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ABSTRACT

Given the popularity and elegance of k-mer-based tools, finding a space-efficient way to
represent a set of k-mers is important for improving the scalability of bioinformatics ana-
lyses. One popular approach is to convert the set of k-mers into the more compact set of
unitigs. We generalize this approach and formulate it as the problem of finding a smallest
spectrum-preserving string set (SPSS) representation. We show that this problem is equiv-
alent to finding a smallest path cover in a compacted de Bruijn graph. Using this reduction,
we prove a lower bound on the size of the optimal SPSS and propose a greedy method called
UST (Unitig-STitch) that results in a smaller representation than unitigs and is nearly
optimal with respect to our lower bound. We demonstrate the usefulness of the SPSS for-
mulation with two applications of UST. The first one is a compression algorithm, UST-
Compress, which, we show, can store a set of k-mers by using an order-of-magnitude less
disk space than other lossless compression tools. The second one is an exact static k-mer
membership index, UST-FM, which, we show, improves index size by 10%–44% compared
with other state-of-the-art low-memory indices.

Keywords: bidirected graph, k-mer compression, k-mer index, k-mer set, path cover, unitigs.

1. INTRODUCTION

Algorithms based on k-mers are now among the top performing tools for many bioinformatics analyses.

Instead of working directly with reads or alignments, these tools work with the set of k-mer substrings

present in the data, often relying on specialized data structures for representing sets of k-mers (for a survey,

see Chikhi et al., 2019). Since modern sequencing datasets are huge, the space used by such data structures is

a bottleneck when attempting to scale up to large databases. For example, as part of our group’s work on

building indices for RNA-seq data, we are storing gzipped k-mer set files from about 2500 experiments

(Harris and Medvedev, 2018). Though this is only a fraction of experiments in the SRA, it already consumes

6 TB of space. For these and other applications, the development of space-efficient representations of k-mer

sets can improve scalability and enable novel biological discoveries.
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Conway and Bromage (2011) showed that at least log
4k

n

� �
bits are needed to losslessly store a set of

n k-mers, in the worst case. However, a set of k-mers generated from a sequencing experiment typically

exhibits the spectrum-like property (Chikhi et al., 2019) and contains a lot of redundant information.

Therefore, in practice, most data structures can substantially improve on that bound (Chikhi et al., 2014).

A common way to reduce the redundancy in a k-mer set K is to convert it into a set of maximal unitigs.

A unitig is a non-branching path in the de Bruijn graph, a graph whose nodes are the k-mers of K and

edges are the overlaps between k-mers. A unitig u can be written as a string spell(u) of length juj + k - 1,

such that the k-mers of u are exactly the k-mer substrings of spell(u). For example, the unitig

(AAC‚ ACG‚ CGT) is spelled as AACGT. This gives a way to represent juj k-mers using juj + k - 1 char-

acters, instead of kjuj characters used by a naive approach. When unitigs are long, as they are in real data,

the space savings are significant. The idea can be extended to store the whole set K, because the set of

maximal unitigs U forms a decomposition of K, and, therefore, has the nice property that x 2 K iff x is a

substring of spell(u), for some u 2 U.

The maximal unitigs U can be computed efficiently (Chikhi et al., 2016; Pan et al., 2018; Guo et al.,

2019) and combined with an auxiliary index to obtain a membership data structure (i.e., one that can

efficiently determine whether a k-mer belongs to K or not). In particular, Unitigs-FM (Chikhi et al., 2014)

and deGSM (Guo et al., 2019) use the FM-index as the auxiliary index; Pufferfish (Almodaresi et al., 2018)

and BLight (Marchet et al., 2019) use a minimum perfect hash function; and Bifrost (Holley and Melsted,

2019) uses a minimizer hash table. Alternatively, U can be compressed to obtain a compressed disk

representation of K, although without efficient support for membership queries before decompression.

Although unitigs conveniently fit the needs of those applications, we observe in this article that they are not

necessarily the best that can be done. Concretely, we claim that what makes U useful in these scenarios is that

they are a type of spectrum-preserving string set (SPSS) representation of K, which we define to be a set of

strings X such that a k-mer is in K if it is a substring of a string in X. [This is in contrast to the way unitigs are

used in assembly, where it is crucial that they are not chimeric (Medvedev, 2018)]. The weight of X is the

number of characters it contains. In this article, we explore the idea of low-weight representations and their

applicability. In particular, are there representations with a smaller weight than U that can be efficiently com-

puted? What is the lowest weight that is achievable by a representation? Can such representations seamlessly

replace unitig representations in downstream applications, and can they improve space performance?

In this article, we show that the problem of finding a minimum weight SPSS representation is equivalent

to finding the smallest path cover in a compacted de Bruijn graph (Section 3). We use the reduction to give

a lower bound on the weight, which could be achieved by any SPSS representation (Section 4), and we give

an efficient greedy algorithm UST (Unitig-STitch) to find a representation that improves on U (Section 5)

and is empirically near-optimal. We demonstrate the usefulness of our representation by using two

applications (Section 6). One, we combine it with an FM-index into a membership data structure called

UST-FM, and, two, we combine it with a general compression algorithm to give a compression algo-

rithm called UST-Compress. Both applications result in a substantial space decrease over state of the art

(Section 7), demonstrating the usefulness of SPSS representations. Our software is freely available at

https://github.com/medvedevgroup/UST/.

1.1. Related work

The idea of using a SPSS for a membership index was previously independently described in a PhD

thesis (Břinda, 2016), and questions similar to the ones in our article are simultaneously and independently

studied in Břinda et al. (2020). The idea of greedily gluing unitigs (as UST does) has previously appeared

in read compression ( Jones et al., 2012), where contigs greedily constructed from the reads and the reads

were stored as alignments to these contigs. The idea also appeared in the context of sequence assembly,

where a greedy traversal of an assembly graph was used as an intermediate step during assembly (Haas

et al., 2013; Kolmogorov et al., 2019).

The compression of k-mer sets has not been extensively studied, except in the context of how k-mer

counters store their output (Marçais and Kingsford, 2011; Rizk et al., 2013; Kokot et al., 2017; Pandey

et al., 2017c). DSK (Risk et al., 2013) uses an HDF5-based encoding, KMC3 (Kokot et al., 2017) combines

a dense storage of prefixes with a sparse storage of suffixes, and Squeakr (Pandey et al., 2017c) uses a

counting quotient filter (Pandey et al., 2017a). The compression of read data, on the other hand, stored in

either unaligned or aligned formats, has received a lot of attention (Hosseini et al., 2016; Numanagić et al.,
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2016; Hernaez et al., 2019). In the scenario where the k-mer set to be compressed was originally generated

from FASTA files by a k-mer counter, an alternate to k-mer compression is to compress the original

FASTA file and use a k-mer counter as part of the decompression to extract the k-mers on the fly. This

approach is unsatisfactory because (1) as shown in this article, it takes substantially more space than direct

k-mer compression, (2) k-mer counting on the fly adds significant time and memory to the decompression

process, and (3) there are applications where the k-mer set cannot be reproduced by simply counting k-mers in a

FASTA file, for example, when it is a product of a multi-sample error correction algorithm (Yang et al., 2012).

Further, there are applications where the k-mer set is not related to sequence read data at all, for example,

a universal hitting set (Orenstein et al., 2017), a chromosome-specific reference dictionary (Rangavittal

et al., 2019), or a winnowed min-hash sketch [e.g., as in Sahlin and Medvedev (2019), or see Marçais et al.

(2019) and Rowe (2019) for a survey].

Membership data structures for k-mer sets were surveyed in a recent paper (Chikhi et al., 2019). In

addition to the unitig-based approaches already mentioned, other exact representations include succinct

de Bruijn graphs (referred to as BOSS; Bowe et al., 2012) and their variations (Boucher et al., 2015;

Blazzougui et al., 2016a), dynamic de Bruijn graphs (Belazzougui et al., 2016b; Crawford et al., 2018), and

Bloom filter tries (Holley et al., 2016). Some data structures are non-static, that is, they provide the ability

to insert and/or delete k-mers. However, such operations are not needed in many read-only applications,

where the cost of supporting them can be avoided. Membership data structures can be extended to associate

additional information with each k-mer, for instance an abundance count (e.g., deBGR; Pandey et al.,

2017b) or a color class (for a short overview, see Chikhi et al., 2019).

2. DEFINITIONS

2.1. Strings

In this article, we assume all strings are over the alphabet S = fA‚ C‚ G‚ Tg. The length of string x is

denoted by jxj. A string of length k is called a k-mer. For a set of strings S, weight(S) =
P

x2S jxj denotes the

total count of characters. We write x(i..j) to denote the substring of x from the ith to the jth character,

inclusive. We define sufk(x) (respectively, prek(x)) to be the last (respectively, first) k characters of x. For x

and y with sufk - 1(x) = prek - 1(y), we define gluing x and y as x� y = x � y[k::jyj]. For s 2 f0‚ 1g, we define

orient(x‚ s) to be x if s = 0 and to be the reverse complement of x if s = 1. A string x is canonical if x is

the lexicographically smaller of x and its reverse complement. To canonize x is to replace it by its

canonical version (i.e., mini (orient(x‚ i))). We say that x0 and x1 have a (s0, s1)-oriented-overlap if

sufk - 1(orient(x0‚ 1 - s0) = prek - 1(orient(x1‚ s1)). Intuitively, such an overlap exists between two strings if

we can orient them in such a way that they are glueable. We define the k-spectrum spk(x) as the multiset of all

canonized k-mer substrings of x. The k-spectrum for a set of strings S is defined as spk(S) =
S

x2S spk(x).

2.2. Bidirected graphs

A bidirected graph G is a pair (V‚ E) where the set V are called vertices and E is a set of edges. An edge e

is a 4-tuple (u0‚ s0‚ u1‚ s1), where ui 2 V and si 2 f0‚ 1g, for i 2 f0‚ 1g. Intuitively, every vertex has two

sides, and an edge connects to a side of a vertex. Note that there can be multiple edges between two

vertices, but only one edge once the sides are fixed. An edge is a loop if u0 = u1. Given a non-loop edge e

that is incident to a vertex u, we denote side(u‚ e) as the side of u to which it is incident. We say that a

vertex u is isolated if it has no edge incident to it and is a dead-end if it has exactly one side to which no

edges are incident. We define ndead and niso as the number of dead-end and isolated vertices, respectively. A

sequence w = (u0‚ e1‚ u1‚ . . . ‚ en‚ un) is a walk if for all 1 � i � n, ei is incident to ui - 1 and to ui, and for

all 1 � i � n - 1, side(ui‚ ei) = 1 - side(ui‚ ei + 1). Vertices u1‚ . . . ‚ un - 1 are called internal, and u0 and un are

called endpoints. A walk can also be a single vertex, in which case it is considered to have no internal

vertex and one endpoint. A path cover W of G is a set of walks such that every vertex is in exactly one walk

in W and no walk visits a vertex more than once.

2.3. Bidirected DNA graphs

A bidirected DNA graph is a bidirected graph G where every vertex u has a string label lab(u), and for

every edge e = (u0‚ s0‚ u1‚ s1), there is a (s0‚ s1)-oriented-overlap between lab(u0) and lab(u1). G is said to
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be overlap-closed if there is an edge for every such overlap. Let w = (u0‚ e1‚ u1‚ . . . ‚ en‚ un) be a walk. We

define x0 = orient(lab(u0)‚ 1 - side(u0‚ e1)) and, for 1 � i � n, xi = orient(lab(ui)‚ side(ui‚ ei - 1)). The spell-

ing of a walk is defined as spell(w) = x0 � � � � � xn. (The fact that the xi’s are glueable in this way can be

derived from definitions.) If W is a set of walks, then we define spell(W) =
S

w2W spell(w).

2.4. de Bruijn graphs

Let K be a set of canonical k-mers. The node-centric bidirected de Bruijn graph, denoted by dBG(K), is

the overlap-closed bidirected DNA graph where the vertices and their labels correspond to K. Figure 1A

shows an example. In this article, we will assume that dBG(K) is not just a single cycle; such a case is easy

to handle in practice but is a space-consuming corner case in all the analyses. A walk in dbG(K) is a unitig

if all its vertices have in- and out-degrees of 1, except that the first vertex can have any in-degree and the

last vertex can have any out-degree. A single vertex is also a unitig. A unitig is maximal if it is not a sub-

walk of another unitig. It was shown in Chikhi et al. (2016) that if dBG(K) is not a cycle, then a unitig

cannot visit a vertex more than once, and the set of maximal unitigs forms a unique decomposition of the

vertices in dBG(K) into non-overlapping walks. The bidirected compacted de Bruijn graph of K, denoted

by cdBG(K), is the overlap-closed bidirected DNA graph where the vertices are the maximal unitigs of

dBG(K), and the labels of the vertices are the spellings of the unitigs. Figure 1B shows an example.

3. EQUIVALENCE OF SPSS REPRESENTATIONS AND PATH COVERS

For this section, we fix K to be a canonical set of k-mers. A set of strings X is said to be a SPSS

representation of K if their k-spectrums are equal and each string in X is of length � k. For brevity, we say

X represents K. Note that because in our definitions K is a set (i.e., no duplicates) and the k-spectrum is a

multi-set, this effectively restricts X to not contain duplicate k-mers (see Figure 1B, C, e.g.). In this article,

A

B C

FIG. 1. (A) An example of a de Bruijn graph for a set K with 9 3-mers. The 0 side of a vertex is drawn flat and the 1

side pointy. The text in each vertex is its label, that is, what is spelled by a walk going in the direction of the pointy end.

The string below the vertex is the reverse complement of its label, which is what is spelled by a walk going in the

opposite direction. The maximal unitigs are shown by filled in gray arrows. (B) The compacted de Bruijn graph for

the same set K. Each vertex corresponds to a maximal unitig in the top graph. Each vertex’s label corresponds to the

spelling of the corresponding unitig and is shown inside the vertex; the reverse complement of the label is written

below in italics. One possible path cover is five walks, each corresponding to a single vertex; the spelling of this

cover is fAAAC‚ ACGG‚ ACTGG‚ GGA‚ ACCg, which is the unitig SPSS representation of K. A better path cover

of size 2 that could potentially be found by our UST algorithm is shown. It corresponds to SPSS representation

fAAACGGA‚ ACTGGTg. It is easy to verify that this path cover has minimum size, and, by Theorem 1, the corre-

sponding representation has minimum weight (13). (C) Another path cover that could potentially be found by UST. It

has size 3 and is suboptimal. SPSS, spectrum-preserving string set; UST, Unitig-STitch.
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we consider the problem of finding a minimum weight SPSS representation of K. In this section, we will

show that it is equivalent to the problem of finding the smallest path cover of cdBG(K), in the following

sense:

Theorem 1. Let Xopt be a minimum weight SPSS representation of K. Let Wopt be the smallest path cover

on cdBG(K). Then, weight(Xopt) = jKj + jWoptj(k - 1).

First, we show that the weight of an SPSS representation is a linear increasing function of its size (i.e.,

the number of strings it contains) and, hence, finding an SPSS representation of minimum weight is

equivalent to finding one of minimum size.

Lemma 1. Let X be an SPSS representing K. Then, weight(X) = jKj+ jXj(k - 1).

Proof. Every string x of length � k contains jxj - k + 1 k-mers. X has jKj k-mers, since X and K have the

same k-spectrum. Combining these, jKj =
P

x2X (jxj - k + 1) = weight(X) - jXj(k - 1).

The intuition behind Theorem 1 is that there is a natural size-preserving bijection between path covers of

dBG(K) and SPSS representations of K. Since it is more efficient to work with compacted de Bruijn graphs,

we would like this to hold for cdBG(K) as well. However, the path covers with an endpoint at an internal

vertex of a unitig in dBG(K) do not project onto cdBG(K). Nevertheless, this is not an issue because such

path covers are necessarily non-optimal. ,
Lemma 2. Let W be a path cover of cdBG(K). Then, spell(W) represents K.

Proof. By construction, all strings in spell(W) are at least k-long, so we only need to show that the

spectrum of spell(W) is K. Let W0 be the path cover with every vertex as its own walk. We can view W as

being constructed from W0 by repeatedly taking a pair of walks that share endpoints and joining them

together. We prove the Lemma by induction.

For the base case, spell(W0) are the unitigs of dBG(K), which, by definition, have the same spectrum as K

(Chikhi et al., 2016). Now let Wi be the path cover after i walk-joins. Then, Wi + 1 is the result of joining

some two walks w and w0 into w00. Observe that joining walks preserves the k-spectrum of their spellings,

that is, spk(spell(w)) [ spk(spell(w0)) = spk(spell(w00)). Combining with the inductive hypothesis for Wi,

spk(spell(Wi)) = spk(spell(Wi + 1)). ,
Lemma 3. Let X be the smallest SPSS representation of K. Then, there exists a path cover W of cdBG(K)

with jWj = jXj.
Proof. Let X = fx1‚ . . . ‚ xmg. Every string xi is spelled by a walk w0i in dBG(K), visiting the sequence of

its canonized constituent k-mers. Since X is spectrum preserving with respect to K, it contains every k-mer

in K exactly once; therefore, fw01‚ . . . ‚ w0mg is a path cover of dbG(K).

Since X has the smallest number of strings, the endpoints of w0i cannot be on internal vertices of unitigs,

otherwise there would exist another string xj that could be glued with xi to form a smaller SPSS representing

K. Therefore, there exists a corresponding walk wi in cdBG(K) such that spell(wi) = spell(w0i) = xi. Hence,

the set of walks W = fw1‚ . . . ‚ wmg is a path cover of cdBG(K). ,
Now we can prove Theorem 1.

Proof. By Lemma 1, Xopt has minimum size and, hence, by Lemma 3, there exists a path cover W with

jW j = jXoptj. By the optimality of Wopt, jWoptj � jW j � jXoptj. Next, by Lemma 2, spell(Wopt) represents K

and, by definition, jspell(Wopt)j = jWoptj. Since Xopt has minimum size, jXoptj � jspell(Wopt)j = jWoptj. This

proves jXoptj = jWoptj. Lemma 1 then implies the Theorem. ,

4. LOWER BOUND ON THE WEIGHT OF A SPSS REPRESENTATION

In this section, we will prove a lower bound on the size of a path cover of a bidirected graph, which, by

Theorem 1, gives a lower bound on the weight of any SPSS representation. Finding the minimum size of a

path cover in general directed graphs is NP-hard, since a directed graph has a Hamiltonian path if and only

if it has a path cover of size 1. However, we do not know the complexity of the problem when restricted to

compacted de Bruijn graphs of k-mer sets. The minimum size of a path cover is known to be bounded from

above by the maximum size of an independent set (at least for directed graphs; Diestel, 2005); however,

finding a maximum independent set is itself NP-hard. We, therefore, take a different approach.

For this section, let G = (V‚ E) be a bidirected graph without loops and let W be a path cover. A

vertex-side is a pair (u‚ su), where u 2 V and su 2 f0‚ 1g. For a non-isolated vertex u, we say (u‚ su) is

a dead-side if there are no edges incident to (u‚ 1 - su). Note that the number of dead-sides is, by

definition, the number of dead-end vertices. Consider a walk (v0‚ e1‚ . . . ‚ en‚ vn) with n � 1. Denote its
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endpoint-sides as (v0‚ side (v0‚ e1)) and (vn‚ side (vn‚ en)). If a walk contains just one vertex (v0), then

denote its endpoint-sides as (v0‚ 0) and (v0‚ 1).

We observe that every walk in a path cover must have two unique endpoint-sides. Our strategy is to give

a lower bound on the number of endpoint-sides, thereby giving a lower bound on the size of a path cover.

We know, for instance, that dead-sides must be endpoint-sides and we also know that the sides of an

isolated vertex must be endpoint-sides. For other cases, we cannot predict exactly the endpoint-sides, but

we can create disjoint sets of vertex-sides (which we call special neighborhoods) such that, for each set, we

can guarantee that all but one of its vertex-sides are endpoint-sides. Formally, for a vertex-side (u‚ su), its

special neighborhood Bu‚ su is the set of vertex-sides (v‚ sv) such that there exists an edge between (u‚ su)

and (v‚ 1 - sv) and it is the only edge incident on (v‚ 1 - sv). A vertex-side that belongs to a special

neighborhood is called a special-side. Figure 2 shows an example. Our key lemma is that all but one

member of a special neighborhood must be an endpoint-side:

Lemma 4. For a vertex-side (u‚ su), there must be at least jBu, suj - 1 endpoint-sides of W in Bu‚ su.

Proof. Assume without loss of generality that jBu,suj > 1, since the lemma is otherwise vacuous. Let

(v‚ sv) 2 Bu‚ su be a vertex-side that is not an endpoint-side in W, and let wv be the walk containing v.

Since, in particular, (v‚ sv) is not an endpoint-side of wv, then wv must contain an edge incident to

(v‚ 1 - sv). By definition of special neighborhood, the only such edge is incident to (u‚ su). By definition of

a path cover, there can only be one walk in W that contains an edge incident to (u‚ su) and it can contain

only one such edge. Hence, there can only be one (v‚ sv) 2 Bu‚ su that is not an endpoint-side. ,
Next, we show that the special neighborhoods are disjoint, and we can therefore define nsp =P
u2V‚ su2f0‚ 1gmax (0‚ jBu‚ suj - 1) as a lower bound on the number of special-sides that are endpoint-sides:

Lemma 5. There are at least nsp special-sides that are endpoint-sides of W.

Proof. We claim that Bu‚ su \ Bv‚ sv = ; for all (u‚ su) 6¼ (v‚ su). Let (w‚ sw) 2 Bu‚ su \ Bv‚ sv. By defi-

nition of Bu,su, the only edge touching (w‚ 1 - sw) is incident to (u‚ su). Similarly, by definition of Bv, the

only edge touching (w‚ 1 - sw) is incident to (v‚ sv). Hence, (u‚ su) = (v‚ sv). The Lemma follows by

applying Lemma 4 to each Bu‚ su and summing the result. ,
Finally, we are ready to prove our lower bound on the size of path cover.

Theorem 2. jW j � Ø(ndead + nsp)=2ø + niso.

Proof. Define a walk as isolated if it has only one vertex and that vertex is isolated. There are exactly niso

isolated walks in W. Next, dead-sides are trivially endpoint-sides of a non-isolated walk in W by Lemma 5,

and so are at least nsp of the special-sides. Since the set of dead-sides and the set of special-sides are, by

their definition, disjoint, the number of distinct endpoint-sides of non-isolated walks is at least ndead + nsp.

Since every walk in a path cover must have exactly two distinct endpoint-sides, there must be at least

Ø(ndead + nsp)=2ø non-isolated walks. ,
By applying Theorem 1 to Theorem 2 and observing that loops do not affect path covers, we get a lower

bound on the minimum weight of any SPSS representation:

A B

FIG. 2. (A) An example of compacted de Bruijn graph (labels not shown), with a distinct ID for each vertex shown

inside the vertex. The dashed hollow sides of the vertices are dead sides, and the solid gray sides are special-sides. Each

special-side is additionally labeled with the vertex-side to whose special neighborhoods it belongs. For example, the

special neighborhood of vertex-side (c, 0) contains two vertex-sides, namely the blunt gray sides of vertices a and b,

corresponding to jBc‚ 0j = 2. In this example, ndead = 4, nsp = 6, and niso = 1. By Theorem 2, the minimum size of a path

cover is 6, and one can, indeed, find a path cover of this size in the graph. (B) In this example, ndead = 4, nsp = niso = 0,

resulting in a lower bound of 2 on the size of a path cover. However, a quick inspection tells us that the the optimal size

of a path cover is 4. This shows that our lower bound is not theoretically tight.
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Corollary 1. Let K be a set of canonical k-mers and let Xopt be its minimum weight SPSS representation.

Then, weight(Xopt)3 jKj + (k - 1) e(ndead + nsp)=2u + niso

� �
, where ndead, niso, and nsp are defined with respect

to the graph obtained by removing loops from cdBG(K).

We note that the lower bound is not tight, as in the example of Figure 2B; it can likely be improved by

accounting for higher-order relationships in G. However, the empirical gap between our lower bound and

algorithm is so small (Section 7) that we did not pursue this direction.

5. THE UST ALGORITHM FOR COMPUTING A SPSS REPRESENTATION

In this section, we describe our algorithm called UST for computing an SPSS representation of a set of

k-mers K. We first use the Bcalm2 tool (Chikhi et al., 2016) to construct cdBG(K), then find a path cover W

of cdBG(K), and finally output spell(W), which by Lemma 2 is an SPSS representation of K.

The UST constructs a path cover W by greedily exploring the vertices, with each vertex explored exactly

once. We maintain the invariant that W is a path cover over all the vertices explored up to that point, and

that the currently explored vertex is an endpoint of a walk in W. To start, we pick an arbitrary vertex u, add

a walk consisting of only u to W, and start an exploration from u.

An exploration from u works as follows. First, we mark u as explored. Let wu be the walk in W that

contains u as an endpoint, and let su be the endpoint-side of u in wu. We then search for an edge

e = (u‚ 1 - su‚ v‚ sv), for some v and sv. If we find such an edge and v has not been explored, then we

extend wu with e and start a new exploration from v. If v has been explored and is an endpoint vertex of

a walk wv in W, then we merge wu and wv together if the orientations allow (i.e., if 1 - sv is the side at which

wv is incident to v) and start a new exploration from an arbitrary unexplored vertex. In all other cases (i.e.,

if e is not found, if the orientations do not allow merging wv with wu, or if v in internal vertex in wv), we

start a new exploration from an arbitrary unexplored vertex. The algorithm is terminated once all the

vertices have been explored. It follows directly via the loop invariant that the algorithm finds a path cover,

though we omit an explicit proof.

In our implementation, we do not store the walks W explicitly but rather just store a walk ID at every

vertex along with some associated information. This makes the algorithm run-time and memory linear in

the number of vertices and the number of edges, except for the possibility of needing to merge walks (i.e.,

merging of wu and wv). But we implement these operations by using a union-find data structure, making the

total time near-linear.

We note that the UST’s path cover depends on the arbitrary choices of which vertex to explore.

Figure 1C gives an example of where this leads to suboptimal results. However, our results indicate that

UST cannot be significantly improved in practice, at least for the datasets we consider (Section 7).

6. APPLICATIONS

We apply the UST to solve two problems. First, we use it to construct a compression algorithm UST-

Compress. UST-Compress supports only compression and decompression and not membership and is

intended to reduce disk space. We take K as input [in the binary output format of either DSK (Risk et al.,

2013) or Jellyfish (Marçais and Kingsford, 2011)], run UST on K, and finally compress the resulting SPSS

by using a generic nucleotide compressor MFC (Pinho and Prats, 2013). UST-Compress can also be run in

a mode that takes as input a count associated with each k-mer. In this mode, it outputs a list of counts in the

order of their respective k-mers in the output SPSS representation (this is a trivial modification to UST).

This list is then compressed by using the generic LZMA compression algorithm. Note that we use MFC and

LZMA due to their superior compression ratios, but other compressors could be substituted. To decom-

press, we simply run the MFC or LZMA decompressing algorithm.

Second, we use UST to construct an exact static membership data structure UST-FM. Given K, we first

run UST on K, and then construct an FM-index (Ferragina and Manzine, 2000) (as implemented in https://

github.com/jts/dbgfm) on top of the resulting SPSS representation. The FM-index then supports mem-

bership queries. In comparison to hash-based approaches, the FM-index does not support insertion or

deletion; on the other hand, it allows membership queries of strings shorter than k.
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7. EMPIRICAL RESULTS

We use different types of publicly available sequencing data, because each type may result in a de Bruijn

graph with different properties and may inherently be more or less compressible. Our datasets include

human, bacterial, and fish samples; they also include genomic, metagenomic, and RNA-seq data (Table 1).

Each dataset was k-mer counted by using DSK (Risk et al., 2013), using k = 31 with singleton k-mers

removed. Although these are not the optimal values for each of the respective applications, it allows us to

have a uniform comparison across datasets. In addition, we k-mer count one of the datasets with k = 61,

removing singletons, to study the effect of k-mer size. All our experiments were run on a server with an

Intel� Xeon� CPU E5-2683 v4 @ 2.10 GHz with 64 cores and 512 GB of memory. All tested algo-

rithms were verified for correctness in all datasets. Table 2 shows the version numbers of all tools tested,

and further reproducibility details are available at https://github.com/medvedevgroup/UST/tree/master/

experiments.

7.1. Evaluation of the UST representation

We compare our UST representation against the unitig representation as well as against the SPSS lower

bound of Corollary 1 (Table 3, with a deeper breakdown in Table 4). The UST reduces the number of

nucleotides (i.e., weight) compared to the unitigs by 10%–32%, depending on the dataset. The number of

nucleotides obtained is always within 3% of the SPSS lower bound; in fact, when considering the gap

between the unitig representation and the lower bound, UST closes 92%–99% of that gap. These results

indicate that our greedy algorithm is a nearly optimal SPSS representation, on these datasets. They also

indicate that the lower bound of Corollary 1, though not theoretically tight, is nearly tight on the type of real

data captured by our experiments.

Table 1. Dataset Characteristics

Dataset Source No. of reads Read length (bp) No. of distinct k-mers

Zebrafish RNA-seq SRX3022435 59,741,039 101 124,740,993

Human RNA-seq SRR957915 49,459,840 101 101,017,526

Human chromosome 14 GAGE (Salzberg et al., 2012) 36,504,800 101 99,941,572

Whole human genome SRR034939 36,201,642 100 391,766,120

Human gut metagenome SRR341725 25,479,128 90 103,814,001

Human RNA-seq (k = 61) SRR957915 49,459,840 101 75,013,109

Singletons are not included in the k-mer count. Unless otherwise stated, k = 31.

Table 2. Versions of the Tools Used in Experiments

Tool URL Git commit hash/version Non-default option

Bcalm2 https://github.com/

gatb/bcalm

f4e0012e8056c56a04c7b00a927c260d5dbd2636 -kmer-size 31

-abundance-min 2

-all-abundance

-counts

Cosmo/

VARI

https://github.com/cosmo-

team/cosmo/tree/VARI

d35bc3dd2d6ba7861232c49274dc6c63320cedc1 -d

Dbgfm https://github.com/jts/dbgfm ef82d38af2c402beab9ef9f12a72e7dcaeff210c

KMC https://github.com/

refresh-bio/KMC

85ad76956d890aa24fc8525eee5653078ed86ace -fa -k31 -ci2

-sm -m2

Squeakr https://github.com/

splatlab/squeakr

aa30936a40ac07b556d48b867ccadcebc5525021 -e -k 31 -c 2

-s 2000 -t 1

McCortex https://github.com/

mcveanlab/mccortex/

d3901d900cacff376e1201e86223adf1cc56784a

MFC http://bioinformatics.ua.pt/

software/mfcompress/

Version 1.01

Default options were used except as noted in the last column. We show the options for k = 31. Reproducibility details are available at

https://github.com/medvedevgroup/UST/tree/master/experiments.
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7.2. Evaluation of UST-compress

We measure the compressed space usage (Table 5), compression time and memory (Table 6), and de-

compression time and memory. We compare against the following lossless compression strategies: (1) the

binary output of the k-mer counters DSK (Risk et al., 2013), KMC (Kokot et al., 2017), and Squeakr-exact

(Pandey et al., 2017c); (2) the original FASTA sequences, with headers removed; (3) the maximal unitigs;

and (4) the BOSS representation (Bowe et al., 2012) (as implemented in COSMO [https://github.com/

cosmo-team/cosmo/tree/VARI]). In all cases, the stored data are additionally compressed by using MFC

(for nucleotide sequences, i.e., 2 and 3) or LZMA (for binary data, i.e., 1 and 4). The second strategy

(which we already discussed in Section 1.1) is not a k-mer compression strategy per say, but it is how many

users store their data in practice. The fourth strategy uses BOSS, the empirically most space efficient exact

membership data structure according to a recent comparison (Crawford et al., 2018). We include this

comparison to measure the advantage that can be gained by not needing to support membership queries.

Note that strategies 1 and 2 retain count information, unlike strategies 3 and 4. Squeakr-exact also has an

option to store only the k-mers, without counts.

First, we observe that compared with the compressed native output of k-mer counters, UST-Compress

reduces the space by roughly an order of magnitude; this, however, comes at an expense of compression

time. When the value of k is increased, this improvement becomes even higher; as k nearly doubles, the

UST-Compress output size remains the same; however, the compressed binary files output by k-mer

counters approximately double in size. Our results indicate that when disk space is a more limited resource

than compute time, SPSS-based compression can be very beneficial.

Second, we observe a 4–8 · space improvement compared with just compressing the reads FASTA file.

In this case, however, the extra time needed for UST compression is balanced by the extra time needed to

recount the k-mers from the FASTA file. Therefore, if all that is used downstream are the k-mers and

possibly their counts, then SPSS-based compression is again very beneficial. Third, UST-Compress uses

between 39% and 48% less space than BOSS, with comparable construction time and memory. Fourth,

compared with the other SPSS-based compression (based on maximal unitigs), UST-Compress uses 10% to

29% less space, but it has 10% to 24% slower compression times (with the exception of the k = 61 dataset,

Table 3. Comparison of Different String Set Representations and the SPSS Lower Bound

Dataset

No. of distinct

k-mers

SPSS lower bound UST unitigs

No. of

strings nt/k-mer

No. of

strings nt/k-mer

No. of

strings nt/k-mer

Zebrafish RNA-seq 124,740,993 3,979,856 1.96 4,174,867 2.00 7,775,719 2.87

Human RNA-seq 101,017,526 3,924,803 2.17 4,132,115 2.23 7,665,682 3.28

Human chromosome 14 99,941,572 2,235,267 1.67 2,386,324 1.72 4,871,245 2.46

Whole human genome 391,766,120 13,964,825 2.07 14,423,449 2.10 19,581,835 2.50

Human gut metagenome 103,814,001 1,517,107 1.34 1,522,139 1.34 2,187,669 1.49

Human RNA-seq (k = 61) 75,013,109 2,651,729 3.12 2,713,825 3.17 4,371,173 4.50

The second column shows jKj. For a representation X, the number of strings is jXj and the number of nucleotides per distinct k-mer

is weight(X)=jKj. Unitigs were computed by using BCALM2.

SPSS, spectrum-preserving string set; UST, Unitig-STitch.

Table 4. Percent of cdBG(K) Vertex-Sides That Belong to Isolated Vertices,

That Are Dead-Sides, and That Are Counted by nsp

Dataset 2niso ndead nsp

Zebrafish RNA-seq 13 18 21

Human RNA-seq 13 20 18

Human chromosome 14 10 14 21

Whole human genome 54 8 9

Human gut metagenome 44 10 15

Human RNA-seq (k = 61) 24 22 15
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where it compresses 6% faster). The ratio of space savings after compression closely parallels the ratio of

the weights of the two SPSS representations (Table 3). Fifth, we note that the best compression ratios

achieved are significantly better than the worst case Conway Bromage lower bound of > 35 bits per k-mer

for the k = 31 datasets and 95 bits per k-mer for the k = 61 dataset. Finally, we note that the differences in the

peak construction memory, and the total decompression run time and memory (< 2 minutes and < 1 GB

for UST-Compress, respectively, table not shown) were negligible.

We also compressed a subset of samples from a de-noised index of 450,000 microbial DNA data used

recently in large-scale indexing projects of BIGSI (Bradley et al., 2019) and COBS (Bingmann et al.,

2019). Each sample consists of error-corrected 31-mers (without abundance information) from a corre-

sponding sequencing experiment, natively stored as bzipped McCortex binary file [see Bingmann et al.

(2019) and Bradley et al. (2019) for details]. We downloaded 19,000 of these files from http://ftp.ebi.ac.uk/

pub/software/bigsi/nat_biotech_2018/ctx/. We ran UST-Compress, which reduced the disk space from 507

to 14.7 GB, a 35 · reduction. The compression took a total of 82 hours and a peak memory of 3 GB (using

one core).

7.3. Evaluation of UST-FM

We measure the memory taken by the data structure (Table 8), the query times (Table 9), and the time

and memory taken during construction (Table 7). We compare UST-FM against two other space-efficient

exact static membership data structures for k-mer sets. The first builds the FM index on top of the maximal

unitigs (we refer to this as unitig-FM, but it is referred to originally as dbgfm in Chikhi et al., 2014). The

second is BOSS, which, as previously mentioned, was shown (Crawford et al., 2018) to have superior space

usage. We did not compare against the Bloom filter trie (Holley et al., 2016), which is fast but uses an order

Table 5. Space Usage of UST-Compress and Others

Dataset

With counts Without counts

Squeakr KMC DSK FASTA UST-compress Squeakr BOSS Unitigs UST-compress

Zebrafish RNA-seq 91 41 47 33 5.4 45 5.9 5.0 3.6

Human RNA-seq 94 41 48 41 6.3 41 6.9 5.8 4.1

Human chromosome 14 98 43 48 49 5.8 41 5.5 4.3 3.1

Whole human genome 85 41 43 17 4.7 40 7.0 4.7 4.1

Human gut metagenome 90 46 51 23 4.2 44 5.3 3.0 2.7

Human RNA-seq (k = 61) — 82 77 41 6.4 — 9.0 5.5 4.3

We show the average number of bits per distinct k-mer in the dataset. All files are compressed with MFC or LZMA, in addition to

the tool shown in the column name. Squeakr-exact’s implementation is limited to k < 32 (Pandey et al., 2017c) and so it could not be

run for k = 61.

Table 6. Time and Peak Memory Usage of UST-Compress (Without Counts)

and Others During Compression

Dataset

Time (minutes) Peak memory (GB)

BOSS Unitigs UST-compress

BOSS Unitigs

UST-

compressCosmo LZMA Total bcalm2 MFC Total UST MFC Total

Zebrafish RNA-seq 6.3 0.7 7.0 3.0 1.5 4.4 1.5 0.9 5.3 4.0 3.1 3.1

Human RNA-seq 4.0 0.8 4.8 4.7 1.3 5.9 1.6 0.8 7.1 3.6 3.4 3.4

Human chromosome 14 4.9 0.5 5.4 2.1 1.0 3.1 1.1 0.7 3.9 4.2 3.4 3.4

Whole human genome 17.3 3.0 20.3 10.4 2.2 12.5 4.1 1.9 16.3 4.0 4.3 4.3

Human gut metagenome 6.6 0.7 7.3 3.2 0.9 4.0 0.5 0.8 4.5 3.3 3.9 3.9

Human RNA-seq (k = 61) 4.4 0.6 5.0 3.6 3.9 7.5 1.1 2.4 7.1 4.3 2.3 2.3

For BOSS and unitigs, the times are separated according to the two steps of compression: running the core algorithm (Cosmo and

bcalm2) followed by the generic compressor (respectively, LZMA and MFC). For UST-Compress, the first step is exactly the same as

for unitigs (Bcalm2), so the column is not repeated.
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of magnitude more memory than BOSS (Crawford et al., 2018). Other data structures, such as Pufferfish

(Almodaresi et al., 2018), blight (Marchet et al., 2019), and Bifrost (Holley and Melsted, 2019), implement

more sophisticated operations and hence use significantly more memory than BOSS. Moreover, these make

use of a unitig SPSS representation and hence could potentially themselves incorporate the UST approach.

First, the UST-FM index is 25%–44% smaller and the queries are 4 to 11 times faster compared with

BOSS; however, it takes 2 to 5 times longer to build. This time is dominated by FM-index construction,

rather than by UST. Second, the UST-FM index is 10%–32% smaller than the unitigs-FM index, with a

negligibly faster query time. Finally, the memory use during construction was similar for all approaches.

8. CONCLUSION

In this article, we define the notion of an SPSS representation of a set of k-mers, give a lower bound on

what could be achieved by such a representation, and give an algorithm to compute a representation that

Table 7. Time and Memory for Construction of Index by UST-FM and Others

Dataset

Time (minutes) Memory (GB)

BOSS Unitigs-FM UST-FM BOSS Unitigs-FM UST-FM

Zebrafish RNA-seq 6.3 24 17 4.0 3.1 3.1

Human RNA-seq 4.0 21 15 3.6 3.4 3.4

Human chromosome 14 4.9 15 11 4.2 3.4 3.4

Whole human genome 17.3 111 92 4.0 4.3 4.3

Human gut metagenome 6.6 13 12 3.3 3.9 3.9

Human RNA-seq (k = 61) 4.2 16 9 4.3 2.3 2.3

Table 8. UST-FM Data Structure Size, Shown in the Average Number

of Bits per Distinct k-Mer in the Dataset

Dataset BOSS Unitigs-FM UST-FM

Zebrafish RNA-seq 7.5 7.9 5.5

Human RNA-seq 9.0 9.2 6.3

Human chromosome 14 8.7 6.9 4.8

Whole human genome 7.7 6.8 5.7

Human gut metagenome 8.8 5.4 4.9

Human RNA-seq (k = 61) 13.4 13.6 10.0

This was measured by taking the peak memory usage during membership queries.

Table 9. UST-FM Query Time (in Seconds) for Two Sets of 10,000 k-Mers

Each, Using the Human RNA-Seq Indices

BOSS Unitigs-FM UST-FM

k = 31

x 2 K 3.80 0.51 0.49

x =2K 1.48 0.38 0.37

k = 61

x 2 K 15.25 1.61 1.58

x =2K 5.10 0.35 0.37

The first set contains k-mers drawn from the dataset, so that UST-FM returns a hit. The second

set takes randomly generated k-mers that were verified to not be present in the dataset. We

measured the query times (per k-mer) after the index was already loaded into memory.

SPECTRUM-PRESERVING STRING SETS 391



comes close to the lower bound. We demonstrate the applicability of the SPSS definition by using our

algorithm to substantially improve space efficiency of the state of the art in two applications.

A natural question is why we limit ourselves to SPSS representations. One can imagine alternative

strategies, such as allowing a k-mer to appear more than once in the string set, or allowing other types of

characters. In fact, for any concrete application, one might argue that an SPSS representation is too

restrictive and can be improved. However, we chose to focus on SPSS representations because they are the

common denominator in the applications of unitig-based representations we have observed (Chikhi et al.,

2014; Almodaresi et al., 2018; Holley and Melsted, 2019; Marchet et al., 2019). In this way, they retain

broad applicability, as opposed to more specialized representations.

One limitation of the UST is the time and memory needed to run Bcalm2 as a first step. Bcalm2 works by

repeatedly gluing k-mers into longer strings, taking care to never glue across a unitig boundary. However,

this care is wasted in our case, since the UST then greedily glues across unitig boundaries anyway.

Therefore, a potentially significant speedup and memory reduction of UST would be to implement it as a

modification of Bcalm2, as opposed to running on top of it. This can keep the high-level algorithm the same

but change the implementation to work directly on the k-mer set by incorporating algorithmic aspects of

Bcalm2.
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Marçais, G., and Kingsford, C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers.

Bioinformatics 27, 764–770.
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