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A small interfering RNA (siRNA) 
database for SARS‑CoV‑2
Inácio Gomes Medeiros  1,3, André Salim Khayat  5, Beatriz Stransky2,4, Sidney Santos5, 
Paulo Assumpção6 & Jorge Estefano Santana de Souza1,2*

Coronavirus disease 2019 (COVID-19) rapidly transformed into a global pandemic, for which a demand 
for developing antivirals capable of targeting the SARS-CoV-2 RNA genome and blocking the activity 
of its genes has emerged. In this work, we presented a database of SARS-CoV-2 targets for small 
interference RNA (siRNA) based approaches, aiming to speed the design process by providing a broad 
set of possible targets and siRNA sequences. The siRNAs sequences are characterized and evaluated 
by more than 170 features, including thermodynamic information, base context, target genes and 
alignment information of sequences against the human genome, and diverse SARS-CoV-2 strains, 
to assess possible bindings to off-target sequences. This dataset is available as a set of four tables, 
available in a spreadsheet and CSV (Comma-Separated Values) formats, each one corresponding to 
sequences of 18, 19, 20, and 21 nucleotides length, aiming to meet the diversity of technology and 
expertise among laboratories around the world. A metadata table (Supplementary Table S1), which 
describes each feature, is also provided in the aforementioned formats. We hope that this database 
helps to speed up the development of new target antivirals for SARS-CoV-2, contributing to a possible 
strategy for a faster and effective response to the COVID-19 pandemic.

Started in December 2019, coronavirus disease 2019 (COVID-19) rapidly transformed into a global pandemic, 
with an incidence of almost 100 M cases and more than 2 M deaths around the world in January 20211, with a 
strong impact on the global economy2. The SARS-CoV-2 genome has a 29,903 base of single and positive-strand 
RNA (SARS-CoV-2 Wuhan Hu-1 strain, Accession: NC_045512), and consists of fourteen open reading frames 
(ORFs) which coded for twenty-seven structural and nonstructural proteins (nsps). The genome organization 
of SARS-CoV is similar to other CoVs and recent phylogenetic analyses indicated that SARS-CoV and the 
group 2 CoVs are closely related and may share a common ancestor3. A comparative analysis of SARS-CoV-2 
and SARS-CoV showed that they present an extensive homology at genomic level, sharing approximately 79% 
of sequence identity4. Currently, there are hundreds of SARS-CoV-2 variants being sequenced5, a handful of 
vaccines have been authorized and many more vaccine candidates remain in development around the world6. 
However, despite all the scientific research and efforts, there is no specific treatment for those that were already 
infected by SARS-CoV-2. This scenario brought a huge demand for developing antivirals capable of targeting 
the SARS-CoV-2 RNA genome and RNA interference approach7–9 emerged as a possible solution. Small inter-
ference RNA (siRNAs) are RNA sequences about 20nt-long that, together with RNA-Induced Silencing System 
(RISC), bind mRNA target molecules9,10 inhibiting its translation and expression. Since the discovery of the RNAi 
mechanism in the late 90s7 and its effect of precisely suppressing any gene by a base sequence match, the potential 
of its application became evident. Soon it became a ubiquitous tool in biological research and applications, from 
functional genomics11 to biomedicine12–15 and pest control16,17. Following this ’silent revolution’, in 2018 the US 
Food and Drug Administration approved the first RNAi therapeutic, a treatment for polyneuropathy caused by 
transthyretin (TTR) amyloidosis, from Alnylam Pharmaceuticals18.

Many studies have been proposed siRNAs development for SARS-CoV19–21, with reports of viral levels 
decrease22 and recent works claim that it may also work for SARS-CoV-223–26. From experimental studies to 
patent applications, researchers have explored this approach as a potential treatment for COVID-19. Supple-
mentary Table S3 presents a compilation of recent scientific papers, patents, and product development projects 
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based on siRNAs with a focus on SARS-Cov-2. One of them (Gu et al27) performed in vitro and in vivo experi-
ments (Syrian hamster and Rhesus macaque) with siRNA that targets RNA-dependent RNA polymerase (RdRp) 
gene. Two other works that developed siRNAs to target ORF-128 and RdRp29 genes also performed, respectively, 
in vitro and in vivo experiments. All studies reported effective gene suppression activity of SARS-CoV-2 suggest-
ing a promising approach for treating COVID-19. Furthermore, as occurred during the SARS-CoV epidemic in 
200330,31, many patent applications for SARS-CoV-232 have been filed. (see Patents submissions at Supplementary 
Table 3). A development project for clinical application includes a multimillionaire endeavor led by Vir and 
Alnylam® Pharmaceuticals33 companies to develop an RNAi therapeutic (called VIR-2703) for COVID-19 (see 
Related projects at Supplementary Table S3).

A critical step in the development of RNAi-based therapies is the design of siRNAs. To find potential regions 
in diverse coronaviruses with matches to SARS-CoV-2, identifying many of them in SARS-CoV, the closest 
homolog, researchers34 used Immune Epitope Database and Analysis Resource (IEDB)34. Chen et al35 applied a 
window of 3000 nucleotides with a step of 1500 over the reference SARS-COV-2 genome seeking 1–25nt regions 
called ’free segments’. Besides, siRNAs databases targeting a broad range of viruses36–38 have been developed. 
Recently, researchers developed a SARS-CoV-2 oligonucleotide sequence database, to improve the SARS-CoV-2 
detection and treatment methods, providing sequences with the lowest and highest conservation levels39.

In this work, we presented a SARS-CoV-2 targets database to support the development of siRNA approaches 
and speed up RNAi design, by providing a set of possible targets and siRNA sequences with the required infor-
mation for choosing the most appropriate targets for new siRNAs. Unlikely cited databases, which are manually 
curated and provide only a small set of siRNAs chosen for specific targets (see siRNA computational identification 
and design papers at Supplementary Table S3), we apply a sliding-window approach for covering whole SARS-
CoV-2 genomic space, extracting every possible siRNA sequence of 18, 19, 20, and 21 nucleotides. This method-
ology generated a comprehensive database that enables researchers to assess solutions capable of targeting any 
region of the virus but also to select homologous regions between the circulating variants. It also enabled 100% 
of matches with siRNAs published by similar works (see column % of siRNAs present in the proposed database at 
Table S3). The database presents more than 170 features, including thermodynamic information, base context, 
target genes, and alignment information against diverse SARS-CoV-2 strains, together with scores and predic-
tions collected from three siRNA efficiency prediction tools. It is worth mentioning that the various laboratories 
around the world have distinct expertise and goals for siRNAs development, therefore, all this coordinated 
information will enable users to select, with higher confidence, targets that best match a broad set of conditions 
for designing even more efficient siRNAs.

Results
Database analysis and statistics.  The proposed database displays a total of 119,526 siRNAs divided into 
four different sizes, ranging from 18 to 21 nucleotides (see Table 1 for the number of siRNAs of each length), 
and covering more than 170 features (Supplementary Table S1 describes each feature). The column Annot, for 
example, indicates which gene (or genes) a siRNA can target, and should be consulted if the user wants to design 
siRNAs focused on inhibiting the activity of a single gene or a group of overlapping genes. Figure 1 provides the 
distribution of 21nt siRNAs across the twenty-most siRNA-abundant SARS-CoV-2 genes. It can be noticed that 
gene overlapping pp1ab,pp1a,nsp3 comprises about 20% of all siRNAs (5811), more than the double of the next 
most siRNA-abundant gene, the gene overlapping pp1ab, Pol, which can be targeted by 2732 siRNAs (about 9% 
of all 21nt ones). Otherwise, gene overlapping S_glycoprotein, Spike_protein_S2 and nsp8 holds the lowest num-
ber of siRNAs: 366 and 335, respectively (about 1% each).

We also aligned all siRNAs to the Human genome, Human coding and non-coding transcriptomes, SARS, 
MERS, and H1N1 genomes, with Bowtie version 1.1.0, to identify if siRNAs could off-target regions in those 
organisms, thus presenting cross-reactivity with them. According to Yamada et al.40, a minimum of three mis-
matches against the human genome is necessary to guarantee that the siRNA will not anneal off-target regions, 
hence increasing its effectiveness. Figure 2a–d illustrate the growth of siRNAs quantities as the minimum number 
of necessary mismatches to have alignment increases. The results show that virtually all 18nt siRNAs can match 
the human genome and transcriptomes (coding and non-coding) with three mismatches. This number, however, 
increases to four mismatches considering 19nt and 20nt (Fig. 2b, c), and to five considering the 21nt length 
(Fig. 2d). It can be observed that in each length, about 2500 siRNAs match perfectly with some region of SARS. 
Regarding MERS and H1N1, about 2500 18nt siRNAs can match regions of those viruses, when the minimum 
number of allowed mismatches is two (Fig. 2a). This number is overcome by 19–21nt siRNAs only when the 
number of mismatches is increased to three (Figs. 2b–d). Finally, it is also important to note that while all 18nt 

Table 1.   Number of siRNAs of each length.

Length Number of siRNAs

18 29,883

19 29,882

20 29,881

21 29,880

Total 119,526
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and 20nt siRNAs match some regions from MERS, SARS, and H1N1 using at least six mismatches, the number 
of mismatches increases to seven for 19nt and 21nt siRNAs.

To analyze the siRNAs’ effectivity to address strains sets from different populations, other alignments with 
Bowtie version 1.1.0 were performed, this time with siRNAs against SARS-CoV-2 strains available at the Global 
Initiative of Sharing All Influenza Data (GISAID) database (https://​www.​gisaid.​org/), coming from nine coun-
tries (see Methods). This analysis indicate, for example, which siRNAs are more suitable for a specific country, 
given its matches with the strains. The columns BV to CD, CN to CV, and DF to DN from database spreadsheet 
files (see Supplementary Table S1) provide the number of genomes from each strains country set that natural 
sense, synthetic sense, and antisense respectively have a perfect match with (the total number of strains genomes 
is available at columns’ headers).

Figure 1.   Distribution of 21nt siRNAs across the twenty more 21nt-siRNA-abundant genes from SARS-CoV-2. 
Number of siRNA targets per gene, displayed in horizontal bars. Overlapping genes are displayed at the same 
line, separated by comma.

Figure 2.   Number of mismatches against Human genome and transcriptomes. The number of antisense (a) 
18nt-long, (b) 19nt-long, (c) 20nt-long, and (d) 21nt-long siRNAs with different mismatches against Human 
genome, Human coding and non-coding transcriptome, and MERS, SARS, and H1N1 genomes.

https://www.gisaid.org/
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Figure 3a yields a big picture of country coverage for each 21nt antisense sequence siRNA. The majority of 
siRNAs encloses more than 95% of the strains from all countries. In spite of that, a lesser but significant portion 
of siRNAs encloses between 50 and 95% of the strains from all countries, with China and Brazil presenting the 
highest numbers (6796 and 5881 siRNAs, respectively). Russia has the smallest portion of such siRNAs (524 
siRNAs). Figure 3b displays an intersection matrix from siRNAs that enclose more than 95% of the strains from 
each country, providing the number of siRNAs that have a match simultaneously with each country pair. Brazil 
and China produce similar profiles: while the former shares between 18.000 and 24.000 siRNAs with more 
than 95% of country coverage with other countries, China shares between 18.000 and 23.000 siRNAs. On the 
other hand, England’s pairs vary between 20.000 and 26.500 siRNAs, and it is possible to see a “cluster” formed 
between Germany, Italy, Russia, Spain, and USA, wherein each pair shares more than 27.000 siRNAs. These 
results suggest that many of the 21nt siRNAs in our proposed database have potential to be used worldwide, 
given such sharing power.

Supplementary Table S2 shows the number of 21nt siRNAs with more than 95% of coverage against the 
variants presented in each country. It can be noticed that same number of siRNAs (570) against the overlapping 
genes pp1ab, pp1a, nsp8 is observed across all countries but China (where it has 410), and the overlapping genes 
pp1ab, pp1a, 3CL-PRO, across all countries (with 894 siRNAs in each one) except China (828 siRNAs) and Rus-
sia (873). Otherwise, the overlapping genes pp1ab, pp1a, nsp10 present the same number of siRNAs (393) in all 
countries but China (358) and Spain (334). Although Russia and China do not share the same number of siRNAs 
in any gene, Russia does with Wuhan in the overlappings pp1ab, ExoN (1557), pp1ab, nsp16 (894), and pp1ab, 
pp1a, nsp10 (393 siRNAs). Besides, the number of siRNAs with more than 95% of coverage in Russia that target 
S_glycoprotein is the same number of at least one other country. These results indicate that it is possible, with 
the proposed database, to screen for siRNAs with effectivity directed to a specific gene (or group of overlapping 
genes) with either a potential global application or to a specific set of populations of interest.

The possible toxicity of a siRNA in humans is an important aspect that must be taken into account during 
design processes, and can be handled at diverse levels, from the molecular one to the issue of having off-targeting 
capabilities (as previously mentioned and discussed). Regarding sequence level, where the proposed database 
is located, a set of proposals can be found in the literature40,41 related to how to assess the toxicity of a siRNA. 
Seeking to evaluate the toxicity level of 21nt siRNAs from the proposed database, to check its ability to handle 
these issues, we applied a filtering set of four masks based on previous works40,41 (see Table 2, section Toxicity). 
A total of 26,629 siRNAs (about 89% of the 21nt database) were considered toxic, and 3251 atoxic (about 11%). 
Country coverage of atoxic siRNAs (Supplementary Figure S1a,b) follows the same visual pattern from Fig. 3, this 
time with pairs involving Brazil or China each one varying from 1,800 to 2,500 siRNAs; England, from 2,000 to 
2,900, and the “cluster” formed between Germany, Italy, Russia, Spain, and USA, with more than 2,800 siRNAs. 
Their distribution across Top 20 siRNA-abundant SARS-CoV-2 genes (Supplementary Figure S2) repeats the 
pattern of overlappings pp1ab, pp1a, nsp3 and pp1ab, Pol with the highest quantities (436 and 330, respectively), 
and now nsp8 gene is the third least, covering 64 siRNAs (overlappings pp1ab, nsp16, and pp1ab, pp1a, nsp9 fill 
the list with 62 and 59 siRNAs, respectively).

As stated in Methods, we applied over all the siRNAs three efficiency prediction tools to assess their inhibi-
tion power. Figure 4 illustrates the number of 21nt antisense siRNA sequences predicted as effective by every 
single predictor, and the quantities predicted by more than one. It can be seen that no siRNA was unanimously 
considered effective, while approximately 53% of them (15,821 siRNAs) were considered as such just by SSD. 
Besides, a single siRNA was predicted as effective by both ThermoComposition21 and si_shRNA_selector.

The literature40–46 regarding siRNA effectiveness indicates that three main characteristics should be consid-
ered during the design processes: Toxicity, Stability, and Effectivity. We examined whether these criteria could 
be assessed using the variables of our proposed database. Table 2 addresses the mapping between the features 
of the database and literature filtering criteria. It is possible to see that there is at least one available feature for 

Figure 3.   Coverage of 21nt siRNAs across strains from nine countries. (a) Targeting coverage of 21nt siRNAs 
across nine countries, divided in three layers: (1) 0–50% of the country’s strains; (2) 50–95% of the country’s 
strains; (3) 95–100% of the country’s strains. (b) Intersection matrix displaying the number of siRNAs with 
coverage higher than 95% that each country pair shares.
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each criterium. For example, the Toxicity filter that has neither UUUU nor GCCA tags in its sequence, matched 
with database columns UUUU​ and GCCA​, which tells the user exactly whether a siRNA of interest has such tags. 
Database column GC, on the other hand, gives siRNA GC% content information, so it can be used to evaluate 
Effectivity criterion as GC content between 36 and 52%. Thus, the proposed database is suitable for effective 
siRNAs selection under diverse and customized user requirements.

Table 2.   Example of siRNAs filtering criteria according to diverse characteristics. Criteria filtering sets from 
literature regarding (a) Toxicity, (b) Efficiency, (c) Populations and genomes coverages, (d) Stability, and (e) 
Effectiveness prediction. First column indicates each such group of characteristics; second column, the name 
of database feature whose filtering criteria (last column) is related; third column, the spreadsheet database 
column related to database feature name; and last column, the filtering criteria.

Characteristic Database feature name(s) Database spreadsheet column(s) Filterreference

Toxicity

hs CY Has at least three mismatches with Human 
genome40

hs_cds CZ Has at least three mismatches with Human coding 
transcriptome40

hc_ncrna DA Has at least three mismatches with Human non-
coding transcriptome40

UUUU and GCCA​ BC and BD Does not have neither UUUU neither GCCA tags 
in its sequence41

Effectivity

sGG, sCC, fAA, fTT R, S, V, and U Has G or C at 5′ of antisense strand and A or T at 
5′ of sense strand43

GC BA Has GC content between 36 and 52%44

Palindromic_AS BL Does not have palindromic subsequences46

Hairpin DX and EV Does not make hairpin

SelfAnnealing DY and EW Does not self-anneals

Populations and genomes coverage

Brazil (57), Wuhan (48), China (41), England 
(3416), Germany (180), Italy (82), Russia (154), 
Spain (410), USA (4725)

DF to DN Matches with as many as possible SARS-CoV-2 
from different countries

mers, sars, h1n1 DB, DC, DD Matches with MERS, SARS and H1N1 genomes

Stability

DG HO Structural stability lies between -32 to -28 kcal/
mol45

Tm EO Melting temperature is around 20ºC42

DDG HP Terminal duplex asymmetry (ΔΔG) equal or 
higher than 2 kcal/mol45

Effectiveness prediction by predictors

Predicted Eficacy FY Effectiviness prediction by ThermoComposition21

GOOD GJ Effectiviness prediction by SSD

GOOD HN Effectiviness prediction by si-shRNA selector

Figure 4.   Venn diagram of three predictors for 21nt-long antisense sequences classified as efficient. The number 
of siRNAs that are simultaneously considered as effective by each pair of tools from ThermoComposition21, 
SSD and si_shRNA_selector.
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Database use and access.  The proposed database is distributed as a set of five files, available in spread-
sheet and CSV formats. One of them is a metadata table, containing the description of each column (Supplemen-
tary Table S1 replicates such table), and the remaining ones correspond to target region sequences of a specific 
length. Here we will present how a researcher can use this database with an illustrative example. Suppose a user 
wants to select siRNAs with 21 nucleotides length. In this case, the user will access either the file 21bases.xlsx or 
the file 21bases.csv (for purposes of this example, it will be considered that the user has accessed 21bases.xlsx). 
After opening it in a spreadsheets editor, the next step is selecting siRNAs whose properties match the user 
requirements. Assume that the user wants a siRNA that has little or no homology with the human genome, can 
act over as much as possible British SARS-CoV-2 strains, and its first dinucleotide is AA. This last requirement 
is achievable by applying a filter over column sAA (see Supplementary Text S1 and Supplementary Table S1) to 
show only lines with value 1 on it (see Supplementary Text S1), decreasing the number of siRNA candidates from 
29,880 to 2858. For little or no homology with the human genome, the number of mismatches against human 
sequences must be at least three40. Filtering table to display lines with at least a value of three at spreadsheet col-
umns BO, BP, BQ, CG, CH, CI, CY, CZ, and DA (Supplementary Table S1) now reduces candidates from 2858 to 
999. Finally, to approach as many British strains as possible, spreadsheet column England (3012) (Supplementary 
Table S1) can be filtered to display only the three highest values, for example, which reduces candidates from 999 
to 10 candidates. Such a reduction not only saves wet-lab test costs but also ensures that selected siRNAs meet 
the main user requirements.

Discussion
Small interfering RNAs (siRNAs) are double-stranded non-coding RNA molecules of 18–25 base pairs long, 
which regulate the expression of genes by a phenomenon known as RNA interference (RNAi). Although their 
therapeutic use had imposed many challenges to overcome limited effectiveness and potential toxicity effects 
in the early applications12,47, several siRNAs have been developed as potential therapies against viral infections 
with limited treatment options and accessible target cells, like hepatitis B virus48, Ebola49, and respiratory syn-
cytial virus50. For SARS-CoV, the effect of prophylactic and therapeutic activities of siRNAs in Rhesus monkeys 
(Macaca mulatta) was evaluated in Li et al22. The researchers used two duplex siRNAs, targeting the SARS-CoV 
genome in the spike and NSP12 protein-coding regions. They found that siRNAs provide relief of fever caused 
by SARS-CoV infection, reducing the viral load and decreasing acute diffuse alveolar damage. In addition to 
proving the effectiveness of these siRNAs in prophylactic and therapeutic activity, the experiments did not show 
any signs of toxicity related to the use of siRNAs as therapy.

Regarding SARS-CoV-2, three different in vitro and in vivo studies27–29 successfully reported siRNAs appli-
cation as a potential treatment for COVID-19 (see Supplementary Table S3, Pre-clinical or human-clinical test 
studies line). Furthermore, researchers have applied for a large number of patents related to vaccines or drug 
development reported siRNAs targeting M, N, and E protein genes, PI4KB, RdRp, ORF3a gene, among others 
(reviewed in30–32). As expected, many of these and new studies have been reversed in patent applications applied 
to COVID-19. Two patents reported a preparation method of a CoViD-19 antisense RNA multivalent vaccine 
(CN111330003A) and a dsRNA vaccine (CN111321142A), targeting ORF1ab, 3′ UTR, and S, E, M, or N genome 
region. For the development of biological medicines aiming to prevent and/or treat Covid-19, siRNAs were devel-
oped for conserved regions of the SARS-CoV-2 (CN111139241A and CN111139242A). According to the authors, 
siRNA modified by the invention has an obvious inhibition effect on the gene, with a great clinical significance 
for treating COVID-19 pneumonia. Also applying siRNA molecules, other patents report the suppression of 
SARS-CoV-2 replication, by targeting the ORF1 (ORF1a, ORF1b) and N genes (RU2733361C1) or described 
an effective inhibition of the expression of virus key protein by targeting the gene sequence of RDRP enzyme or 
S protein (CN111518809A). Meanwhile, biotechnology companies have invested heavily to consolidate RNAi 
therapeutics for COVID-19. A collaborative team of Alnylam Pharmaceuticals and Vir Biotechnology devel-
oped an aerosolized delivery of siRNAs optimized for lung uptake, and are conducting in vitro and in vivo tests, 
whereas Sirnaomics perform preclinical studies with a respiratory-specific siRNA formulation that is delivered 
by a customized handheld nebulizer device51. Based on these studies and evidence, we believe that siRNA-based 
therapies are a promising tool for fighting epidemics. Furthermore, the siRNAs experimentally validated in above 
papers and also presented in our bank indicate that the proposed database can effectively help to achieve this goal.

Despite the exciting results obtained by this technique, researchers still face many challenges, and one of 
the most critical is the avoidance of nonspecific toxicity in therapeutic applications. According to Setten et al.12, 
the main sources of toxicity that have considerably affected clinical RNAi drug development are related to (1) 
Immunogenic reactions to dsRNA, (2) Toxicity of excipients, (3) Unintended RNAi activity, and (4) On-target 
RNAi activity in non-target tissues. Some of these problems are largely mitigated by the development of excipients 
limited to a small number of chemical components that are individually verified for low toxicity, or by choos-
ing specific delivery routes, like lipidic nanoparticles complexes and other non-viral vectors52,53. Although the 
sequence features from siRNAs are insufficient to evaluate the assertion of delivery at the intended target area, it 
is an essential information to evaluate efficiency and possible toxic effects43,44. In this paper we worked on spe-
cific parameters based on siRNAs sequence features, that evaluate molecule stability and its potential to interact 
with off-target regions and pathways from human coding and non-coding transcriptome. Careful evaluation of 
these parameters will help to optimize the design and effective development of SiRNAs for each given objective.

The design of siRNAs is a challenging procedure because sometimes minor changes in its nucleotide sequence 
can alter its functionality42. As reported by Alagia et al54, specificity, potency, and efficacy of siRNA-mediated 
gene silencing can be determined by analyzing the siRNA nucleotide sequence, hence its inability to bind to 
unintended regions (off-targets) is an important factor that must be strongly taken into consideration. Therefore, 
we proposed a SARS-CoV-2 targeted siRNAs database with sequence and thermodynamic stability information, 
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to help the evaluation of important factors related to their efficacy and optimize the decision process towards 
choosing the best ones as target antiviral solutions. Considering that each laboratory has its own technology 
context and expertise in designing siRNAs of specific lengths, we provide a list of siRNAs varying from 18 to 21 
nucleotides-length, aiming to meet the range of possible lengths used in the design process.

The analysis of 21nt siRNAs showed the overlapping genes with most siRNAs (5811, 20% of the total num-
ber) involve pp1ab. Once this gene covers about 70% of the virus genome (21287nt)3, it is natural that most of 
the siRNAs fall in it. Thus, the database gives the option to screen either for siRNAs with higher or lesser gene-
specificity, in which the higher the number of overlapping genes that a siRNA can target, the higher the chances 
are to it be more effective because a larger set of viral functions will be compromised. On the other hand, gene 
nsp8 covers only about 2% of the genome (594nt)3, which may explain the reduced number of siRNAs that target 
it. The gene nsp3, which is present in the most target pp1ab, participates in the process of viral transcription and 
replication55,56. Since gene distribution analysis of siRNAs considered atoxic (see Results and Figure S2) revealed 
the same distribution pattern from the whole dataset, it can be suggested that nsp3 is a good target candidate for 
siRNAs design and development, given its abundance and function.

An early 2020 variation analysis study57 over SARS-CoV-2 strains from diverse countries reported homology 
levels between 99 and 100% for all strains. These countries presented the highest numbers of siRNA sharing 
pairs (Fig. 3), thus supporting the idea of high conservation areas in the SARS-CoV-2 genome. This can also 
resemble in Supplementary Table S2, where some genes have the same number of siRNAs that are capable to 
target at least 95% of strains from diverse countries. These results indicate that, although siRNAs from the pro-
posed database can not target mutation sites from new SARS-CoV-2 strains, the fields ranging from BV to CD 
spreadsheet columns (see Supplementary Table S1) help to identify homology regions common to all strains 
from a specific country.

Numerous works have been proposing methods and guidelines for choosing the best siRNAs by analyzing 
their sequence characteristics43,44,58,59, for which two broad reviews are available42,60 (some of them are briefly 
discussed at Supplementary Text S1). Given the importance of such guidelines and also the characteristics 
involved in their formulation, we decided to insert all this information into the database, so that users can select 
their best siRNAs from instructions already published, or by drafting their own rules from their expertise and 
specific objective. In this way, all the information contained in the database can be used in a customized and 
cost-effective manner. For example, our proposed database provides information regarding the bases, GC, and 
AU context, so as the quantities of each RNA nitrogenated base in sequences, besides information about the 
presence of UUUU and GCCA, considered toxic motifs41, so any user with a proper efficacy evaluation method 
(or anyone provided by literature) can easily evaluate siRNAs with this database at disposal. It also provides 
thermodynamic information collected from the application of three predictors45,61,62, thus enabling users to have 
a deeper look at siRNAs’ properties, and choose the best ones according to their specificities. As it can be seen in 
Fig. 4, they have high divergence when setting a siRNA as efficient or not, which suggests that they must be used 
in a complementary way. Due to the genetic diversity and variability of SARS-CoV-263, a siRNA that is highly 
efficient over one strain may not be when applied to another. Hence, we also provide information about similar-
ity within strains from diverse countries, such that users will benefit from the opportunity of input geographical 
specificity and even more customization to their decision process.

Ensuring that siRNAs are not capable of targeting human sequences (off-targets) is also another important 
requirement, for which a minimum of three mismatches is necessary to meet it40. Thus, similarity information 
with the human genome, coding, and non-coding transcriptome, is also available in our database. As it was 
shown in the Database Analysis & Statistics session, virtually all 18nt-long siRNAs matched with such genome 
and transcriptomes with at least three mismatches, corroborating with the literature statement40. To the best of 
our knowledge, this is the first database to figure SARS-CoV-2 siRNAs similarity information against human 
coding and non-coding transcriptomes, giving to users even more confidence power over siRNAs specificity. To 
investigate how it is possible to use the database for customized efficient siRNAs selection, we have elicited from 
literature filtering criteria regarding siRNA activity, such as Toxicity, Stability, and Efficiency. Table 2 showed 
that all the listed criteria can be handled using database features, which allows users to delimit thresholds and 
look at features that maximize desired skills that a siRNA must have to fulfill their requirements, to specialize 
the search space for their needs. It is important to note, however, that this database has not its use limited to 
biomedical applications: users can exploit their features to other biotechnological applications that have distinct 
requirements and explore database information in different ways. This is a clear advantage of our database over 
others already developed—the fact the whole possible siRNAs set are available opens the potential for groups 
with diverse specialties to work with them for different applications beyond healthcare ones.

In this work, we presented a database to support the development of new target antivirals for SARS-CoV-2 
using RNAi technology. We hope that the development of new antiviral products can not only be facilitated and 
accelerated but that the presented database helps to generate even more efficient solutions to silence the virus, 
contributing to the control of the pandemic. Given the urgency to provide this information for the scientific 
community, we made available the database as a set of tables files in spreadsheet and CSV formats, however, a 
webpage for more user-friendly and interactive access to the data will be released soon. Finally, it is important 
to stress that the approach presented here can be successfully applied for exploring the genomic information of 
other viruses, including the ones that may represent a threat to new pandemic events.

Methods
Although siRNAs length can vary from 18 to 25 nucleotides64, synthetic ones should range from 19 to 21nt65, 
according to ThermoFisher siRNA Design Guidelines66. Thus, the proposed database provides information about 
each possible 18–21 nucleotides siRNA target region from SARS-CoV-2, one table for each length. Moreover, 
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tools employed for assessing siRNAs efficiency45,61,62 operate over sequences lying in that range, which rein-
forces our choice. Since they present the same columns, we explain here the development process only for the 
21-length table.

SARS-CoV-2 reference genome was collected from NCBI (code NC_045512) and a sliding window of 21nt-
long and step 1 (this parameter is used in all tables, independently of length) were used to traverse the genome. 
Table 1 indicates the total number of sequences obtained for each length. Seven new sequences sets were then 
generated from the obtained sequences set (called target region), following the aforementioned ThermoFisher 
guidelines, and suggestions from our collaborators: (1) natural sense, by removing the first 5′-end dinucleotide 
from target region sequences; (2) oligo natural sense, replacing thymine with uracil over natural sense set; (3) 
synthetic sense, by replacing first 3′-end dinucleotide from natural sense sequences with TT; (4) oligo synthetic 
sense, by replacing of thymine with uracil over synthetic sense sequences; (5) antisense, from the reverse comple-
ment of target region; (6) oligo antisense, by replacing thymine with uracil over antisense sequences; and (7) oligo 
antisense rev set, by reversing antisense sequences.

Natural sense sequences were then aligned against (a) SARS-CoV-2 reference genome, to verify which genes 
they align with; (b) the human genome (NCBI accession code GRCh37) and coding and non-coding transcrip-
tome, to verify potential cross-reaction with off-target transcripts; (c) SARS-CoV-2 strains available at Global 
Initiative of Sharing All Influenza Data (GISAID) database (https://​www.​gisaid.​org/) coming from Brazil, China 
(Wuhan region only and whole country less Wuhan), England, Germany, Italy, Russia, Spain and USA; and (d) 
reference genomes of MERS virus (NCBI MG987420), SARS-CoV (NCBI NC_004718) and Influenza virus 
genome (NCBI NC_026438), aiming to assess whether siRNAs are capable to target regions from those viruses 
and strains. Bowtie67 version 1.1.0 was used as the aligner, using the following flags: -a, -S, --pairtries equals to 
4, -p equals to 40, -n equals to 3, -l equals to 7 and -f. Flag -e was used, being equals to 150 when aligning against 
the human genome, 10 for GISAID strains, and 220 for remaining genomes. Sequence properties regarding base 
context and alignment information were calculated from the above sequences sets and performed alignments (see 
Supplementary Text S1). Thermodynamic information and expected efficiency of candidates siRNA designed for 
targeting those regions was calculated with OligoCalc68 and three predictors, namely ThermoComposition2161, 
SSD62, and si-shRNA Selector45. Finally, we elicited criteria filtering sets from literature regarding (a) Toxicity, 
(b) Efficiency, (c) Populations and genomes coverages, (d) Stability, and (e) Effectiveness prediction, which are 
summarized at Table 2, and then analyzed whether they could be assessed with the features of proposed database.

Data availability
The spreadsheet and CSV files regarding database and metadata tables are available in a zip-compressed file at 
Open Science Framework (https://​doi.​org/​10.​17605/​OSF.​IO/​WD9MR) and mirrored at http://​www.​bioin​forma​
tics-​brazil.​org/​siRNA​db/​sirnas_​cov_​db.​zip. Codes and binaries regarding software employed to build the data-
base are available at https://​github.​com/​inaci​omdrs/​sirna_​db_​build​ing_​proto​col. A protocol describing technical 
details about database generation is currently available at Nature Protocol Exchange (https://​doi.​org/​10.​21203/​
rs.3.​pex-​1207/​v1). A preprint version of this paper is available at bioRxiv (https://​doi.​org/​10.​1101/​2020.​09.​30.​
321596).
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