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An integrative drug repositioning framework discovered a
potential therapeutic agent targeting COVID-19
Yiyue Ge 1,2, Tingzhong Tian 1,2, Suling Huang3, Fangping Wan1, Jingxin Li2, Shuya Li1, Xiaoting Wang4, Hui Yang4, Lixiang Hong1,
Nian Wu1, Enming Yuan1, Yunan Luo5, Lili Cheng6, Chengliang Hu6, Yipin Lei4, Hantao Shu1, Xiaolong Feng7,8, Ziyuan Jiang9,
Yunfu Wu10, Ying Chi2, Xiling Guo2, Lunbiao Cui2, Liang Xiao11, Zeng Li11, Chunhao Yang3, Zehong Miao 3, Ligong Chen 6,12,
Haitao Li 13, Hainian Zeng4, Dan Zhao 1, Fengcai Zhu2,14, Xiaokun Shen11 and Jianyang Zeng 1

The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires an urgent need to find effective
therapeutics for the treatment of coronavirus disease 2019 (COVID-19). In this study, we developed an integrative drug
repositioning framework, which fully takes advantage of machine learning and statistical analysis approaches to systematically
integrate and mine large-scale knowledge graph, literature and transcriptome data to discover the potential drug candidates
against SARS-CoV-2. Our in silico screening followed by wet-lab validation indicated that a poly-ADP-ribose polymerase 1 (PARP1)
inhibitor, CVL218, currently in Phase I clinical trial, may be repurposed to treat COVID-19. Our in vitro assays revealed that CVL218
can exhibit effective inhibitory activity against SARS-CoV-2 replication without obvious cytopathic effect. In addition, we showed
that CVL218 can interact with the nucleocapsid (N) protein of SARS-CoV-2 and is able to suppress the LPS-induced production of
several inflammatory cytokines that are highly relevant to the prevention of immunopathology induced by SARS-CoV-2 infection.
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INTRODUCTION
The global COVID-19 pandemic caused by the novel coronavirus
SARS-CoV-2 (2019-nCoV) has brought a huge number of infections
and deaths worldwide according to the World Health Organiza-
tion. More than 200 countries or regions around the world have
reported to have confirmed COVID-19 cases and the number is
still in a rapid increase, indicating that this novel coronavirus has
posed a severe global health threat. Under the current circum-
stance of the absence of the specific vaccines and medicines
targeting SARS-CoV-2, it is urgent to discover effective therapies
especially drugs to treat the resulting COVID-19 disease and
prevent the virus from further spreading. Considering that the
development of a new drug generally takes years, probably the
best therapeutic shortcut is to apply the drug repositioning
strategy (i.e., finding the new uses of old drugs)1–3 to identify the
potential antiviral effects against SARS-CoV-2 of existing drugs
that have been approved for clinical use or to enter clinical trials.
Those existing drugs with potent antiviral efficacy can be directly
applied to treat COVID-19 in a short time, as their safety has been
verified in principle in clinical trials.

In this study, we applied an integrative framework that fully
takes advantage of machine learning and statistical analysis
methods to systematically integrate large-scale available
coronavirus-related data and identify the drug candidates against
SARS-CoV-2 from a set of over 6000 drug candidates (mainly
including approved, investigational, and experimental drugs). Our
in silico screening process followed by experimental validation
revealed that a poly-ADP-ribose polymerase 1 (PARP1) inhibitor,
CVL218, currently in Phase I clinical trial, may serve as a potential
drug candidate to treat COVID-19. Our in vitro assays demon-
strated that CVL218 can exhibit effective inhibitory activity against
SARS-CoV-2 replication in a dose-dependent manner and with no
obvious cytopathic effect, and the efficacy of CVL218 can be
further enhanced by a drug combination with another anti-SARS-
CoV-2 drug candidate favipiravir. In addition, our surface plasmon
resonance (SPR) binding assay indicated that CVL218 can interact
with the nucleocapsid (N) protein of SARS-CoV-2 with a high
affinity. Moreover, we found that in human peripheral blood
mononuclear cells (PBMCs), CVL218 is able to suppress the LPS-
induced production of several inflammatory cytokines, which have
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been reported previously to be of high relevance to the viral
pathogenesis of COVID-19, especially for those intensive care unit
(ICU) patients infected by SARS-CoV-2. Based on the data present
in this study and previous known antiviral effects of PARP1
inhibitors reported in the literature, we also discussed several
putative mechanisms of the anti-SARS-CoV-2 activities for CVL218
to be involved in the treatment of COVID-19. Overall, our results
indicated that the PARP1 inhibitor CVL218 identified by our
integrative drug repositioning pipeline may serve as an effective
therapeutic agent against COVID-19.

RESULTS
Overview of our drug repositioning framework
The overview of our integrative drug repositioning framework is
shown in Fig. 1a. We first constructed a virus-related knowledge
graph consisting of drug–target interactions, protein–protein
interactions and similarity networks from publically available
databases (Methods). Knowledge graph is a network containing
entities (e.g., drugs and targets) and their relations. Three different
types of nodes (i.e., drugs, human targets, and virus targets) within
the knowledge graph were connected through edges describing
their interactions, associations or similarities to establish bridges of
information aggregation and knowledge mining. We then applied
a network-based knowledge mining algorithm, called CoV-DTI, to
predict an initial list of drug candidates that can be potentially
used to treat SARS-CoV-2 infection (Fig. 1b and Methods). Next, we
further narrowed down the list of drug candidates with the
previously reported evidences of antiviral activities based on the
text-mining results from the large-scale literature texts, which
were derived through a deep learning based relation extraction
method named BERE4 (Fig. 1c and Methods), followed by a
minimum of manual checking. After that, we used the connectivity
map analysis approach5 with the gene expression profiles of SARS-
CoV-2 and SARS-CoV infected patients6,7 to further refine the list
of drug candidates against SARS-CoV-2 (Fig. 1d and Methods).

Validation of our network-based knowledge mining results
To demonstrate that our computational pipeline for drug
repositioning can yield reasonably accurate prediction results,
we also validated our network-based knowledge mining algorithm
(Fig. 1b) using cross-validation and a retrospective study on the
past data of the two coronaviruses that are closely related to
SARS-CoV-2 and had been relatively well studied in the literature,
i.e., SARS-CoV and MERS-CoV. We first performed ten-fold cross-
validation on all virus-related drug–target interactions (DTIs) from
our collected data to evaluate the prediction performance of our
network-based knowledge mining algorithm CoV-DTI. To mimic a
realistic scenario in which the goal is to predict the drug
candidates for novel virus targets, we randomly split the virus
targets into ten folds and masked the labels of one fold for testing.
All the negative samples with unknown DTI labels were used
during training when computing the Bayesian personalized
ranking loss (Methods). The receiver operation characteristics
(ROC) curves and the curves of recall scores with respect to a list of
top k drug candidates predicted by our model CoV-DTI and
DTINet,8 our previously developed network-based DTI prediction
algorithm which served as a state-of-the-art baseline method,
were obtained by averaging the predicted scores from five repeats
of ten-fold cross-validation (Supplementary Fig. S1). Our cross-
validation results showed that CoV-DTI achieved an area under the
ROC (AUROC) score of 0.8273, which was 8% higher than that of
DTINet. In addition, over 50% of the drugs known to act on a virus
target can be accurately predicted by CoV-DTI from the top 200
drug candidates, with a better performance compared to DTINet.
All these cross-validation results demonstrated that our computa-
tional method CoV-DTI can make reasonably accurate predictions
on the reconstructed virus-related knowledge graph.

In our retrospective study using the past data of SARS-CoV and
MERS-CoV, with the aid of our developed text-mining tool BERE,
we found that many of the drugs that had been reported
previously in the literature to have antiviral activities against the
corresponding coronavirus, were also among the top list of our
predicted results (Table 1). For example, chloroquine, an FDA-
approved drug for treating malaria,9 which was previously
reported to exhibit micromolar anti-SARS-CoV activity in vitro,10

was also repurposed to target the same virus by CoV-DTI.
Gemcitabine, which was originally approved for treating certain
types of cancers,11 was also predicted by CoV-DTI to target SARS-
CoV and can be further validated by previous in vitro studies.12

Cyclosporine, a calcineurin inhibitor approved as an immunomo-
dulatory drug,13 which was previously observed to block the
replication of SARS-CoV,14 can also be successfully predicted by
our approach. Among the top list of predicted drugs against
MERS-CoV, miltefosine, which was approved for treating leishma-
niasis,15 had been previously identified to have anti-MERS-CoV
activities.16 Chlorpromazine and imatinib, which were used for
treating schizophrenia17 and leukemia,18 respectively, were also
selected by CoV-DTI as anti-MERS-CoV drugs and can be validated
by previous in vitro evidences.12 Thus, the above retrospective
study illustrated that our computational framework is able to
predict effective drug candidates against a specific coronavirus.

PARP1 inhibitors as potential drug candidates for COVID-19
Through careful examination of the screening results derived
mainly by CoV-DTI and BERE and the connectivity map analysis
results derived using the transcriptomic profiles of SARS-CoV-2/
SARS-CoV-infected patients, we found that poly-ADP-ribose
polymerase 1 (PARP1) inhibitors (Supplementary Fig. S2), such as
PJ-34 and olaparib, were highlighted as potential therapeutic
agents that may have the antiviral activities against SARS-CoV-2
(Table 2, Supplementary Table S1 and Supplementary Table S2).
We then focused on this drug class and selected those drug
candidates with both potential efficacy and acceptable pharma-
cokinetic and toxicological profiles for further investigation. We
first noticed that PJ-34 was the most preferred drug derived from
our computational framework, as both our network-based knowl-
edge mining algorithm CoV-DTI and connectivity map analysis
pointed to this drug (Table 2 and Supplementary Table S1). After
checking the clinical status of PJ-34, we found that it only reached
the preclinical trial stage (DrugBank ID: DB08348,19) which may
raise the concern about its safety issue and thus limit its timely
application for the current clinical usage against COVID-19.
Therefore, we compared the molecular characteristics between
PJ-34 and other PARP1 inhibitors that had been already approved
by the Food and Drug Administration (FDA) or at least entered the
clinical trials (Methods), and found that rucaparib and CVL218
(mefuparib) share the highest similarities with PJ-34. Considering
the poor accessibility of rucaparib in the lung tissue (https://www.
ema.europa.eu/en/medicines/human/EPAR/rubraca), it may be
hard to apply this small molecule in treating the pneumonia
caused by SARS-CoV-2. Thus, we mainly selected CVL218 to
conduct further experiments, and this drug was later validated to
exhibit a much better tissue distribution with high concentration
in lung (see Supplementary Materials for more details). We also
included olaparib, the first FDA-approved PARP1 inhibitor, in our
further analyses, as this drug also achieved a high rank in our
connectivity map analysis using the transcriptomic data of COVID-
19 patients (Table 2).

CVL218 exhibits in vitro inhibitory activity against SARS-CoV-2
replication
We first conducted a pilot experimental test in vitro (Methods) on
the anti-SARS-CoV-2 activities of CVL218, olaparib and several
other related drugs (Fig. 2a). We found that both PARP1 inhibitors
olaparib and CVL218 exhibited inhibitory effects against SARS-
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Fig. 1 Schematic illustration of our integrative drug repositioning pipeline for discovering the potential drugs to treat the COVID-19 disease.
a The overview of our drug screening pipeline. The initial drug set for screening contains 6255 drug candidates, mainly including 1786
approved, 1125 investigational, and 3290 experimental drugs. The number of drug candidates after each filtering step is also shown.
Knowledge graph: a network containing entities (e.g., drugs and targets) and their relations. b The network-based knowledge mining module.
Seven individual networks containing three types of nodes (i.e., drugs, human targets and virus targets) and the corresponding edges
describing their interactions, associations or similarities are first constructed based on the known chemical structures, protein sequences and
relations derived from publically available databases. Then a deep learning based method, which learns and updates the feature
representation of each node through information aggregation, is used to predict the potential drug candidates against a specific coronavirus.
c The automated relation extraction module. The structure of each sentence from the literature texts is first learned from the encoded word
features using the Gumbel tree gated recurrent unit technique.4,96 Then the learned sequence structures as well as the corresponding
encoded word features are fed into a relation classifier to automatically extract the relations between two entities from large-scale documents
in the literature. d The connectivity map (CMap) analysis module. The transcriptome profiles of the peripheral blood mononuclear cell (PBMC)
or the bronchoalveolar lavage fluid (BALF) samples from the SARS-CoV-2 or SARS-CoV infected patients and healthy persons are compared to
derive the query gene expression signatures, which are then correlated to the drug-perturbed cellular expression profiles in the connectivity
map5 to filter out the anti-SARS-CoV-2 drug candidates. For transcriptome data of SARS-CoV-2 infected cells, PBMC samples were provided by
three patients and three healthy volunteers, and BALF samples were collected from three patients and two healthy volunteers. For
transcriptome data of SARS-CoV infected cells, PBMC samples from ten patients and four healthy volunteers were included in our analysis
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CoV-2 replication. Nevertheless, CVL218 showed a much higher
inhibition rate than olaparib. More specifically, olaparib inhibited
SARS-CoV-2 replication by 15.31% at a concentration of 3.2 μM,
while CVL218 reached 34.64% reduction at a concentration of
3 μM.
Notably, the antiviral efficacy of CVL218 even surpassed arbidol,

which has been used in clinical studies for the treatment of
COVID-19.20 In particular, arbidol inhibited SARS-CoV-2 replication
by 21.76% at 3 μM, much lower than that of CVL218 at the same
concentration (Fig. 2a). In contrast, oseltamivir, zanamivir (drugs
used for preventing influenza virus infection), and baricitinib
(JAK1/2 inhibitor, which was recommended in ref. 21 to treat
COVID-19) showed no inhibitory activities against SARS-CoV-2 at
the concentration of 3 μM or 3.2 μM.
Based on the above preliminary results in the pilot experimental

test, we then chose CVL218 for subsequent experimental studies.
Our further in vitro assays (Methods) showed that CVL218
exhibited effective inhibitory activity against SARS-CoV-2 replica-
tion in a dose-dependent manner, with an EC50 of 5.194 μM
(Fig. 2b). We also assessed the cytotoxicity of CVL218 by the CCK8
assay (Methods), and found that CVL218 had a CC50 of 90.64 μM in
Vero E6 cells. Furthermore, immunofluorescence microscopy
(Methods) revealed that, at 14 h post SARS-CoV-2 infection, virus
nucleoprotein (NP) expression in the CVL218-treated cells
demonstrated a dose-response relationship with the treated drug
concentrations, and was significantly lower upon CVL218 treat-
ment compared to that in the DSMO treated cells (Fig. 2c). Lower
expression level of N gene compared to DMSO was also observed
through RT-PCR experiments (Supplementary Fig. S3). In addition,
no obvious cytopathic effect was observed in the infected cells
treated with CVL218 at 25 μM (Fig. 2c).
To systematically assess the inhibitory activities of CVL218

against SARS-CoV-2, we also performed a time-of-addition assay
(Methods) to determine at which stage CVL218 inhibits viral
infection. Remdesivir, which has entered the clinical trials for the
treatment of COVID-19 (https://clinicaltrials.gov/ct2/show/
NCT04257656), was also tested in this assay for comparison. In
particular, compared to the DMSO control group, both CVL218
and remdesivir showed potent antiviral activities during the full-
time procedure of SARS-CoV-2 infection in Vero E6 cells (Fig. 2d).
In addition, this time-of-addition assay indicated that CVL218 can
partially work against the viral entry and significantly inhibit the
replication of virus post-entry, while the remdesivir can only
function at the post-entry stage (Fig. 2d, e). All together, results of
the above in vitro assays indicated that CVL218 can be considered
a potential therapeutic agent for treating COVID-19.
We further examined the drug combination effect of CVL218

with another anti-SARS-CoV-2 drug candidate favipiravir, which
was originally designed to target the RNA-dependent RNA
polymerase (RdRp) of influenza A virus,22 and had been recently
reported to exhibit in vitro anti-SARS-CoV-2 activity with an EC50 of
61.88 μM23 and a higher 7-day recovery rate than arbidol in clinical
trials for treating COVID-19.24 In particular, the inhibitory activities
against SARS-CoV-2 replication of favipiravir at 30 μM, CVL218 at
3.5 μM and a combination of both were measured in Vero E6 cells
(Methods). We found that, while favipiravir exhibited no inhibitory
activity and CVL218 showed an inhibition rate of 36% at the
experimental concentrations, the combination of both CVL218
and favipiravir achieved a significantly higher inhibition rate (64%,
Fig. 2f). This result indicated that CVL218 can also be potentially
combined with other drug candidates to enhance the therapeutic
efficacy against SARS-CoV-2.

CVL218 interacts with the nucleocapsid protein of SARS-CoV-2
To further investigate the potential target of SARS-CoV-2 that
CVL218 acts on, we next performed an in vitro surface plasmon
resonance (SPR) assay to measure its binding affinity with the
nucleocapsid (N) protein of SARS-CoV-2 (SARS-CoV-2-N) (Fig. 3,Ta
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Methods). In this SPR assay, we also tested another two PARP1
inhibitors, including PJ-34 and olaparib, and two related anti-
SARS-CoV-2 drugs, including remdesivir and arbidol, for their
possible binding to SARS-CoV-2-N. As expected, no binding was
observed for remdesivir and olaparib (Fig. 3d, e). This result was
consistent with the known facts that remdesivir mainly performs
its antiviral activity by targeting the RNA-dependent RNA
polymerase (RdRp) of coronavirus25 and arbidol was originally
designed to inhibit the virus-host cell fusion against influenza
virus.26,27 Among all the three tested PARP1 inhibitors, including

CVL218, PJ-34 and olaparib, CVL218 exhibited the highest binding
strength towards SARS-CoV-2-N with a dissociation constant (KD)
of 3.1 μM (Fig. 3a). On the other hand, PJ-34 displayed a much
lower binding affinity to SARS-CoV-2-N (KD= 68.1 μM), which was
about 22-fold lower than that of CVL218 (Fig. 3b). Surprisingly, we
observed no binding signal with SARS-CoV-2-N for the PARP1
inhibitor olaparib (Fig. 3c). All these binding results derived from
our SPR assay demonstrated that CVL218 interacts with SARS-CoV-
2-N with a higher binding affinity than the other two tested PARP1
inhibitors, implying a potential antiviral mechanism mediated by

Fig. 2 The in vitro anti-SARS-CoV-2 activities of the tested drugs in Vero E6 cells. a The preliminary in vitro antiviral activities of oseltamivir at
3 μM, zanamivir at 3 μM, baricitinib at 3.2 μM, olaparib at 3.2 μM, arbidol at 3 μM and 30 μM, and CVL218 at 3 μM and 30 μM, respectively, were
detected in Vero E6 cells infected with SARS-CoV-2 at an MOI of 0.05. The viral yield in the cell supernatant was then quantified by qRT-PCR.
Results are shown as mean ± SD over four replicates. b The concentration-dependent inhibition curve of CVL218 against SARS-CoV-2
replication and its cytotoxicity results. Viral infection and drug treatment at different concentrations were performed as mentioned above.
Cytotoxicity of CVL218 to Vero E6 cells was measured by the CCK8 assays. c Visualization of virus nucleoprotein (NP) expression of the infected
cells upon treatment of CVL218 at 48 h post the SARS-CoV-2 infection using fluorescence microscopy. d Time-of-addition results on the
inhibition of CVL218 and remdesivir against SARS-CoV-2 in vitro. The viral inhibitory activities of CVL218 and remdesivir were measured at
“full-time”, “entry”, and “post-entry” stages, respectively. Results are shown as mean ± SD over four replicates. e Virus NP expression in the
infected cells upon the treatment of CVL218 and remdesivir was analyzed by western blot. f In vitro inhibitory activities against SARS-CoV-2
replication of favipiravir (30 μM), CVL218 (3.5 μM) and a combination of both drugs (30 μM favipiravir+ 3.5 μM CVL218). The concentrations
were selected according to the EC25 values of individual drugs against SARS-CoV-2 in vitro. Viral infection and drug treatment were performed
as mentioned above. Results are shown as mean ± SD over three replicates, and the significances were measured by p-values from t-tests. *
and **** stand for p-value < 0.05 and p-value < 0.0001, respectively
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the interplay between CVL218 and the nucleocapsid protein of
SARS-CoV-2.

CVL218 inhibits the LPS-induced production of cytokines in PBMCs
The inflammatory cytokines are heavily involved in the responses
to viral infections,28,29 and their excessive production can be
directly associated with the pathogenesis of the corresponding
diseases.30–32 On the one hand, the extra synthesis of cytokines
may promote to viral infection. For example, a previous study
showed that IL-6 blockage can reduce viral loads and enhance
virus-specific CD8+ T-cell immunity in the Friend retrovirus (FV)
mouse model.33 In addition, it was previously reported that IL-10
can facilitate West Nile virus (WNV) infection in mice, and its
knockout can diminish the WNV infection.34 On the other hand,
the overproduction of cytokines may cause inflammatory injuries
to human tissues. For example, the respiratory syncytial virus (RSV)
infection can promote the upregulation of TNF-α and IFN-γ, and
thus lead to airway inflammation and lung immune injuries.35,36

Moreover, the excessive synthesis of cytokines was found to be
highly related with the deleterious clinical manifestations under
the infection conditions of many other viruses, such as tick-borne

virus (TBV),37 influenza A virus (IAV),38 and human immunodefi-
ciency virus (HIV).39 These findings indicated that inhibiting the
overproduction of cytokines may offer a beneficial strategy to
protect against viral infections.40

Recently, a number of studies on the clinical characteristics of
severe COVID-19 patients had shown that several proinflamma-
tory cytokines, including IL-6, IL-10, IFN-γ, TNF-α, and others, are
significantly elevated especially in those ICU patients infected by
SARS-CoV-2, causing excessive activated immune response.41–45

The pathological relevance of these cytokines in SARS-CoV-2
infection indicated that their blockade may alleviate the
inflammatory response and thus provide a feasible therapy for
the treatment of COVID-19.
To test whether our identified drug CVL218 is able to regulate

the expression of cytokines in vitro, we first stimulated the
cytokine production of the peripheral blood mononuclear cells
(PMBCs) by lipopolysaccharide (LPS) and then measured the
concentrations of four cytokines (i.e., IL-6, IL-10, IFN-γ, and TNF-α)
that are highly relevant to the pathogenesis of COVID-19 after 6 h
and 24 h of drug treatment. As shown in Fig. 4, the production of
these four cytokines were all significantly elevated in the LPS-

Fig. 3 CVL218 binds to the nucleocapsid protein of SARS-CoV-2 (SARS-CoV-2-N). a–e Kinetic analyses of the binding between SARS-CoV-2-N
and the tested drugs, including CVL218 (a), PJ-34 (b), olaparib (c), remdesivir (d), and arbidol (e), measured by a SPR-based Biacore instrument.
The derived dissociation constants between SARS-CoV-2-N and the tested drugs (CVL218 and PJ-34) are also shown
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Fig. 4 CVL218 attenuates the LPS-induced cytokine production in a time- and dose-dependent manner. Concentrations of four cytokines (IL-
6, IL-10, IFN-γ, and TNF-α) in the LPS-induced peripheral blood mononuclear cells (PMBCs) were measured by ELISA after 6 h and 24 h of drug
treatment. Dexamethasone (DEX) in 1 μg/mL was used as a positive control. a–h Concentrations of IL-6 after 6 h (a) and 12 h (b), IL-10 after 6 h
(c) and 12 h (d), IFN-γ after 6 h (e) and 12 h (f), and TNF-α after 6 h (g) and 12 h (h) of drug treatment. Results are shown as mean ± SD over
three replicates. The significances were measured by p-values from two-tailed t-tests between LPS+ drug and LPS only groups. *, **, ***, and
**** stand for p-value < 0.05, 0.01, 0.001, 0.0001, respectively
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induced PBMCs. In the presence of 3 μM CVL218, the LPS-induced
production of IL-6 was significantly repressed after both 6 h and
24 h incubation (p-values < 0.01 for both timepoints, Fig. 4a, b).
Although the LPS-induced expression of IL-10 was not down-
regulated by 3 μM CVL218 treatment after 6 h, it was dramatically
reduced after 24 h (p-value < 0.001), indicating that IL-10 may
responde to CVL218 treatment in a time-dependent manner (Fig.
4c, d). Both 3 μM and 1 μM CVL218 after 6 h and 24 h of drug
treatment led to a significant decrease in the concentrations of
IFN-γ and TNF-α compared to their original expression induced by
LPS (p-values < 0.01 for the 3 μM groups and p-values < 0.05 for
the 1 μM groups, Fig. 4e–h). In addition, the inhibitory effects of
1 μM CVL218 were generally weaker than those of 3 μM CVL218,
indicating the dose-dependent inhibition of CVL218 on the LPS-
induced expression of cytokines. In comparison, the olaparib
treatment at both 3 μM and 1 μM exhibited no significant
inhibition to the LPS-induced stimulation of all four cytokines.
All these results demonstrated that CVL218 can significantly
suppress the LPS-induced elevation of cytokines in a dose- and
time-dependent manner, and thus provided an in vitro evidence
to support CVL218 as a potential therapeutic agent for targeting
the proinflammatory response caused by SARS-CoV-2 infection.

DISCUSSION
In this study we reported a top-down integrative drug reposition-
ing approach by combining both machine learning and statistical
analysis techniques, followed by manual selection, to identify
potential drug candidates against SARS-CoV-2. We showed that
the PARP1 inhibitor CVL218 discovered by our integrative
framework exhibits effective anti-SARS-CoV-2 activity in vitro and
thus can be used as a potential drug candidate for treating COVID-
19. We also validated that CVL218 can interact with the N protein
of SARS-CoV-2, indicating that CVL218 may inhibit viral replication
mainly through acting on the N protein and thus impeding its
normal functions. To our best knowledge, this is the first antiviral
drug candidate proposed to target the N protein of SARS-CoV-2,
which thus may provide a novel mechanistic solution to the
treatments of COVID-19. Benefited from the distinct antiviral
mechanism of CVL218 compared to other drug candidates
targeting at COVID-19, we proposed that the efficacy of CVL218
against SARS-CoV-2 infection can be enhanced by combinatorial
usage with other drug candidates, and experimentally validated
the drug combination effect between CVL218 and favipiravir.
While our paper was under review, a new dataset of human

protein-virus protein interactions had been published.46 We
further tested our model on an updated knowledge graph
constructed by incorporating this new dataset. Our model
achieved a slightly better performance on the updated knowledge
graph (Supplementary Table S3), which indicated that our
prediction results can be further improved by incorporating more
information.
Based on the data present in this study and the previously

known evidences about the antiviral effects of PARP1 inhibitors
reported in the literature, we propose several potential mechan-
isms to support the involvement of the CVL218 in the treatment of
COVID-19 (Fig. 5). First, it has been known that, during the life
cycle of the coronavirus, PARP1 inhibitors may inhibit the viral
growth through suppressing viral replication and impeding the
binding of the nucleocapsid protein to viral RNAs,47–50 which can
also be supported by our SPR assay results. Second, PARP1
inhibitors have been previously reported to play a critical role in
regulating the inflammatory response by modulating the expres-
sion of proinflammatory factors such as NF-κB, AP-1, IL-6, TNF-α
and downstream cytokines and chemokines.51–54 Also, it has been
shown that the overactivation of PARP1 promotes energy (NAD+/
ATP) consumption and drives cell death, exacerbating the
inflammation response.51–53,55 PARP1 inhibitors thus may repress

the NF-κB-mediated proinflammatory signals, and reduce energy
failure and subsequent cell death induced by necrosis, hence
providing a clinical potential for attenuating the cytokine storm
and inflammatory response caused by SARS-CoV-2 infection. Third,
ADP-ribosylation is a conserved post-translational modification on
the nucleocapsid proteins across different coronavirus lineages,
implying that it may have an important regulatory role for the
structure packing of viral genome. Several previous studies have
demonstrated that PARP1 is critical for viral replication.49,56,57 For
example, PARP1 has been reported to interact with hemagglutinin
(HA) of influenza A virus (IAV) and promote its replication by
triggering the degradation of host type I IFN receptor.58 In
addition, the ADP-ribosylation of adenoviral core proteins has
been shown to display an antiviral defense mechanism.48 There-
fore, intervening the ADP-ribosylation mediated interplay
between PARP1 and viral proteins may be another important
pathway for PARP1 inhibitors to prevent SARS-CoV-2 infection. Of
course, to thoroughly understand the anti-SARS-CoV-2 roles of
CVL218 and other PARP1 inhibitors, more experimental studies
and direct (clinical) evidences will be needed in the future.
According to our qRT-PCR experiment (Supplementary Fig. S3),

the downregulation of NP expression was due to the decrease in
RNA level. This can be explained by multiple potential mechan-
isms, including the direct interaction between CVL218 and viral N
protein (Fig. 5a) or the inhibition of PARP activity by the
compound (Fig. 5c). Although the second hypothesis cannot be
excluded without further experimental validation on the effects of
PARP1 deficiency on NP expression, we propose that the first
hypothesis (i.e., direct CVL218-NP interaction inhibits viral RNA
replication) mainly accounts for the downregulation of NP
expression by CVL218 treatment, mainly based on our experi-
mental results. In particular, our antiviral assays demonstrated that
only CVL218 but not olaparib inhibited viral replication (Fig. 2a),
suggesting that the antiviral effect was likely due to a mechanism
which is not shared by both compounds. While both CVL218 and
olaparib are known to inhibit PARP activity, only CVL218 was
shown to bind NP by our SPR experiments (Fig. 3). According to
the above reasoning, it is more likely that CVL218 regulated the
NP expression through direct interaction with NP and thus
suppressing viral RNA assembly and replication.
Considering the proinflammatory role of PARP1, the therapeutic

effects of PARP1 inhibitors in inflammatory-mediated diseases
have been extensively studied over past two decades.59–61 A first
generation PARP1 inhibitor, 3-aminobenzamide, was observed to
protect against lung inflammation by reducing NF-κB activity and
IL-8 expression.62 PJ-34, a second generation PARP1 inhibitor, has
been suggested in previous studies to have neuroprotective
effects in a stroke model and protect mice from necroptosis-
associated liver injuries by repressing the IL-33 expression.63,64

Numerous preclinical studies demonstrated that PARP1 inhibitors
play an essential role in a range of inflammatory injuries and
related diseases, especially the lung inflammatory disorders
including ARDS (Acute Respiratory Distress Syndrome), COPD
(Chronic Obstructive Pulmonary Disease) and asthma.54,60,65,66 All
these studies suggest that PARP1 inhibitors are of high relevance
to the treatment of the novel pneumonia caused by SARS-CoV-2
infection, possibly via their roles in modulating inflammatory
response.
Notably, current pathological studies have shown that the

severe patients infected by SARS-CoV-2 generally have higher
plasma levels of IL-2, IL-6, IL-10, TNF-α, IFN-γ,41,43–45 implying a
high risk of the inflammatory-associated cytokine storm after viral
infection. In addition, reduction and functional exhaustion of
T cells have also been observed in COVID-19 patients.43 Therefore,
blocking the overactive inflammatory response may serve as an
effective strategy for the treatment of COVID-19, particularly for
those ICU patients infected by SARS-CoV-2. According to a recent
study, both innate and adaptive immune responses are activated
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in COVID-19 patients and the overproduction of cytokines like IL-6
and TNF-α is likely to be involved in cytokine storm syndrome
(CSS).67 Figuring out the specific immune cell subsets which these
cytokines belong to could benefit our understanding about the
pathology of severe COVID-19 patients and design of novel
therapies targeting this disease. Recently, tocilizumab, a mono-
clonal antibody drug targeting IL-6, has been shown to have
therapeutic potential for the treatment of COVID-19,68 which also
highlights the vital role of anti-inflammatory response in current
therapeutics against SARS-CoV-2. Our in vitro study has shown
that CVL218 can effectively inhibit the production of several
inflammatory cytokines induced by LPS in PBMCs, including IL-6,

IL-10, IFN-γ, and TNF-α, which are highly related to the pathogenic
characteristics of COVID-19 (Fig. 4). This finding indicates that
CVL218 may also possess a good anti-inflammatory profile that is
specifically applicable to those severe patients infected by SARS-
CoV-2.
As shown in Fig. 4, CVL218 exhibited significant activity of anti-

inflammatory effects while another PARP inhibitor olaparib did not
show such an effect. One possible reason is that CVL218 exhibited
better selectivity to the members of PARP family compared with
olaparib,69–71 and thus CVL218 and olaparib may modulate
different regulatory pathways of the inflammatory response. In
addition, it still remains controversial whether the enzymatic

Fig. 5 The putative mechanisms for CVL218 as a PARP1 inhibitor to combat the COVID-19 disease, derived based on the data present in this
study and the known antiviral activities of PARP1 inhibitors previously reported in the literature. a Schematic diagram showing the possible
antiviral mechanisms of PARP1 inhibitors in the life cycle of coronavirus in human cells. PARP1 inhibitors have been previously reported in the
literature to suppress viral replication and imped the binding of nucleocapsid protein to viral RNAs, thus preventing the virus infection.47–50

b Potential protective effects of PARP1 inhibitors in the treatment of COVID-19. The anti-inflammation effects of PARP1 inhibitors may be
achieved through two possible molecular pathways. The first one is to modulate the expression of pro-inflammation factors such as NF-κB, AP-
1, IL-6 and downstream cytokines and chemokines.51–54 The second possible pathway is to prevent the overactivation of PARP1 and thus
avoid the depletion of NAD+ and ATP, and the consequent cellular energy failure and cell death caused by necrosis.51–54 c The potential
antiviral effects of PARP1 inhibitors through suppressing the ADP-ribosylation of viral proteins and intervening the host-pathogen
interactions, thus resulting in the inhibition of viral replication48,49,56,57
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activity of PARP1 is required for activating NF-κB.72–74 Collectively,
we hypothesize that the PARP1 inhibitors CVL218 and olaparib
may play different roles in regulating the inflammatory pathways.
PARP1 inhibitors are originally used for targeting the homo-

logous recombination repair defects in cancers, and mainly
categorized as oncology drugs. Thus, it would generally need
more safety data to justify any repurposing of PARP1 inhibitors for
non-oncology indications. Fortunately, there are numerous exist-
ing preclinical and clinical studies on repurposing PARP1 inhibitors
into non-oncological diseases, including the aforementioned
acute diseases (e.g., acute respiratory distress syndrome (ARDS),
stroke)75 and chronic diseases (e.g., rheumatoid arthritis and
vascular diseases).75,76 All these evidences indicate the possibility
of repurposing PARP1 inhibitors as a safe therapeutic agent to
treat the current acute lung disease caused by SARS-CoV-2
infection. In addition, the pharmacokinetic and toxicokinetic data
in rats and monkeys shown in our study indicate that CVL218
possesses an acceptable safety profile to be repositioned for the
anti-SARS-CoV-2 purpose. Moreover, CVL218 has been approved
to enter Phase I clinical trial in 2017 for cancer treatment
(Registration Number: CTR20190906). The preliminary data from
the Phase I clinical trial have shown that CVL218 is well tolerated
in ascending dose studies at doses as high as 1000mg QD and
500mg BID, and no Grade II and above adverse events have been
observed, which indicates that CVL218 is also quite safe and well
tolerated in human.
Our pharmacokinetic examination in rats has shown that

CVL218 has the highest tissue distribution in lung, with a 188-
fold higher concentration compared to that in plasma. Such a
tissue specific enrichment in lung may bring an extra advantage
for CVL218 to be used for the anti-SARS-CoV-2 purpose, as lung is
the therapeutically targeted tissue for COVID-19. Moreover, the
high-level distribution in lung may also suggest that only a low
dosage is needed to ensure the therapeutic efficacy of CVL218
against SARS-CoV-2, which may further reduce the risk of adverse
events. Thus, CVL218 may have a great potential to be repurposed
as an effective therapeutic agent to combat SARS-CoV-2 and
prevent the future epidemic outbreak.

MATERIALS AND METHODS
Construction of the virus-related knowledge graph
The virus-related knowledge graph was constructed for predicting
the coronavirus-related drugs. In total seven networks were
considered in the constructed knowledge graph (Fig. 1b),
including a human target–drug interaction network, a virus
target–drug interaction network, a human protein–protein inter-
action network, a virus protein-human protein interaction net-
work, a drug molecular similarity network, a human protein
sequence similarity network, and a virus protein sequence
similarity network. The human target–drug interaction network
was derived from DrugBank (version 5.1.0).19 The virus
target–drug interaction network was constructed from the
integrated data from DrugBank (version 5.1.0),19 ChEMBL (release
26),77 TTD (last update 11 Nov, 2019),78 IUPHAR_BPS (release 13,
Nov, 2019),79 BindindDB80 and GHDDI (https://ghddi-ailab.github.
io/Targeting2019-nCoV/CoV_
Experiment_Data/), with a cutoff threshold of IC50/EC50/Ki/Kd<10
μM. The human protein–protein interaction network and the virus
protein-human protein interaction network were constructed from
the integrated data from BioGRID (release 3.5.181),81 HuRI,82

Instruct,83 MINT (2012 update),84 PINA (V2.0),85 SignaLink (V2.0)86

and innatedb.87 The drug molecular similarity network was
obtained by calculating the Tanimoto similarities from Morgan
fingerprints with a radius of 2 computed using the rdkit tool.88 The
protein sequence similarity networks of both human and virus
were obtained by calculating the Smith-Waterman similarities of
the amino acid sequences derived from UniProt89 using a

sequence alignment software provided in.90 Noted that we
collected additional protein sequences of SARS-CoV-2 from
UniProt89 and added them into the corresponding networks for
the final prediction. Those drugs without drug–target interactions
or outside the DrugBank database were removed from the
corresponding networks. We then constructed the virus-related
knowledge graph by merging together all the nodes and edges of
the above seven networks (Fig. 1b). The constructed knowledge
graph G= (V, E) is an undirected graph, in which each node v∈ V
in the node set V belongs to one of the node types (including
drugs, human proteins, and virus proteins), and each edge e∈ E in
the edge set E⊂ V × V × R belongs to one of the relation types
from the relation type set R (including two drug–target interac-
tions, two protein–protein interactions and three similarities).

The network-based knowledge mining algorithm
The initial list of drug candidates targeting SARS-CoV-2 was first
screened using a network-based knowledge mining algorithm,
called CoV-DTI, which was modified from our previous work.8,91

The goal of CoV-DTI is to capture the hidden virus-related feature
information and accurately predict the potential drug candidates
from the constructed knowledge graph, which is realized through
learning a network topology-preserving embedding for each node.
More specifically, CoV-DTI uses a graph convolution algorithm92

to gather and update feature information for each node in the
constructed heterogeneous knowledge graph network from
neighborhoods so that the network topology information can
be fully exploited. Suppose that we perform T iterations of graph
convolution. At iteration 1 ≤ t ≤ T, the message mt

v passed to node
v can be expressed as:

mt
v ¼

P
r2R

P
u 2 Nr vð Þ;

e ¼ u; v; rð Þ 2 E

Au;v;rReLU Wt
rh

t�1
u þ bt

r

� �
;

(1)

where av,u,r stands for the weight for edge e= (u, v, r),
Au;v;r ¼ av;u;rP

u
av;u;r

, Wt
r 2 Rd ´ d , and bt

r 2 Rd stand for the learnable

parameters, ReLUðxÞ ¼ maxð0; xÞ, and NrðvÞ ¼ fu; u 2
V ; u≠ v; ðu; v; rÞ 2 Eg denotes the set of adjacent nodes con-
nected to v∈ V through edges of type r∈ R.
Then the feature htv of node v is updated by

htv ¼
ReLU Wtconcat ht�1

v ;mt
vð Þþ ht�1

v þbtð Þ
ReLUðWtconcatðht�1

v ;mt
vÞþ ht�1

v þbtÞk k2

; (2)

where Wt 2 Rd ´ d and bt 2 Rd stand for the learnable para-
meters, and concat (·,·) stands for the concatenation operation.
Finally, the confidence score su,v of the relation r between node

u and node v is derived from the learned node embeddings and
the corresponding projection matrices, that is,

su;v ¼ ht>u � Gr � H>
r � htv ; (3)

where Gr ;Hr 2 Rd ´ k stand for the edge-type-specific projection
matrices.
CoV-DTI minimizes the Bayesian personalized ranking (BPR)

loss93 for drug–target interaction reconstruction, by regarding
those edges not in the edge set E as missing values rather than
negative samples, that is,P
r2R

P
u; v;w; x 2 V ;

u; v; rð Þ 2 E;

w; x; rð Þ=2E

�log σ su;v � sw;x
� �� �

;

(4)

where, su, v and sw, x stand for the confidence scores of the relation
r between u and v and between w and x, respectively, and σ(·)
stands for the sigmoid activation function. Intuitively, in the above
loss function, the confidence scores of the node pairs (u, v) in the
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edge set (i.e., (u, v, r) ∈ E) are encouraged to be higher than those
of unseen pairs (w, x) (i.e., (w, x, r) ∉ E).
We predicted the confidence scores under the relation of virus

target–drug interactions for each virus target–drug pair using Eq.
(3). Then the confidence scores were averaged across all the
proteins of a certain virus (e.g., SARS-CoV, MERS-CoV, or SARS-CoV-
2), and the corresponding p-values were obtained by z-test. For
each virus, we selected those predictions with a p-value < 0.05 as
drug candidates.

Automated relation extraction from large-scale literature texts
We used a deep learning based relation extraction method named
BERE4 to extract the coronavirus-related drugs from large-scale
literature texts. More specifically, the sentences mentioning the
two entities of interest, i.e., name (or alias) of a coronavirus or
coronavirus target, or name (or alias) of a drug, are first collected
using a dictionary-based name entity recognition method (string
matching). For each pair of entities (e1, e2), there are usually more
than one sentence describing the underlying relations. Therefore,
we use a bag of sentences Se1;e2 , denoting the set of all the
sentences mentioning both e1 and e2, to predict the relation
between these two entities.
We first encode each sentence s 2 Se1;e2 in a semantic and

syntactic manner using a hybrid deep neural network
(h : s ! Rd), including a self-attention module,94 a bi-directional
gated recurrent unit (GRU) module95 and a Gumbel tree-GRU
module.4,96 Each sentence representation h(s) is then scored by a
sentence-level attention module to indicate its contribution to the
relation prediction, that is,

β sð Þ ¼ exp Ws�h sð Þð ÞP
s02Se1 ;e2

exp Ws �h s0ð Þð Þ ; (5)

where βðsÞ 2 R stands for the weight score, and Ws 2 Rd ´ 1

stands for the learnable weight parameters. Finally, the relation is
predicted by a binary classifier, based on the weighted sum of
sentence representations, that is,

re1;e2 ¼ classifier
P

s2Se1 ;e2
β sð Þ � h sð Þ

" #
; (6)

where re1;e2 stands for the probability of the relation of interest
between entities e1 and e2 mentioned by the bag of sentences
Se1;e2 .
The training corpus we used was curated automatically from

nearly 20 million PubMed (http://www.pubmed.gov) abstracts by
a distant supervision technique.97 In detail, the names (or aliases)
of drugs or targets in sentences were first annotated by a
dictionary-based named entity recognition method (string match-
ing), in which the name dictionary was derived from DrugBank
(version 5.1.0),19 with ambiguous names (e.g., common words)
removed. Next, the label for each bag of sentences co-mentioning
a drug–target pair of interest was annotated automatically by the
known drug–target interactions in DrugBank. The unlabeled
corpus that we used in this work for text mining the
coronavirus-related drugs was obtained from approximately 2.2
million PMC full-text articles, with entities of interest annotated
using the aforementioned named entity recognition approach. A
coronavirus-related drug was extracted as a hit candidate if the
model found a bag of sentences describing a relation between
this drug and a target in the coronavirus of interest.

Connectivity map analysis
We used the transcriptome analysis approach to further filter the
potential drug candidates for treating the COVID-19 patients
infected by SARS-CoV-2. We collected the gene expression profiles
of the samples from SARS-CoV-2 infected patients to screen the
drug candidates against COVID-19. We also used those from SARS-
CoV infected patients to filter out the potential therapeutic agents

targeting at COVID-19. Such a strategy is reasonable as SARS-CoV
and SARS-CoV-2 are two closely related and highly similar
coronavirus. First, the genome of SARS-CoV-2 is phylogenetically
close to that of SARS-CoV, with about 79% of sequence identity,98

and the M (membrane), N (nucleocapsid) and E (envelope)
proteins of these two coronaviruses have over 90% sequence
similarities.99 In addition, the pathogenic mechanisms of SARS-
CoV-2 and SARS-CoV are highly similar.100

In particular, we collected the gene expression profiles of the
peripheral blood mononuclear cells (PBMCs) and the bronchoal-
veolar lavage fluid (BALF) samples from three SARS-CoV-2 infected
patients (NGDC: PRJCA002326)6 and PBMC samples from ten
SARS-CoV infected patients (GEO: GSE1739).7 For samples from
SARS-CoV infected patients, the raw gene expression values were
first converted into logarithm scale, and then the differential
expression values (z-scores) were computed by comparing to
those of healthy persons using the same protocol as described in
ref. 5 that is,

Zinfected ¼ Xinfected �median Xhealthyð Þ
C�MAD Xhealthyð Þ ; (7)

MAD Xhealthy
� � ¼ median Xhealthy �median Xhealthy

� ��� ��� �
; (8)

where Zinfected stands for the z-scores of the SARS-CoV infected
patients, Xinfected and Xhealthy stand for the gene expression values
in logarithm scale of the infected and healthy persons,
respectively, median(·) stands for the median operation, MAD(·)
stands for the median absolute deviation operation, and C=
1.4826 is a constant for normalization. The p-values for all the
genes with measured expression values during the analysis were
also computed based on the z-scores. For samples from those
SARS-CoV-2 infected patients, due to the limited sample sizes (i.e.,
three samples for the healthy, three PBMC and two BALF samples
for the infected patients), using z-score for differentially expressed
gene analysis can be inaccurate and misleading. This is because
the MAD mentioned above can be of high variance when the
number of healthy samples is low (i.e., three), resulting in
inaccurate estimation of the z-score. Here we mainly used the
fold-change to analyze the differential expressed genes, which
was obtained from the original paper.6 The up- and down-
regulated genes were determined by p-value <0.01 and sorted
according to the z-score/log2-fold-change values. We used the
connectivity map (CMap),5 which contains the cellular gene
expression profiles under the perturbation of 2428 well annotated
reference compounds, to measure the associations of gene
expression patterns between SARS-CoV-2/SARS-CoV infected
patients and the reference compound-perturbed cells. The
connectivity map scores were computed based on the up- and
downregulated gene sets of SARS-CoV-2/SARS-CoV infected
patients using the web tool (https://clue.io/query). Under the
hypothesis that the gene expression pattern resulting from the
perturbation by a therapeutic compound should be negatively
correlated with that resulting from the coronavirus infection, we
selected those compounds that have significant negative con-
nectivity map scores, that is, the list of drug candidates predicted
to treat the coronavirus infected patients was obtained by
selecting the compounds with the connectivity map scores
<−90, which was suggested by the original paper.5

Comparing molecular characteristics between PARP1 inhibitors
We compared the molecular characteristics between PJ-34 and
other available PARP1 inhibitors that are FDA-approved or in
clinical trials, including niraparib, rucaparib, veliparib, nicotina-
mide, olaparib, iniparib, theophylline, talazoparib, and CVL218. In
particular, near 200 molecular characteristics were calculated
using RDKit,88 by enumerating all the property descriptor
functions in rdkit.Chem.Descriptors.descList. These functions
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calculate the scalar features such as molecular weight, logP and
number of heteroatoms. Those functions with the returned invalid
values were discarded. As the output molecular features of
different functions were not always in comparable scales, each
dimension of the molecular characteristics of every PARP1
inhibitor was normalized into range [0,1]. Finally, the Euclidian
distance between the normalized feature vectors was used to
measure the similarities between two PARP1 inhibitors.

Cells and virus
The African green monkey kidney Vero E6 cell line was purchased
from the Cell Resources Center of Shanghai Institute of Life Science,
Chinese Academy of Sciences (Shanghai, China) and cultured in
DMEM medium (Gibco Invitrogen, no. 12430-054) containing 10%
fetal bovine serum (FBS; Gibco Invitrogen) at 37 °C with 5% CO2

atmosphere. BetaCoV/JS03/human/2020 (EPI_ISL_411953), a SARS-
CoV-2 virus strain, was isolated from nasopharyngeal swab of a 40-
year old female confirmed as COVID-19 case by reverse transcrip-
tase polymerase chain reaction (RT-PCR) in December 2019. The
virus was propagated in Vero E6 cells, and the viral titer was
determined by the 50% tissue culture infective dose (TCID50) based
on microscopic observation of cytopathic effects. All the in vitro
SARS-CoV-2 infection experiments were performed in a biosafety
level-3 (BLS-3) laboratory in Jiangsu Provincial Center for Diseases
Control and Prevention, Jiangsu, China.

Antiviral drugs
Potential antiviral drugs, including zanamivir, oseltamivir, remde-
sivir, baricitinib, olaparib, and arbidol, were all provided by MCE
(Medchem Express, China). The PARP1 inhibitor mefuparib
(CVL218) with a purity of more than 99.0% was provided by
Convalife, Shanghai, China.

Cytotoxicity test and virus infection assay
The cytotoxicity of the tested drugs on Vero E6 cells was
determined by the CCK8 assays (Beyotime, China). At 48 h post
addition of the tested drugs, 20 μL CCK8 was added to each well
and incubated at 37 °C for 1 h. Then optical density was measured
at 450 nm. The 50% cytotoxic concentration (CC50) values were
calculated using GraphPad Prism 5 (GraphPad Software, USA).
Vero E6 cells were seeded into 96-well plates with a density of 5 ×
104 cells/well for incubation in DMEM medium supplemented
with 10% FBS for 16 h in an incubator with 5% CO2 at 37 °C, for
cells to reach 80% confluent. Then, cell culture medium of each
well was removed, and PBS was used to wash the cells once,
before evaluating the antiviral efficacy of the tested drugs. Four
duplicated wells were made for each dose of drugs, and the cells
were pretreated with different doses of antiviral drugs diluted by
the cell maintenance solution (50 μL per well) for 1 h. For the virus
control and cell control wells, cell medium containing DMSO or
only medium of 50 μL per well was added. Next, pretreated or
untreated cells in each well were infected with the virus with a
multiplicity of infection (MOI) of 0.05 for 2 h. After that, the virus-
drug mixture was removed and cells were further cultured with
fresh drug-containing medium at 37 °C with 5% CO2 atmosphere
for 48 h. Then culture supernatant per well was harvested and
inactivated at 56 °C for 30 min to further extract and quantify viral
RNA. The preliminary in vitro antiviral activities of the tested drugs
were first screened at individual concentrations with oseltamivir at
3 μM, zanamivir at 3 μM, baricitinib at 3.2 μM, olaparib at 3.2 μM,
arbidol at at 3 μM and 30 μM, and CVL218 at 3 μM and 30 μM,
respectively. Then, the concentration-dependent inhibition activ-
ity of CVL218 against SARS-CoV-2 replication was performed with
5-fold serial dilutions of the maximum concentration at 50 μM.

Viral RNA extraction and quantitative real-time PCR (qRT-PCR)
Viral RNA was extracted from culture supernatant using the HP
RNA Isolation Kit (Roche) according to the manufacturer’s

instructions. RNA was eluted in 30 μL RNase-free water. Reverse
transcription was performed with a SARS-CoV-2 nucleic acid
detection kit (BioGerm, China) according to the manufacturer’s
instructions. The PCR reaction system was configured as follows:
6 μL of qRT-PCR reaction solution, 2 μL of qRT-PCR enzyme
mixture, 2 μL of primer probe and 2.5 μL of template, and the
reaction was performed as follows: 50 °C for 10 min, 95 °C for
5 min, followed by 40 cycles of 95 °C for 10 s, 55 °C for 40 s. The
values of 2−ΔCT were calculated according to the CT value
measured from the PCR instrument, to represent the relative virus
copies of the drug group to the control group. The virus
replication inhibition rate (%) was calculated as (1–2−ΔCT) ×
100%. The dose-response curves were plotted according to viral
RNA copies and the drug concentrations using GraphPad Prism 5
(GraphPad Software, USA).
For quantification of N gene, total RNA was also extracted from

the infected cells using the Rneasy mini kit (Qiagen) according to
the manufacturer’s instructions. The viral N gene was quantified
by qRT-PCR by using a SARS-CoV-2 nucleic acid detection kit
(bioPerfectus technologies, China) according to the manufac-
turer’s instructions.

Time-of-addition assay
To facilitate the observation of the antiviral effects of drugs
against SARS-CoV-2 at different timing, relative high doses of the
tested drugs (CVL218 at 20 μM and remdesivir at 10 μM) were
used for the time-of-addition assay. Vero E6 cells with a density of
5 × 104 cells per well were treated with the tested drugs, or DMSO
as controls at different stages of virus infection. The cells were
infected with virus at an MOI of 0.05. The “Full-time” treatment
was to evaluate the maximum antiviral effects, with the tested
drugs in the cell culture medium during the whole experiment
process, which was consistent with the descriptions in the virus
infection assay. For the “Entry” treatment, the tested drug was
added to the cells for 1 h before virus infection, and then cells
were maintained in the drug-virus mixture for 2 h during the virus
infection process. After that, the culture medium containing both
virus and the tested drug was replaced with fresh culture medium
till the end of the experiment. For the “Post-entry” experiment,
virus was first added to the cells to allow infection for 2 h before
the virus-containing supernatant was replaced with drug-
containing medium until the end of the experiment. At 14 h post
infection, the viral inhibition in the cell supernatants of the tested
drug was quantified by qRT-PCR, and calculated using the DMSO
group as reference.

Indirect immunofluorescence assay
Vero E6 cells were treated with CVL218 at 5 μM, 15 μM, and 25 μM,
respectively, following the same procedure of “full-time” treat-
ment. After 48 h of culture, infected cells were fixed with 80%
acetone in PBS and permeabilized with 0.5% Triton X-100, and
then blocked with 5% BSA in PBS buffer containing 0.05% Tween
20 at room temperature for 30 min. The cells were further
incubated with a rabbit polyclonal antibody against a SARS-CoV
nucleocapsid protein (Cambridgebio, USA) as primary antibody at
a dilution of 1:200 for 2 h, followed by incubation with the
secondary Alexa 488-labeled goat anti-rabbit antibody (Beyotime,
China) at a dilution of 1:500. Nuclei were stained with DAPI
(Beyotime, China). Immunofluorescence was observed using
fluorescence microscopy.

Western blot assay
NP expression in infected cells was analyzed by western blot.
Protein samples were separated by SDS-PAGE and then transferred
onto polyvinylidene difluoride membranes (Millipore, USA), before
being blocked with 6% Rapid Block Buff II (Sangon Biotech, China)
at room temperature for 10min. The blot was probed with the
antibody against the viral nucleocapsid protein (Cambridgebio,
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USA) and the horseradish peroxidase-conjugated Goat Anti-Rabbit
IgG (Abcam, USA) as the primary and the secondary antibodies,
respectively. Protein bands were detected by chemiluminescence
using an ECL kit (Sangon Biotech, China).

Inhibitor combination assay
To assess the potential synergistic effect, CVL218 at 3.5 μM and
favipiravir at 30 μM were mixed, while CVL218 alone and
favipiravir alone were included as controls. The concentrations
were selected according to the EC25 values of individual drugs
against SARS-CoV-2 in vitro. The mixtures were tested for their
inhibitory activities on the SARS-CoV-2 with a multiplicity of
infection (MOI) of 0.05 as described above. Each sample was
tested in triplicate.

SPR binding assay
Surface plasmon resonance experiments were performed with a
BIAcore S200 (GE Healthcare) as previously described.101 The
running buffer contained 1× PBS, 2% DMSO. The purified SARS-
CoV-2-N protein was desalted using ZebaTM spin desalting column
(Thermo Scientific), diluted in 10mM sodium acetate (pH 4.0) to
20 μg/mL, and immobilized on a CM5 sensor chip by amine
coupling. The tested drugs in 2-fold serial dilutions were made in
the running buffer. All measurements were performed at a flow
rate of 30 μL/min. Data processing and analyses were performed
using BIAevaluation 1.1 software.

LPS-induced cytokine production in PBMCs
Peripheral blood mononuclear cells (Allcells) were cultured at 37 °C at
concentration 5% CO2 atmospheric on a 96-well plate in RPMI1640
cell growth medium (Gibico, Cat. 11875-093). For stimulation, PBMC
cells were incubated with 1 μg/mL LPS (Sigma, Cat. L2880-25MG). To
test whether CVL218 and olaparib can inhibit the production of IL-6,
IL-10, IFN-γ, TNF-α, 1 μM and 3 μM concentrations of CVL218 or
olaparib were added to cell culture medium for 6 and 24 h,
respectively. The concentration of each cytokine was determined by
ELISA using a commercial kit (BioLegend, USA).

Pharmacokinetics and toxicity study
Sprague-Dawley rats were purchased from Shanghai Laboratory
Animal Center, China. The animals were grouped and housed in
wire cages with no more than six per cage, under good laboratory
conditions (temperature 25 ± 2 °C; relative humidity 50 ± 20%) and
with dark and light cycle (12 h/12 h). Only healthy animals were
used for experimental purpose. The pharmacokinetics and
biodistribution study in Sprague-Dawley rats was approved by
Center for Drug Safety Evaluation and Research, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences. A total of 144
Sprague-Dawley rats with each sex were used for toxicity study.
Animals were randomly separated into four groups (18/sex/
group). CVL218 was administered at doses of 20, 40, 60, and
160mg/kg. For all the groups, 20 rats (10/sex/group) were
randomly selected and euthanized at day 28, and their sections
of various tissues and organs were obtained and frozen. Ten (5/
sex/group) animals were euthanized after a 28-day drug free
period, and their sections of tissues and organs were obtained and
frozen. Six (3/sex/group) were euthanized after the blood samples
were obtained. For pharmacokinetic and toxicity evaluation,
clinical symptoms, mortality and the animals’ body weight were
examined. Serum (0.5 mL) was collected to analyze toxicokinetics
at different timepoints post drug administration. The plasma
concentration-time data were analyzed using a noncompartmen-
tal method (Phoenix, version 1.3, USA) to derive the pharmaco-
kinetic parameters.

Biodistribution study
Thirty Sprague-Dawley rats were randomly divided into three time
point groups (3/sex/group). At 3, 6, and 8 h after CVL218

administration, animals were sacrificed, and the brain, heart, lung,
liver, spleen, stomach, and kidney tissues were collected. Tissue
samples were washed in ice-cold saline, blotted with paper towel
to remove excess fluid, and weighed. Tissue samples were fluid,
weighted and stored at −20 ± 2 °C until the determination of drug
concentration by LC-MS-MS.

Toxicity study in cynomolgus monkeys
Healthy male and female cynomolgus monkeys aged 3–4 years
were purchased from Guangdong Landau Biotechnology, China.
The animals were maintained in accordance with the Guide for the
Care and Use of Laboratory Animals.
Cynomolgus monkey (5/sex/group) were selected using a

computerized randomization procedure, and administered
CVL218 by nasogastric feeding at dose levels of 0 (control), 5,
20, 80mg/kg. Individual dose volumes were adjusted weekly
based on body weight of monkeys. The monkeys were observed
twice daily for viability/mortality and for any change in behavior,
reaction to treatment or ill-health. Electrocardiograms, intraocular
pressure, rectal temperature and body weight were recorded. For
all the groups, 2/3 of the animals were randomly selected and
euthanized at day 28. The remaining animals were euthanized
after a 28-day drug free period. Blood samples were taken before
and at 0.5, 1, 2, 4, 8, and 24 h post-dose on days 1 and 28 of the
treatment period. Pharmacokinetic evaluation was performed
using a noncompartmental method (Phoenix, version 1.3, USA)
and pharmacokinetic parameters were calculated for individual
monkeys.

Statistical analysis
All data represent the means ± standard deviations (SDs) of n
values, where n corresponds to the number of data points used.
The figures were prepared using GraphPad Prism 5 (GraphPad
Software, USA). The statistical significance was calculated by SPSS
(ver.12), and two values were considered significantly different if
the p-value is <0.05.
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