by-scale colouring and a
CA behaviour. We additionally show that this phenomenon is
robust to variation of the RD model and that growth of the
animal considerably and realistically affects the patterning
dynamics. Given that the current histological and episcopic
microscopy data did not evidence any scale substructure (beyond
the thinning of the skin per se) that could locally affect the dif-
fusion constants in the inter-scale skin, the data and analyses
presented here demonstrate that the mere superposition of the
lizard’s 3D skin geometry with a continuous RD system
generates a CA.

The diffusion terms in the RD PDE can represent a series of
biological processes: effective diffusion of signalling molecules,
cell movements and/or the production of long-range cellular
projections. If one makes the reasonable assumption that the
fundamental molecular and cellular mechanisms governing the
self-organising skin colour patterning process are similar in
ocellated lizards and zebrafish, the extensive literature on the
latter (e.g.45–47) indicates that some long-range interactions
among chromatophores are mediated by long cell projections
(called ‘airinemes'48). Note that, more generally, such signalling
filopodia can mediate morphogen transport and gradient estab-
lishment in rapidly-expanding tissues49, such as in early devel-
opmental processes. We think that the geometric constrictions
constituted by the inter-scale skin is very likely to affect not only
diffusing molecules and chromatophore movements but also
airineme transport. Indeed, recent findings indicate11 that air-
inemes production and delivery require a macrophage relay: after
recognising surface blebs of xanthoblasts, macrophages drag

airineme vesicles and deliver them to melanophores, providing
the long distance communication between these two chromato-
phore types. These data help understand why the RD framework
is efficient in recapitulating the effective CA process in the
ocellated lizard as the wandering of the macrophages with the
xanthophores’ cellular long projections is (i) likely affected by
the small thickness of the inter-scale skin restrictions and (ii)
might explain a diffusion-like dissemination of long-distance
signals during the skin colour patterning process.

Ever since Alan Turing15, RD equations have been used as a
paradigmatic model of pattern development19,21,27,50. The success
of the Turing model is for multiple reasons: (i) the combination
of nonlinear reactions with short- and long-range diffusion makes
this framework very simple and mathematically elegant, (ii) the
system of PDEs is often locally tractable through linearisation,
(iii) it can generate a vast array of behaviours, including a
diversity of stationary patterns and (iv) the cell–cell interactions
in real biological systems occur through effective diffusion51 of
morphogens in tissues and/or through short- and long-range
contacts that can be translated into small and large diffusion
coefficients. Although the combination of multiple interactions
into a few parameters can be viewed as a strength of RD
approaches, other scholars would argue that it makes clear bio-
logical interpretation of these parameters difficult. For example,
one of the three components in the Nakamasu et al. model21 very
efficiently accounts for long-range interactions, but it is unclear
what its biochemical correspondence is in the actual biological
system.

One potential solution to this issue is the use of AB models24

that simulate the movements and interactions of cells as auton-
omous agents. Although it remains to be determined if both RD
and AB systems can always model the same set of interactions,
one could argue that AB models can more readily incorporate
newly-identified interactions and/or cell types, especially in spe-
cies amenable to cell biology investigations (e.g., the zebrafish).
For instance, iridophores, recently recognised as playing a role in
the zebrafish skin colour patterning45–47, and absent from the RD
model of Nakamasu et al.21, have been successfully incorporated
in AB models22,23. Note however, that AB models are not
immune to simplification: parameters are typically fitted to the
expected pattern and dynamics24 and models incorporate some
level of idealisation of the particles that indirectly take into
account cell behaviours22. Furthermore, the computational cost
scales with the simulation domain size less favourably for AB
models than for RD models. Indeed, agents are the intrinsic
discretisation level of AB models independently of the simulation
domain size, whereas the discretisation size of domain nodes can
be adapted in RD models relative to the pattern length scale and
the full domain size. Finally, it is worth noting that diffusion
terms of some RD models can be substituted by a small number
of biologically-explicit parameters (such as cell–cell adhesion)
and produce continuous models52,53 that can more easily be
interpreted, and modified, in terms of actual biochemical quan-
titative measurements.

The availability of a diverse set of modelling approaches is a
benefit to the community as it allows for the cross-validation of
the significance of specific parameters in specific observations. In
this respect, the observation of a scale-by-scale colour patterning
in our 3D RD simulations, using three-components but also two-
component models, is a strong indication that our conjecture (3D
skin scales generating a discretisation of the skin colour pattern)
is general, i.e., it might not depend on the nature (RD or AB) of
the model implementing the microscopic interactions. In other
words, we are rather confident that a 3D AB model (to the best of
our knowledge, all current implementations modelling skin col-
our patterning are in 2D) would recapitulate our results.
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On the other hand, the precise modelling of other aspects of
skin colour patterning in the ocellated lizard is likely to require
substantial cell biology investigations in that species, a possibly
unreachable endeavour with current technologies. In a sense, the
use of simpler RD models, instead of more elaborated AB models,
is justified by the fact that all cellular mechanisms involved in the
patterning process are not yet understood. Note also that,
although the fit between observations and simulations (both with
CA and RD models) is spectacular in statistical terms27, the exact
prediction of the adult pattern could be improved by using more
subtle initial conditions, i.e., real colours instead of assigning all
scales to one of two sets (corresponding to ‘green’ and ‘black’) of
specific (u,v,w) values followed by the simple addition of ±1%
random noise (see Methods).

Given that our central argument in the present work is that 3D
geometry of the domain, in which cell–cell interactions occur, is
sufficient to explain the transformation of a microscopic system
of reaction and diffusion into a discrete CA at a much larger scale
(the spatial scale of skin scales), one could argue that one ques-
tionable approximation in our 3D simulations is that we estimate
the thickness of the domain in terms of either (i) the (spatially-
variable) absolute total thickness of the skin or (ii) a ‘chromato-
phore domain’ estimated from the distribution of melanin in all
scales (Fig. 3D). The first setting is indeed an approximation
because it is unlikely that chromatophores interact with each
others across the whole depth of the dermis. The second setting is
also an approximation because it homogenises the differences
that exist between black and green scales (Fig. 3C). However,
fitting the lower bound of the domain separately for green and
black scales would not help because scales change colour, i.e., we
would need instead to dynamically change the thickness of the
domain in each scale that shifts from green to black or black to
green. A proper assessment of such a domain size variation
dynamics would require sampling scales at different stages of the
colour switching process to quantitatively assess the correspon-
dence of scale colour with chromatophore distribution across the
dermis depth. Note that, difficulty of experimental realisation
aside, such an approach would anyway remain an approximation
as the distribution of pigments observed with histology does not
equate to the distribution of cells. Indeed, it is likely that the large
amount of pigments at the top of black scales is due to mela-
nophores sending projections towards the dermis/epidermis
interface rather the cells moving themselves. In other words, we
do not have reliable data justifying the introduction of an addi-
tional parameter that would define the local thickness of the
domain as a function of u and/or v. However, most importantly,
our simulations generate natural scale colour switching dynamics
and realistic steady-state patterns regardless whether the 3D
domain corresponds to the full skin thickness (Fig. 3F, H) or is
restricted to the estimated part of the skin accessible to chro-
matophores (Fig. 3E, G), suggesting that the phenomenon of scale
colour discretisation is robust to variations of the ratio between
inter-scale and scale skin thicknesses.

One difficulty in comparing past and current modelling of the
ocellated lizard skin colour patterning process is to relate the
parameters that generate a scale-by-scale coloration and a CA
behaviour in 2D27 versus 3D simulations, i.e., the reduced dif-
fusion coefficient (P < 0.2) in the former and the relative thinning
of the inter-scale skin (hp/h < 0.3) in the latter. A quantitative
comparison is challenging for multiple reasons. First, the width of
border scales is minimal (i.e., one discretisation element) in 2D
simulations27, discrete in 3D prism lattices (T in Fig. 2D) but
continuous for 3D Gaussian bumps and realistic geometries
derived from episcopic microscopy. However, sensitivity analyses
indicate that the progressive thinning of inter-scale skin generates
the same qualitative transitions of the pattern, in both 2D (ref. 27)

and 3D simulations (Supplementary Fig. 1): from unaffected by
scale boundaries (right inset in Supplementary Fig. 1) to scale-by-
scale, with motifs that are first 2 to 3 scales wide (central inset)
then 1 or 2 scales wide (left inset).

On growth and form. Our previous study27 in the ocellated
lizard (i) identified that the dynamics of skin colour development
are produced by a probabilistic CA (made of skin scales) that
computes the adult labyrinthine steady-state pattern, indicating
that this family of discrete computational systems28–31, long-
thought to be purely abstract models, have been generated by
biological evolution; and (ii) suggested that the scale-by-scale
coloration and the CA dynamics of pattern development both
emerge from the underlying microscopic system of cell interac-
tions (modelled by a continuous RD system) superposed to the
geometry of the skin—i.e., thinning of the skin in between scales
causes the discretisation of the continuous (microscopic) RD
dynamics at a larger (meso-/macroscopic) spatial scale: the
(spatial) scale of (skin) scales.

However, that study was entirely based on the untested
assumption that the spatial variation of thickness of the lizard’s
skin translates into a substantial reduction of RD diffusion
coefficients at the position of scale borders27. Here, we have tested
this assumption by using a bona fide 3D RD model, i.e., RD
simulations are performed in a 3D domain that mimics the
geometry of the lizard skin. Using, first idealised lattices of 3D
hexagonal prisms and, second, realistic quasi-hexagonal lattices of
3D scales generated from biological (histological) data on
ocellated lizard skin, we now show that geometry itself, rather
than an artificial reduction of diffusion coefficients at scale
borders, is sufficient for causing the emergence of a scale-by-scale
coloration and cellular-automaton dynamics. In addition, using
RD models vastly different from that of Nakamasu et al.21, we
show that the phenomenon (geometry causing the emergence of a
macroscopic discretised dynamics) is likely to be very general, i.e.,
RD-model independent.

Because of the high computational intensity of 3D numerical
simulations (despite their porting on GPUs), we then investigated
dimensionality-reduction approaches that project in 2D the
actual 3D geometry in the form of RD components concentra-
tions and effective diffusion coefficients that are both position-
dependent on the 2D simulation domain. Our results indicate
that these methods are 10 to 20 times faster than 3D simulations
and generate relatively low errors.

Finally, as a tribute to D’Arcy Thompson32, we show that
animal growth substantially impacts form of the steady-state
colour pattern by producing a monotonous and substantial
decrease of the relative length scale, as well as an increase in the
convolution, of the ocellated lizard skin colour labyrinthine
pattern.

Methods
Animals and ethics statement. Ocellated lizards were bred in Milinkovitch’s
laboratory, Department of Genetics and Evolution, University of Geneva, Swit-
zerland. Maintenance of, and experiments on animals were approved by the
Geneva Canton ethical regulation authority (authorisations GE/82/14, GE/73/16
and GE/27/19) and performed according to Swiss law. These guidelines meet
international standards.

3D reaction-diffusion numerical model. We use the following system of non-
linear PDEs developed for zebrafish21 and ocellated lizards27:

∂u
∂t

¼ Fðu; v;wÞ � cuuþ Du∇
2u

∂v
∂t

¼Gðu; v;wÞ � cvv þ Dv∇
2v

∂w
∂t

¼Hðu; v;wÞ � cwwþ Dw∇
2w
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where

Fðu; v;wÞ ¼
0 :c1v þ c2wþ c3<0

c1v þ c2wþ c3 :0≤ c1v þ c2wþ c3 ≤ Fmax

Fmax :Fmax<c1v þ c2wþ c3

8><
>:

Gðu; v;wÞ ¼
0 :c4uþ c5wþ c6<0

c4uþ c5wþ c6 :0≤ c4uþ c5wþ c6 ≤Gmax

Gmax :Gmax<c4uþ c5wþ c6

8><
>:

Hðu; v;wÞ ¼
0 :c7uþ c8v þ c9<0

c7uþ c8v þ c9 :0≤ c7uþ c8v þ c9 ≤Hmax

Hmax :Hmax<c7uþ c8v þ c9

8><
>:

The variables u and v are the densities of the short-range factors (corresponding
to melanophores and xantophores, respectively) and the variable w is the long-
range factor activated by u and inhibited by v. The signs of the variables c1, c2, c4, c5,
c7 and c8 are constrained by the cell interaction model discussed elsewhere21,27. The
variables cu, cv and cw are decay terms. Diffusion coefficients (Du=Dv≪Dw)
represent the short and long range of cell interactions. The parameters used in our
simulations are c1=−0.04, c2=−0.056, c3= 0.382, c4=−0.05, c5= 0, c6= 0.25,
c7= 0.016, c8=−0.03, c9= 0.24, cu= 0.02, cv= 0.025, cw= 0.06, Du=Dv= 1.125,
Dw= 12· Du= 13.5, Fmax=Gmax=Hmax= 0.5, dt= 0.01, unless stated otherwise.
Parameter values were tuned to obtain ocellated lizard patterns. All signs of the
reaction-term coefficients are identical, and their absolute values are similar, to
those in Nakamasu et al.21, suggesting that cell–cell interactions are comparable in
the ocellated lizard and the zebrafish. The intensity of green g ∈ [0,1] for every
simulation node was calculated using:

g ¼ minðmaxððv � uÞ=ðv þ uÞ þ 0:5; 0Þ; 1Þ:
This relation insures symmetry between the widths of green and black stripes

within the single wavelength of the pattern. Using a non-symmetrical scheme (e.g.,
by using a value other than 0.5 in the max relation) would change the relative
widths of green and black stripes but would not change the wavelength of the full
pattern (i.e., the succession of a green+ a black stripe). Simulations are performed
on a regular network of spacing ε with periodic or no-flux boundary conditions at
the domain borders. Concentrations at all nodes are updated using the Euler
forward method and the Laplacian term is approximated using a seven-point
stencil discrete operator:

∇2u � unorth þ usouth þ uwest þ ueast þ utop þ ubottom � 6u

ε2

Simulations are stopped when each node satisfies:

juðt � ΔtÞ � uðtÞj þ jvðt � ΔtÞ � vðtÞj þ jwðt � ΔtÞ � wðtÞj<10�7

Implementation was optimised by exploiting the parallelisation capacity of both
GPU and CPU based on a previously published numerical scheme34. At the GPU
level, concentrations are stored in global memory and every computation of a time
step is assigned to a kernel function (i.e., threads compute individual grid points).
To avoid repeated reading from the slow global memory, the data is copied at every
time step to a shared memory of a thread block. As calculation of the stencil
requires an extra layer of grid points around it (to allow computation of all points
in the block), blocks that overlap in every direction are created, i.e., all threads read
their corresponding grid points and fill the shared memory whereas grid points on
the extra layer do not compute. Parallelisation at the CPU level consists in two
synchronised threads: one thread is dedicated to both GPU kernel invocation and
transfer of the data from the GPU to the CPU memory, while the other writes
the data.

Initial conditions for simulations with hexagonal prisms (Fig. 2A–F) are
random assignments of each prism to green (u, v, w)= (1.2, 6.6, 2.3) or black (u, v,
w)= (5.3, 0.92, 4) followed by addition of ±1% random noise to each simulation
node. Boundary conditions are periodic in x and y, and no-flux at the domain top
and bottom borders. Simulations in the HREM-reconstructed 3D domain were
performed with 250 elements in the horizontal direction, ε= 0.9, and uniform
initial condition with ±1% random noise.

Two-component RD models. We tested the potential general effect of the skin 3D
geometry on the discretisation of RD systems at the spatial scale of skin scales by
using the Grey-Scott and the Schnakenberg two-component RD models, i.e., systems
of nonlinear PDEs very different from, and simpler than, that used to model the
zebrafish and ocellated lizard pattern development dynamics21,27. The Grey-Scott
model35 corresponds to the following system in dimensionless units36:

∂u
∂t

¼ �uv2 þ Fð1� uÞ þ Du∇
2u

∂v
∂t

¼ uv2 � ðF þ kÞv þ Dv∇
2v

ð1Þ

whereas the Schnakenberg model37 corresponds to:

∂u
∂t

¼ γða� uþ u2vÞ þ ∇2u

∂v
∂t

¼ γðb� u2vÞ þ d∇2v
ð2Þ

Boundary conditions in Fig. 2G–J are periodic in x and y, and no-flux at
the domain borders in the z direction. RD parameters for Grey-Scott are ε= 0.1,
F= 0.042, k= 0.063, Du= 0.15 and Dv= 0.075. RD parameters for Schnakenberg
are a= 0.1, b= 0.9, γ= 1, d= 40. Initial conditions in Fig. 2G and I are random
assignments of each hexagonal prism to green (u, v)= (0.5, 0.25) or black (u, v)=
(0, 1) followed by addition of ±1% random noise to each simulation node. Initial
conditions in Fig. 2H and J are the steady-states of Fig. 2G and I.

Episcopic microscopy and extending statistics to large simulation domains. A
dorsal patch of skin of about 1 × 0.5 cm (8 by 4 scales) was sampled from a
euthanised young adult ocellated lizard and fixed overnight in 4% paraformalde-
hyde (PFA) at +4 °C. The sample was then washed in phosphate-buffered saline
(PBS) for 1 h, dehydrated through a series of methanol solutions in water (1 h in
each solution of 30, 50, 70, and 100% methanol) and stored at −20 °C in fresh
100% methanol. For HREM, the skin sample underwent fluorescent staining and
embedding in Technovit 8100 resin (Kulzer, Germany): it was washed twice in
acetone at +4 °C for 1 h and incubated in Technovit infiltration solution with 2
mg/ml of Eosin B and 0.5 mg/ml Acridine Orange (Sigma-Aldrich, USA) for 5 h at
+4 °C. A second infiltration with fresh solution was then performed in the same
conditions. After withdrawal from the infiltration solution, and removal of excess
solution with filter paper, the sample was oriented (to insure sectioning perpen-
dicular to the skin surface) in custom cuvettes and mounted in pre-cooled Tech-
novit polymerisation solution containing 6 mg/ml Orasol Black (Sigma-Aldrich,
USA) for overnight polymerisation at +4 °C. The resulting block was sectioned at
3.5 μm thickness with an OHREM sectioning/imaging system (Indigo Scientific,
UK). A stack of 1136 high-resolution images (4080 × 3072 pixels, 16 bits) were
obtained using the red fluorescent protein filters set. These images were then used
to produce the 3D simulation domain (defined by either the whole skin or the skin
portion occupied by melanophores; Fig. 3D) in which numerical simulations were
performed (Fig. 3E, F).

The statistics of thickness variation derived from the HREM-reconstructed skin
were then applied to a large patch of skin as follows. The high-frequency surface
micro-geometry of a dorsal skin patch of about 700 scales was acquired on a 18-
week-old animal using a shape-from-shading approach40 implemented in a robotic
high-resolution system (R2OBBIE-3D; ref. 41). After the reconstructed patch was
aligned to the xy plane, its height was thresholded, generating a series of
disconnected convex sets whose centroids represent the positions of scales. The
average distance between the centroids of neighbouring skin scales dMavg was

computed and the surface was isotropically scaled by a factor dHavg=d
M
avg, where d

H
avg

is the average distance between neighbouring skin scale centres on the surface of
the HREM-reconstructed sample. Then, the bottom surface of the simulation skin
domain was generated using the following expression:

zskinbottomðx; yÞ ¼ zskintop ðx; yÞ � normHREMðzskintop ðx; yÞÞ �maxHREM
h ð3Þ

where zskintop is the top surface of the skin and

normHREMðzÞ ¼
z �minðzskintop Þ

maxðzskintop Þ �minðzskintop Þ
1� minHREM

h

maxHREM
h

� �
þ minHREM

h

maxHREM
h

ð4Þ

is a function mapping all z values to the interval ½minHREM
h =maxHREM

h ; 1�. Note that
minHREM

h and maxHREM
h represent the minimum and the maximum unnormalised

skin height in the HREM patch. As chromatophores do not reach the deepest zones
of the skin, the domain occupied by chromatophores (Fig. 3D), i.e., the volume
probably more valid than the whole skin domain for 3D numerical simulations,
was reconstructed using the following expression:

zchromatophores
bottom ðx; yÞ ¼ zskintop ðx; yÞ � normHREM zskintop ðx; yÞ

� �
� p�3std zskintop ðx; yÞ

� �� �
�maxHREM

h

ð5Þ
where p�3std is the fourth-order polynomial fit to the lower bound of the 3-std
interval around the average pigment position for all scales.

Dimensionality-reduction. Dimensionality reduction from 2D to 1D for diffusion
in a narrow 2D channel has been formally derived42,43. To our knowledge, deri-
vation of dimensionality reduction from 3D to 2D does not exist in the literature.
Here, we propose computationally-efficient dimensionality-reduction approaches
where skin thickness variation is projected in 2D as tuned RD components’ con-
centrations and effective diffusion coefficients. More specifically, for a RD system
of the form:

∂c
∂t

¼ f ðcÞ þ D~∇
2
c ð6Þ

in a 3D geometry bounded (i.e., with no-flux) at bottom and top by, respectively,
two functions z ¼ z1ðx; yÞ and z ¼ z2ðx; yÞ (Supplementary Fig. 1A), the integrated
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concentration cðx; y; z; tÞ with respect to the z coordinate is given by:

Q ¼ Qðx; y; tÞ ¼
Z z2ðx;yÞ

z1ðx;yÞ
cðx; y; z; tÞdz ð7Þ

Given that the variation in z of u, v, and w at any (x,y) point is much smaller
than the difference of these concentrations between green and black scales (as
shown in bona fide 3D simulations; Fig. 2F), we assume that there is no variation of
the 3D density c in the z direction. This assumption is justified, for diffusion
without reaction terms, using the systematic expansion of the diffusion equation at
leading order43 (and its straightforward generalisation to higher dimensions).
When adding the reaction terms, the assumption of no variation of c in the z
direction remains justified by the thickness of the domain being smaller than the
typical length-scale of the RD pattern. This assumption then results in:

Q � cðx; y; tÞ�zðx; yÞ ð8Þ

where zðx; yÞ ¼ z2ðx; yÞ � z1ðx; yÞ is the domain height.
For an elementary column volume V � ϵ2zðx; yÞ (Supplementary Fig. 1B) in a

RD system, the general mass conservation law requires:

∂

∂t

Z
V
cdV ¼ �

I
S

~J �~ndSþ
Z

V
f ðcÞdV ð9Þ

where the first and second right-hand side terms are the diffusion and reaction
terms, respectively.~J ¼ �D~∇c ¼ ðJx ; Jy ; 0Þ is the diffusional flux per unit area
accounting for a constant concentration in the z direction, S is the surface area of
the element and ~n is the outward facing surface normals. Given the assumption
that c does not vary in the z direction, we can write the left-hand side of the
equation as:

∂

∂t

Z
V
cdV � ∂Q

∂t
ϵ2 ð10Þ

Considering each side of the elementary volume separately, the diffusion term
gives:I

S

~J �~ndS ¼
Z
Sxþ

Jxðx þ ϵ=2; yÞdS�
Z
Sx�

Jxðx � ϵ=2; yÞdS

þ
Z

Syþ
Jyðx; y þ ϵ=2ÞdS�

Z
Sy�

Jyðx; y � ϵ=2ÞdS

� ϵ � Jxðx þ ϵ=2; yÞ � zðx þ ϵ=2; yÞ � ðJxðx � ϵ=2; yÞ � zðx � ϵ=2; yÞÞð
þ ϵ � Jyðx; y þ ϵ=2Þ � zðx; y þ ϵ=2Þ � ðJyðx; y � ϵ=2Þ � zðx; y � ϵ=2ÞÞ

�
ð11Þ

Whereas the reaction term becomes:Z
V
f ðcÞdV � f

Q
z

� �
ϵ2z ð12Þ

Substituting these three latter expressions in the general mass conservation
equation and dividing by ε2, we obtain:

∂Q
∂t

� Jxðx � ϵ=2; yÞ � zðx � ϵ=2; yÞð � ðJxðx þ ϵ=2; yÞ � zðx þ ϵ=2; yÞÞ
ϵ

þ
Jyðx; y � ϵ=2Þ � zðx; y � ϵ=2Þ
�

� ðJyðx; y þ ϵ=2Þ � zðx; y þ ϵ=2ÞÞ
ϵ
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i.e.,
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Q
z

� �� �
þ f

Q
z

� �
z ð14Þ

In one dimension, the first right-hand side term is equivalent to the Fick–Jacobs
equation42 where D is a constant diffusion coefficient. Thickness of the domain is
therefore taken into consideration by the linear correction of the diffusion
coefficient D(x,y) by the corresponding value z(x,y) at that position.

However, it has been suggested43 that this model can be improved by replacing
D in the above equation by a position-dependant effective diffusion coefficient
Dðx; yÞ. For a narrow and asymmetric 2D channel of height zðxÞ confined between
two smooth functions z1ðxÞ and z2ðxÞ, the slope of the channel midline and the
variation of the channel height both affect the effective diffusivity as follows43:

DðxÞ ¼ D 1� ∂z0ðxÞ
∂x

� �2

� 1
12

∂zðxÞ
∂x

� �2
 !

ð15Þ

where z0ðxÞ ¼ z1ðxÞþz2ðxÞ
2 represents the midline of the channel.

To avoid numerical instability in case of large corrections leading to negative D,

we use the following equivalent approximation (for small enough ∂zðxÞ
∂x and ∂z0ðxÞ

∂x ):

DðxÞ ¼ D
1

1þ ∂z0ðxÞ
∂x

� �2
þ 1

12
∂zðxÞ
∂x

� �2
0
B@

1
CA ð16Þ

In the case of localised high ∂zðxÞ
∂x and ∂z0ðxÞ

∂x , this approximation may not
reproduce well the fundamental 3D solution in the corresponding localised region
of the domain, but the comparisons of Fig. 4 show that such potential cases do not
influence much the overall qualitative features of the solution.

We then extend this equation to 2D by separating the two directions (x and y)
in a diffusion matrix

Dðx; yÞ ¼ DðxÞ00DðyÞÞð ð17Þ

Obviously, the use of a diagonal diffusion matrix implies that anisotropies due
to local variations in z are accounted for only in the directions aligned with the
coordinates (X,Y). A full formal derivation in 3D would identify if ignoring off-
diagonal elements is reasonable for a generic geometry. Our numerical simulations
suggest that this approximation does not translate into large errors as it produces
patterns very similar to those obtained with bona fide 3D models (Fig. 4B).

Pattern length scale and pattern border curvature in RD simulations under
growth. Lizards grow much more slowly than the time scale required for local RD
equilibrium to be achieved. Hence, starting form a mesh of dimensions
Lð0Þ ¼ ðLxð0Þ; Lyð0ÞÞ, we simulate isotropic growth by iteratively incrementing the
simulation domain size every time the RD steady state is reached (i.e., when the
sum of variations of all three components u, v, and w is <10−7; see above). More
precisely, the simulation domain size at each growth time step τ was updated to
LðτÞ ¼ ð1þ τΔτÞðLxð0Þ; Lyð0ÞÞ, while the number of simulation elements was kept
constant. In Fig. 5, the initial domain size is Lð0Þ ¼ ð1044; 281Þ with 1800 elements
in the X-direction. As the Bradley approach43 of dimensionality-reduction is used
in these simulations, zðx; yÞ and Dðx; yÞ—i.e., the position-dependent height and
effective diffusion coefficient, respectively—are also updated at each step. The
pattern of a dorsal skin patch, with 30% of black scales, from an 18-week-old
animal was used as initial condition.

The length scale of real patterns was computed as the mean local width (in
number of skin scales) of green labyrinthine stripes (Supplementary Fig. 4). First,
2D images of skin patches of interest were converted to grey-scale and blurred to
reduce high-frequency noise (Supplementary Fig. 4A, B). The distribution of pixels
grey-scale intensities was then divided in two groups using the k-means clustering
algorithm (Supplementary Fig. 4C) to generate a binary image of black and white
pixels (Supplementary Fig. 4D). Closed curves connecting white pixels adjacent to
black pixels on the binary image were considered as borders of green chains of
scales on the corresponding original image (Supplementary Fig. 4E). The distance
of each green pixel (i.e., belonging to the cluster with lower grey-scale intensity;
Supplementary Fig. 4C) to the closest border was then normalised by half the
average distance between the centres of neighbouring skin scales on the
corresponding skin patch (i.e., the average skin-scale radius ravg). For each pixel
belonging to a green stripe, the corresponding normalised distance value is
displayed using a colour scale code (Supplementary Fig. 4F). Finally, the global
length scale of the pattern was computed as the mean among normalised distances
>1. For computing the length scale of simulated patterns, the same procedure was
followed; however, as simulation images do not require noise reduction, the
clustering threshold was simply set to a value of 127.5, i.e., the centre of the interval
of possible pixel intensities.

The average curvature of the pattern border, sampled every ravg along the
border (white dots in the inset of Supplementary Fig. 5), is computed using the
Menger curvature (1/rM), i.e., the reciprocal of the radius of the circle (yellow, inset
of Supplementary Fig. 5) that passes through the current computation point
(purple, inset of Supplementary Fig. 5) and two neighbouring points (blue, inset of
Supplementary Fig. 5) whose distance to the computation point is equal to 5·ravg.
To scale out image resolution effects, the radius rM of the resulting circle is
normalised by ravg.

Sensitivity analysis. The prism colour homogeneity error quantifies how much a
generated steady state deviates from a pattern in which each prism has homo-
geneous colour. This measure was constructed by taking all simulation grid points i
that fall inside a prism p and calculating the corresponding prism colour homo-
geneity error as:

eðpÞ ¼ minð1� greenðpÞ; greenðpÞÞ; ð18Þ

where greenðpÞ ¼ ∑i2pgðiÞ
jpj and gðiÞ 2 0; 1½ � is the green colour intensity of a grid

point i (see above). Finally, we compute the pattern colour homogeneity error

consisting of n prisms as
∑peðpÞ

n (Supplementary Fig. 1).
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Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated or analysed during this study are included in this published article
and its supplementary information file. Very large files with lizard 3D geometries are
available from the corresponding author (M.C.M.) on reasonable request.

Code availability
The GPU-based finite-difference implementation of the RD process on a regular network
of spacing ε with periodic or no-flux boundary conditions is provided at https://github.
com/LANEvol/RD-3D.git for repeating the numerical simulations presented here.
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