Skip to main content
. 2021 Mar 31;11(4):211. doi: 10.3390/metabo11040211

Table 1.

Comparative of machine learning algorithms. We used the metrics accuracy and Kappa, for comparing different algorithms in group 1 or constitutive scent profile (pFreqCutoff = 1.0) and group 2 (pFreqCutoff = 0.7). k-NN: k-Nearest Neighbors, NBC: Naïve Bayes Classifier, SVM: Support Vector Machine, RF: Random Forest, SD: standard deviation.

Metric Algorithm Group 1 Group 2
Mean SD Mean SD
Accuracy k-NN 0.77 0.17 0.9 0.14
NBC 0.665 0.30 0.89 0.14
SVM Linear 0.79 0.14 0.92 0.14
SVM Radial 0.755 0.19 0.88 0.11
SVM Polynomial 0.86 0.17 0.92 0.14
RF 0.84 0.18 0.98 0.06
Kappa k-NN 0.47 0.38 0.78 0.34
NBC 0.52 0.37 0.75 0.32
SVM Linear 0.53 0.40 0.82 0.34
SVM Radial 0.52 0.39 0.78 0.18
SVM Polynomial 0.65 0.42 0.81 0.34
RF 0.61 0.46 0.95 0.14