Skip to main content
. 2021 Mar 30;11(4):616. doi: 10.3390/diagnostics11040616

Table 4.

Performance metrics achieved by the fine-tuned models and their baseline counterparts.

Models Acc. AUC Sens. Spec. Prec. F MCC DOR Redux.
VGG-16-Baseline 0.8828 0.9434 0.8766 0.8919 0.9221 0.8988 0.7612
(0.7106, 0.8118)
58.575
VGG-16-Fine-tuned 0.9231 0.9532 0.9692 0.8559 0.9076 0.9374 0.8411
(0.7977, 0.8845)
186.4375 0
VGG-19-Baseline 0.9011 0.9441 0.9383 0.8469 0.8995 0.9185 0.7942
(0.7462, 0.8422)
84.0471
VGG-19-Fine-tuned 0.9158 0.963 0.9198 0.9100 0.9372 0.9284 0.8264
(0.7814, 0.8714)
115.7616 0
Inception-V3-Baseline 0.8754 0.9304 0.9198 0.8109 0.8765 0.8976 0.7404
(0.6883, 0.7925)
49.1209
Inception-V3-Fine-tuned 0.9048 0.9456 0.9198 0.8829 0.9198 0.9198 0.8027
(0.7554, 0.8500)
86.4024 42.82
DenseNet-121-Baseline 0.8645 0.9288 0.8519 0.8829 0.914 0.8818 0.7260
(0.6730, 0.7790)
43.3462
DenseNet-121-Fine-tuned 0.8974 0.9399 0.9383 0.8379 0.8942 0.9157 0.7866
(0.7379, 0.8353)
78.5334 56.52
NasNet-Mobile-Baseline 0.8828 0.9403 0.9013 0.8559 0.9013 0.9013 0.7571
(0.7062, 0.8080)
54.1797
NasNet-Mobile-Fine-tuned 0.8865 0.9258 0.9692 0.7658 0.858 0.9102 0.7679
(0.7178, 0.8180)
102.6539 11.64
ResNet-18-Baseline 0.8865 0.9371 0.9075 0.8559 0.9019 0.9047 0.7644
(0.7140, 0.8148)
58.1875
ResNet-18-Fine-tuned 0.9048 0.9416 0.9013 0.9100 0.9359 0.9183 0.8052
(0.7582, 0.8522)
92.1625 44.56
MobileNet-V2-Baseline 0.8645 0.9188 0.8766 0.8469 0.8931 0.8848 0.7206
(0.6673, 0.7739)
39.2589
MobileNet-V2-Fine-tuned 0.8865 0.9242 0.9754 0.7568 0.8541 0.9107 0.7694
(0.7194, 0.8194)
122.8889 36.35
EfficientNet-B0-Baseline 0.9194 0.9548 0.9383 0.8919 0.9269 0.9326 0.8327
(0.7884, 0.8870)
125.4
EfficientNet-B0-Fine-tuned 0.9194 0.9442 0.963 0.8559 0.907 0.9342 0.8331
(0.7888, 0.8774)
154.375 44.17

Data in parenthesis are 95% CI for the MCC values measured as the binomial (Clopper–Pearson’s) “exact” method corresponding to separate 2-sided CI with individual coverage probabilities of √0.95. Redux. = reduction in trainable parameters in%. The baseline signifies fine-tuning out-of-the-box ImageNet-pretrained CNNs toward this classification task. The best performances are denoted by bold numerical values in the corresponding columns. Except for the NasNet-Mobile and EfficientNet-B0 models, all other fine-tuned models demonstrated statistically significantly superior performance (p < 0.05) for their MCC metric compared to their baseline counterparts.