
Lower Density Selection Schemes via Small Universal

Hitting Sets with Short Remaining Path Length

HONGYU ZHENG, CARL KINGSFORD, and GUILLAUME MARÇAIS

ABSTRACT

Universal hitting sets (UHS) are sets of words that are unavoidable: every long enough
sequence is hit by the set (i.e., it contains a word from the set). There is a tight relationship
between UHS and minimizer schemes, where minimizer schemes with low density (i.e.,
efficient schemes) correspond to UHS of small size. Local schemes are a generalization of
minimizer schemes that can be used as replacement for minimizer scheme with the possi-
bility of being much more efficient. We establish the link between efficient local schemes and
the minimum length of a string that must be hit by a UHS. We give bounds for the re-
maining path length of the Mykkeltveit UHS. In addition, we create a local scheme with the
lowest known density that is only a log factor away from the theoretical lower bound.

Keywords: de Bruijn graph, depathing set, minimizers, sequence sketch, universal hitting set.

1. INTRODUCTION

We study the problem of finding Universal Hitting Sets (UHS) (Orenstein et al., 2016). A UHS is a set

of words, each of length k, such that every long enough string (say of length L or longer) contains as a

substring element from the set. We call such a set a UHS for parameters k and L. They are sets of unavoidable

words, that is, words that must be contained in any long strings, and we are interested in the relationship

between the size of these sets and the length L.

More precisely, we say that a k-mer a (a string of length k) hits a string S if a appears as a substring of S.

A set A of k-mers hits S if at least one k-mer of A hits S. A UHS for length L is a set of k-mers that hits every

string of length L. Equivalently, the remaining path length of a universal set is the length of the longest

string that is not hit by the set (L - 1 here).

The study of UHS is motivated, in part, by the link between UHS and the common method of minimizers

(Schleimer et al., 2003; Roberts et al., 2004a,b). The minimizer method is a way to sample a string for

representative k-mers in a deterministic way by breaking a string into windows, each window containing

w k-mers, and selecting in each window a particular k-mer (the ‘‘minimum k-mer,’’ as defined by a preset

order on the k-mers). This method is used in many bioinformatic software programs (Ye et al., 2012;

Grabowski and Raniszewski, 2013; Chikhi et al., 2015; Deorowicz et al., 2015; Jain et al., 2017) to reduce

the amount of computation and improve run time (see Marçais et al., 2019 for usage examples). The

Computational Biology Department, Carnegie Mellon University, Pittsburgh Pennsylvania, USA.

Hongyu Zheng, et al., 2020. Published by Mary Ann Liebert, Inc. This Open Access article is distributed under
the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly credited.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 28, Number 4, 2021

Mary Ann Liebert, Inc.

Pp. 395–409

DOI: 10.1089/cmb.2020.0432

395

minimizer method is a family of methods parameterized by the order on the k-mers used to find the

minimum. The density is defined as the expected number of sampled k-mers per unit length of sequence.

Depending on the order used, the density varies.

In general, a lower density (i.e., fewer sampled k-mers) leads to greater computational improvements and

is therefore desirable. For example, a read aligner such as Minimap2 (Li and Birol, 2018) stores all the

locations of minimizers in the reference sequence in a database. It then finds all the minimizers in a read

and searches in the database for these minimizers. The locations of these minimizers are used as seeds for

the alignment. Using a minimizer scheme with a reduced density leads to a smaller database and fewer

locations to consider, hence an increased efficiency, while preserving the accuracy.

There is a two-way correspondence between minimizer methods and UHS: each minimizer method has a

corresponding UHS, and a UHS defines a family of compatible minimizer methods (Marçais et al., 2017,

2018). This correspondence also links the remaining path length of a UHS and the window size of a

compatible minimizer scheme: the remaining path length of the UHS is upper bounded by the number of

bases in each window in the minimizer scheme (L � w + k - 1).

Moreover, the relative size of the UHS, defined as the size of UHS over the number of possible k-mers,

provides an upper bound on the density of the corresponding minimizer methods: the density is no more

than the relative size of the UHS. Precisely, 1
w
� d � jUj

rk , where d is the density, U is the UHS, rk is the

total number of k-mers on an alphabet of size r, and w is the window length. In other words, the study of

UHS with small size leads to the creation of minimizer methods with provably low density.

Local schemes (Mykkeltveit, 1972) and forward schemes are generalizations of minimizer schemes.

These extensions are of interest because they can be used in place of minimizer schemes while sampling

k-mers with lower density. In particular, minimizer schemes cannot have density close to the theoretical

lower bound of 1=w when w becomes large, while local and forward schemes do not suffer from this

limitation (Marçais et al., 2018). Understanding how to design local and forward schemes with low density

will allow us to further improve the computation efficiency of many bioinformatic algorithms.

The previously known link between minimizer schemes and UHS relied on the definition of an ordering

between k-mers, and therefore is not valid for local and forward schemes that are not based on any ordering.

Nevertheless, UHS play a central role in understanding the density of local and forward schemes.

Our first contribution is to describe the connection between UHS, local and forward schemes. More

precisely, there are two connections: first, between the density of the schemes and the relative size of the

UHS, and second, between the window size w of the scheme and the remaining path length of the UHS

(i.e., the maximum length L of a string that does not contain a word from the UHS). This motivates our

study of the relationship between the size of a UHS U and the remaining path length of U.

There is a rich literature on unavoidable word sets (Lothaire, 2002). The setting for UHS is slightly

different for two reasons. First, we impose that all the words in the set U have the same length k, as a k-mer

is a natural unit in bioinformatic applications. Second, the set U must hit any string of a given finite length

L, rather than being unavoidable only by infinitely long strings.

Mykkeltveit (1972) answered the question of what is the size of a minimum unavoidable set with k-mers

by giving an explicit construction for such a set. The k-mers in the Mykkeltveit set are guaranteed to be

present in any infinitely long sequence, and the size of the Mykkeltveit set is minimum in the sense that for

any set S with fewer k-mers, there is an infinitely long sequence that avoids S. On the contrary, the

construction gives no indication on the remaining path length.

The DOCKS (Orenstein et al., 2016) and ReMuVal (DeBlasio et al., 2019) algorithms are heuristics to

generate unavoidable sets for parameters k and L. Both of these algorithms use the Mykkeltveit set as a starting

point. In many practical cases, the longest sequence that does not contain any k-mer from the Mykkeltveit set is

much larger than the parameter L of interest (which for a compatible minimizer scheme corresponds to the

window length). Therefore, the two heuristics extend the Mykkeltveit set to cover every L-long sequence.

These greedy heuristics do not provide any guarantee on the size of the unavoidable set generated compared

with the theoretical minimum size and are only computationally tractable for limited ranges of k and L.

Our second contribution is to give upper and lower bounds on the remaining path length of the

Mykkeltveit sets. These are the first bounds on the remaining path length for minimum size sets of

unavoidable k-mers.

Defining local or forward schemes with a density of O(1=w) (i.e., within a constant factor of the

theoretical lower bound) is not only of practical interest to improve the efficiency of existing algorithms,

but it is also interesting for a historical reason. Both Roberts et al. (2004a) and Schleimer et al. (2003) used

396 ZHENG ET AL.

a probabilistic model to suggest that minimizer schemes have an expected density of 2=w. Unfortunately,

this simple probabilistic model does not correctly model the minimizer schemes outside of a small range of

values for parameters k and w, and minimizers do not have an O(1=w) density in general. Although the

general question of whether a local scheme with O(1=w) exists is still open, our third contribution is an

almost-optimal forward scheme with density of O(ln (w)=w) density. This is the lowest known density for a

forward scheme, beating the previous best density of O(
ffiffiffiffi
w
p

=w) (Marçais et al., 2018), and hinting that

O(1=w) might be achievable.

Understanding the properties of UHS and their many interactions with selection schemes (minimizer

and forward and local schemes) is a crucial step toward designing schemes with lower density and

improving the many algorithms using these schemes. In Section 2, we give an overview of the results, and

in Section 3, we give detailed proofs. Further research directions are discussed in Section 4.

2. RESULTS

2.1. Notation

2.1.1. Universal hitting sets. Consider a finite alphabet S= f0‚ . . . ‚ r - 1g with r � 2 elements. If

a 2 S, ak denotes the letter a repeated k times. We use Sk to denote the set of strings of length k on

alphabet S, and call them k-mers. If S is a string, S [n‚ l] denotes the substring starting at position n and

of length l. For a k-mer a 2 Sk and an l-long string S 2 Sl, we say ‘‘a hits S’’ if a appears as substring of

S [a = S [i‚ k] for some i]. For a set of k-mers A � Sk and S 2 Sl, we say ‘‘A hits S’’ if there exists at least

one k-mer in A that hits S. A set A � Sk is a UHS for length L if A hits every string of length L.

2.1.2. de Bruijn graphs. Many questions regarding strings have an equivalent formulation with

graph terminology using de Bruijn graphs. The de Bruijn graph BS‚ k on alphabet S and of order k has a

node for every k-mer, and an edge (u, v) for every string of length k + 1 with a prefix u and the suffix is v.

There are rk vertices and rk + 1 edges in the de Bruijn graph of order k.

There is a one-to-one correspondence between strings and paths in BS‚ k: a path with w nodes corresponds

to a string of L = w + k - 1 characters. A UHS A corresponds to a depathing set of the de Bruijn graph: a

UHS for k and L intersects with every path in the de Bruijn graph with w = L - k + 1 vertices. We say ‘‘A is a

(a‚ l)-UHS’’ if A is a set of k-mers that is a UHS, with relative size a = jAj=rk and hits every walk of l

vertices (and therefore every string of length L = l + k - 1).

A de Bruijn sequence is a particular sequence of length rk + k - 1 that contains every possible k-mer once

and only once. Every de Bruijn graph is Hamiltonian and the sequence spelled out by a Hamiltonian tour is

a de Bruijn sequence.

2.1.3. Selection schemes. A local scheme (Schleimer et al., 2003) is a method to select positions in

a string. A local scheme is parameterized by a selection function f. It works by looking at every w-mer of

the input sequence S: S [0‚ w]‚ S [1‚ w]‚ . . ., and selecting in each window a position according to the

selection function f. The selection function selects a position in a window of length w, that is, it is a

function f : Sw ! [0 : w - 1]. The output of a forward scheme is a set of selected positions:

fi + f (S [i‚ w])j0 � i < jSj - wg.
A forward scheme is a local scheme with a selection function such that the selected positions form

a nondecreasing sequence. That is, if x1 and x2 are two consecutive windows in a sequence S, then

f (x2) � f (x1) - 1.

A minimizer scheme is a scheme where the selection function takes in the sequence of w consecutive

k-mers and returns the ‘‘minimum’’ k-mer in the window (hence the name minimizers). The minimum is

defined by a predefined order on the k-mers (e.g., lexicographic order) and the selection function is

f : Sw + k - 1 ! [0 : w - 1].

See Figure 1 for examples of all three schemes. The local scheme concept is the most general as it

imposes no constraint on the selection function, while a forward scheme must select positions in a non-

decreasing way. A minimizer scheme is the least general and also selects positions in a nondecreasing way.

Local and forward schemes were originally defined with a function defined on a window of w k-mers,

f : Sw + k - 1 ! [0 : w - 1], similarly to minimizers. Selection schemes are schemes with k = 1, and have a

single parameter w as the word length. While the notion of k-mer is central to the definition of the

LOWER DENSITY SELECTION SCHEMES 397

minimizer schemes, it has no particular meaning for a local or forward scheme: these schemes select

positions within each window of a string S, and the sequence of the k-mers at these positions is no more

relevant than a sequence elsewhere in the window to the selection function.

There are multiple reasons to consider selection schemes. First, they are slightly simpler as they have

only one parameter, namely the window length w. Second, in our analysis, we consider the case where w is

asymptotically large, therefore w� k and the setting is similar to having k = 1. Finally, this simplified

problem still provides information about the general problem of local schemes. Suppose that f is the

selection function of a selection scheme, for any k > 1 we can define gk : Sw + k - 1 ! [0‚ w - 1] as

gk(x) = f (x [0‚ w]). That is, gk is defined from the function f by ignoring the last k - 1 characters in a

window. The functions gk define proper selection functions for local schemes with parameters w and k, and

because exactly the same positions are selected, the density of gk is equal to the density of f. In the

following sections, unless noted otherwise, we use forward and local schemes to denote forward and local

selection schemes.

2.1.4. Density. Because a local scheme on string S may pick the same location in two different

windows, the number of selected positions is usually less than jSj - w + 1. The particular density of a

scheme is defined as the number of distinct selected positions divided by jSj - w + 1 (Fig. 1). The expected

density, or simply the density, of a scheme is the expected density on an infinitely long random sequence.

Alternatively, the expected density is computed exactly by computing the particular density on any de

Bruijn sequence of order � 2w - 1. In other words, a de Bruijn sequence of large enough order ‘‘looks like’’

a random infinite sequence with respect to a local scheme (see Marçais et al., 2017 and Section 3.1).

2.2. Main results

The density of a local scheme is in the range [1=w‚ 1], as 1=w corresponds to selecting exactly one

position per window, and 1 corresponds to selecting every position. Therefore, the density goes from a low

value with a constant number of positions per window [density is O (1=w), which goes to 0 when w gets

large], to a high with constant value [density is O(1)] where the number of positions per window is

proportional to w. When the minimizers and winnowing schemes were introduced, both articles used a

simple probabilistic model to estimate the expected density to 2=(w + 1), or about 2 positions per window.

Under this model, this estimate is within a constant factor of the optimal, O(1=w).

Unfortunately, this simple model properly accounts for the minimizer behavior only when k and w are

small. For large k—that is, k� w—it is possible to create an almost-optimal minimizer scheme with a

density *1=w. More problematic, for large w—that is, w� k—and for all minimizer schemes, the density

a b c

FIG. 1. (a) Example of selecting minimizers with k = 3, w = 5, and the lexicographic order (i.e., AAA < AAC <
AAG < . . . < TTT). The top line is the input sequence, each subsequent line is a 7-bases long window (the number of

bases in a window is w + k - 1 = 7) with the minimum 3-mer highlighted. The positions {1, 2, 5, 9, 10, 11} are selected

for a density d = 6=(18 - 3 + 1) = 0:375. (b) On the same sequence, an example of a selection scheme for w = 7 (and k = 1

because it is a selection scheme, hence the number of bases in a window is also w). The set of positions selected is {1, 6,

7, 8, 11, 13, 14}. This is not a forward scheme as the sequence of selected position is not decreasing. (c) A forward

selection scheme for w = 7 with selected positions {1, 7, 8, 12, 13}. Like the minimizer scheme, the sequence of

selected positions is nondecreasing.

398 ZHENG ET AL.

becomes constant [O(1)] (Marçais et al., 2018). In other words, minimizer schemes cannot be optimal or

within a constant factor of optimal for large w, and the estimate of 2=(w + 1) is very inaccurate in this

regime.

This motivates the study of forward schemes and local schemes. It is known that there exist forward

schemes with a density of O(1=
ffiffiffiffi
w
p

) (Marçais et al., 2018). This density is not within a constant factor of

the optimal density but at least shows that forward and local schemes do not have constant density such as

minimizer schemes for large w and that they can have much lower density.

2.2.1. Connection between UHS and selection schemes. In the study of selection schemes, as for

minimizer schemes, UHS play a central role. We describe the link between selection schemes and UHS,

and show that the existence of a selection scheme with low density implies the existence of a UHS with a

small relative size.

Theorem 1. Given a local scheme f on w-mers with density df, we can construct a (df ‚ w) - UHS on

(2w - 1)-mers. If f is a forward scheme, we can construct a (df ‚ w) - UHS on (w + 1)-mers.

2.2.2. Almost-optimal relative size UHS for linear path length. Conversely, because of their link

to forward and local selection schemes, we are interested in UHS with remaining path length O(w).

Necessarily a universal hitting hits any infinitely long sequences. On de Bruijn graphs, a set hitting every

infinitely long sequence is a decycling set: a set that intersects with every cycle in the graph. In particular, a

decycling set must contain an element in each of the cycles obtained by the rotation of the w-mers (e.g.,

cycle of the type 001 ! 010 ! 100 ! 001). The number of these rotation cycles is known as the

‘‘necklace number’’ Nr‚ w = 1
n

P
djw u (d) rw=d = O (rw=w) (Golomb, 2014), where u (d) is the Euler’s

totient function.

Consequently, the relative size of a UHS, which contains at least one element from each of these cycles,

is lower bounded by O(1=w). The smallest previously known UHS with O(w) remaining path length

has a relative size of O(
ffiffiffiffi
w
p

=w) (Marçais et al., 2018). We construct a smaller UHS with relative size

O(ln (w)=w):

Theorem 2. For every sufficiently large w, there is a forward scheme with density of O(ln (w)=w) and

a corresponding (O(ln (w)=w)‚ w)-UHS.

2.2.3. Remaining path length bounds for the Mykkeltveit sets. Mykkeltveit (1972) gave an

explicit construction for a decycling set with exactly one element from each of the rotation cycles, and

thereby proved a long-standing conjecture (Golomb, 2014) that the minimal size of decycling sets is equal

to the necklace number. Under the UHS framework, it is natural to ask what the remaining path length for

Mykkeltveit sets is. Given that the de Bruijn graph is Hamiltonian, there exist paths of length exponential in

w: the Hamiltonian tours have rw vertices. Nevertheless, we show that the remaining path length for

Mykkeltveit sets is upper and lower bounded by polynomials of w:

Theorem 3. For sufficiently large w, the Mykkeltveit set is a (Nr‚ w=rw‚ g(w))-UHS, having the same

size as minimal decycling sets, while c1w2 � g(w) � c2w3 for some constants c1 and c2.

3. METHODS AND PROOFS

For length reasons, several parts of the proof are found in the Supplementary Material.

3.1. UHS from selection schemes

3.1.1. Contexts and densities of selection schemes. We derive another way of calculating densities

of selection schemes based on the idea of contexts.

Recall a local scheme is defined as a function f : Sw ! [0‚ w - 1]. For any sequence S and scheme f, the

set of selected locations is ff (S [i‚ w]) + ig and the density of f on the sequence is the number of selected

locations divided by jSj - w + 1. Counting the number of distinct selected locations is the same as counting

the number of w-mers S [i‚ w] such that f picks a new location from all previous w-mers. f can pick identical

LOWER DENSITY SELECTION SCHEMES 399

locations on two w-mers only if they overlap, so intuitively, we only need to look back (w - 1) windows to

check if the position is already picked. Formally, f picks a new position in window S [i‚ w] if and only if

f (S [i‚ w]) + i 6¼ f (S [i - d‚ w]) + (i - d) for all 1 � d � w - 1.

For a location i in sequence S, the context at this location is defined as ci = S [i - w + 1‚ 2w - 1], a

(2w - 1)-mer whose last w-mer starts at i. Whether f picks a new position in S [i‚ w] is entirely determined

by its context, as the conditions only involve w-mers as far back as S [i - w + 1‚ w], which are all included

in the context. This means that instead of counting selected positions in S, we can count the contexts

c satisfying f (c [w - 1‚ w]) + w - 1 6¼ f (c [j‚ w]) + j for all 0 � j � w - 2, which are the contexts such that

f on the last w-mer of c picks a new location. We denote by Cf � S2w - 1 the set of contexts that satisfy this

condition.

Definition 1. For given w and local selection scheme f : Sw ! [0‚ w - 1], Cf = fc 2 S2w - 1j80 �
i � w - 2‚ f (c [w - 1‚ w]) + (w - 1) 6¼ f (c [i‚ w]) + ig is a subset of S2w - 1.

The expected density of f is computed as the number of selected positions over the length of the sequence

for a random sequence, as the sequence becomes infinitely long. For a sufficiently long random sequence

(jSj � w), the distribution of its contexts converges to a uniform random distribution over (2w - 1)-mers.

Because the distribution of these contexts is exactly equal to the uniform distribution on a circular de Bruijn

S sequence of order at least 2w - 1, we can calculate the expected density of f as the density of f on S, or as

jCf j=r2w - 1.

3.1.2. UHS from selection schemes. The set Cf over (2w - 1)-mers is the UHS needed for Theorem

1. Intuitively, it is a UHS with remaining path length of at most w - 1, because one location must be picked

every w window, meaning there is a window that picked a new location. The context that is prefix of this

window is in Cf by definition.

Lemma 1. Cf is a UHS with remaining path length of at most w - 1.

Proof. By contradiction, assume there is a path of length w in the de Bruijn graph of order (2w - 1), say

fc0‚ c1‚ � � � ‚ cw - 1g, that avoids C. We construct the sequence S0 corresponding to the path: S0 2 S3w - 2

such that S0[i‚ 2w - 1] = ci.

Since cw - 1 =2C and S0 include cw - 1, it means f on the last w-mer of cw - 1 (which is S0[2w - 2‚ w]) picks a

location that has been picked before on S0. The coordinate l of this selection in S0 satisfies l � 2w - 2.

As 0 � f (x) � w - 1, the first w-mer S0[m‚ w] in S0 such that f picks S0[l] (i.e., m + f (S0 [m‚ w]) = l) satisfies

m � w - 1. The context cm - w + 1 = S0 [m - (w - 1)‚ 2w - 1] then satisfies that a new location l is picked when

f is applied to its last w-mer, and by definition cm - w + 1 2 C, contradiction. ,
This results is also a direct consequence of the definition of C. An alternative direct proof is available in

Supplementary Section S1.

When f is a forward scheme, to determine if a new location is picked in a window, looking back one

window is sufficient. This is because if we do not pick a new location, we have to pick the same location as

in the last window. This means the context with two w-mers, or as a (w + 1)-mer, is sufficient, and our other

arguments involving contexts still hold. Combining the pieces, we prove the following theorem:

Theorem 4. Given a local scheme f on w-mers with density df, we can construct a (df, w) - UHS on

(2w - 1)-mers. If f is a forward scheme, we can construct a (df, w) - UHS on (w + 1)-mers.

3.2. Forbidden word depathing set

3.2.1. Construction and path length. In this section, we construct a set that is (O(ln (w)=w)‚ w) -
UHS.

Definition 2 (Forbidden Word UHS). Let d = º logr (w= ln (w))ß - 1. Define F r‚ w as the set of w-mers

that satisfies either of the following clauses: (1) 0d is the prefix of x (2) 0d is not a substring of x.

We assume that w is sufficiently large such that d � 1.

400 ZHENG ET AL.

Lemma 2. The longest remaining path in the de Bruijn graph of order w after removing F r‚ w is w - d.

Proof. Let fx0‚ x1‚ � � � ‚ xw - dg be a path of length w - d + 1 in the de Bruijn graph. If x0 does not have a

substring equal to 0d, it is in F r‚ w. Otherwise, let c be the index such that x0[c‚ d] = 0d. Since c � w - d,

xc[0‚ d] = 0d and xc is in F r‚ w.

On the contrary, let S = 1w - d0d1w - d - 1 2 S2w - d - 1 and xi = S [i‚ w] for 0 � i < w - d. None of fxig is in

F r‚ w, meaning there is a path of length w - d in the remaining graph. ,
The number of w-mer satisfying clause 1 is rw - d = O(ln (w)rw=w). For the rest of this section, we focus

on counting w-mers satisfying clause 2 in Definition 2, that is, the number of w-mers not containing 0d.

3.2.2. Number of w-mers not containing 0d. We construct a finite state machine (FSM) that

recognizes 0d as follows. The FSM consists of d + 1 states labeled ‘‘0’’ to ‘‘d,’’ where ‘‘0’’ is the initial state

and ‘‘d’’ is the terminal state. The state ‘‘i’’ with 0 � i � d - 1 means that the last i characters were 0

and d - i more zeroes are needed to match 0d. The terminal state ‘‘d’’ means that we have seen a substring

of d consecutive zeroes. If the machine is at nonterminal state ‘‘i’’ and receives the character 0, it moves to

state ‘‘i + 1,’’ otherwise it moves to state ‘‘0’’; once the machine reaches state ‘‘d,’’ it remains in that state

forever.

Now, assume we feed a random w-mer to the FSM. The probability that the machine does not reach state

‘‘d’’ for the input w-mer is the relative size of the set of w-mer satisfying clause 2. Denote pk 2 Rd such that

pk(j) is the probability of feeding a random k-mer to the machine and ending up in state ‘‘j,’’ for 0 � j < d

(note that the vector does not contain the probability for the terminal state ‘‘d’’). The answer to our problem

is then pwk k1 =
Pd - 1

i = 0 pw(i), that is, the sum of the probabilities of ending at a nonterminal state.

Define l = 1=r. Given that a randomly chosen w-mer is fed into the FSM, that is, each base is chosen

independently and uniformly from S, the probabilities of transition in the FSM are: ‘‘i’’ ! ‘‘i + 1’’ with

probability l, ‘‘i’’ ! ‘‘0’’ with probability 1 - l. The probability matrix to not recognize 0d is a d · d

matrix, as we discard the row and column associated with terminal state ‘‘d’’:

Ad =

1 - l 1 - l . . . 1 - l 1 - l
l 0 . . . 0 0

0 l . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . l 0

2
666664

3
777775

d · d

= (1 - l)1T
d - 1 1 - l

lId - 1 0d - 1

� �

Starting with p0 = (1‚ 0‚ . . . ‚ 0) 2 Rd as initially no sequence has been parsed and the machine is at state

‘‘0’’ with probability 1, we can compute the probability vector pw as pw = Adpw - 1 = Aw
d p0.

3.2.3. Bounding pwk k1. We start by deriving the characteristic polynomial pAd
(k) of Ad and its roots,

which are the eigenvalues of Ad:

Lemma 3.
pAd

(k) = det (Ad - kI) = (- 1)d kd + 1 - kd - ld + 1 + ld

k - l k 6¼ l

(- l)d - 1((1 - l)d - l) k = l

(

Proof. The characteristic polynomial of Ad satisfies the following recursive formula, obtained by

expanding the determinant over the first column and using the linearity of the determinant:

det (Ad - kId) =

1 - l - k 1 - l 1 - l � � � 1 - l

l - k 0 � � � 0

0 l - k � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � - k

�������������

�������������
d · d

= (1 - k)(- k)d - 1 - lpAd - 1
(k):

LOWER DENSITY SELECTION SCHEMES 401

For d = 1, we have pA1
(k) = 1 - l - k. Assuming k 6¼ l for now, we repeatedly expand the recursive

formula to obtain a closed-form formula for pAd
(k):

pAd
(k) = (1 - k) (- k)d - 1 + (- l)1(- k)d - 2 + � � � + (- l)d - 2(- k)1 + (- l)d - 1

� �
+ (- l)d (�)

= (- 1)d (k - 1)
kd - ld

k - l
+ ld

� �

= (- 1)d kd + 1 - kd - ld + 1 + ld

k - l

The value for the characteristic polynomial when k = l can be derived by plugging k = l in the line

marked with (*) to obtain pAd
(k) = (1 - l)dld - 1 + (- l)d. ,

Now we fix d and focus on the polynomial fd(k) = kd + 1 - kd - ld + 1 + ld . Since this is a polynomial of

degree d + 1, it has d + 1 roots and except for l, which is a root of fd but not of pAd
, fd and pAd

have the same

roots.

Lemma 4. For sufficiently large d, fd(k) has a real root k0 satisfying 1 - ld < k0 < 1 - ld + 1.

Proof. We show fd has opposite signs on the lower and upper bound of this inequality for sufficiently

large d.

fd(1 - ld) = (1 - ld)d + 1 - (1 - ld)d - ld + 1 + ld

= 1 - (d + 1)ld + O(l2d) - 1 + dld - O(l2d) - ld + 1 + ld

= - ld + 1 + O(l2d) < 0

fd(1 - ld + 1) = (1 - ld + 1)d + 1 - (1 - ld + 1)d - ld + 1 + ld

= 1 - (d + 1)ld + 1 + C(d + 1‚ 2)l2d + 2 + O(l3d + 6)

- 1 + dld + 1 - C(d‚ 2)l2d + 2 - O(l3d + 6) - ld + 1 + ld

= - 2ld + 1 + ld + dl2d + 2 + O(l3d + 6) > 0

For the last line, if r = 2 the first two terms cancel out and dl2d + 2 becomes dominant and positive,

otherwise ld = rld + 1 > 2ld + 1. Since fd is polynomial, fd is continuous and thus has a root between 1 - ld

and 1 - ld + 1. ,

Lemma 5. Let s = l=k0. �0 = (1‚ s‚ s2‚ � � � ‚ sd - 1) is the right eigenvector of Ad corresponding to eigen-

value k0, and �0k k1 < 3 for sufficiently large d.

Proof. For the first part, we need to verify Ad �0 = k0 �0. For indices 1 � i < d, (Ad �0)i = l(�0)i - 1 =
lsi - 1 = k0si = (k0 �0)i. For the first element in the vector, we have:

(Ad �0)0 - (k0 �0)0 = (1 - l)(1 + s + � � � sd - 1) - k0

=
(1 - l)(sd - 1) - k0(s - 1)

s - 1

=
kd

0(ld - kd
0 - ld + 1 + kd + 1

0)

s - 1

=
kd

0fd(k0)

s - 1
= 0:

This verifies Ad�0 = k0�0. For the second part, note that for sufficiently large d we have k0 > 1 - ld > 0:9
and since l � 0:5, we have s = l=k0 < 2=3. Every element of �0 is positive, so �0k k1 =

Pd - 1
i = 0 si <P1

i = 0 si = 1=(1 - s) < 3. ,

Lemma 6. pwk k1 = Aw
d p0

�� ��
1

= O(1=w).

402 ZHENG ET AL.

Proof. Let g0 = �0 - p0 = (0‚ s‚ s2 ‚ � � � ‚ sd - 1), where s = l=k0 from last lemma. Because k0 > 0, the

elements of g0 and Ad are all non-negative, then the elements of Aw
d g0 and k0 g0 are also non-negative. Now,

recall that d = º logr (w= ln (w))ß - 1, which implies that ld + 1 � ln (w)=w.

pwk k1 = Aw
d p0

�� ��
1

= Aw
d (�0 - g0)

�� ��
1

= kw
0 �0 - Aw

d g0

�� ��
1

(�0 is a eigenvector of Ad)

� kw
0 �0k k1 (non - negative elements)

< 3(1 - ld + 1)w (by Lemmas 4 and 5)

� 3(1 - ln (w)=w)w (by definition of d)

� 3 exp (- ln (w)) (1 - x � e - x)

= O(1=w):

,
This lemma implies that the relative size for the set F r‚ w is dominated by the w-mers satisfying clause 1

of Definition 2 and F r‚ w is of relative size O(ln (w)=w). This completes the proof that F r‚ w is

(O(ln (w)=w)‚ w) - UHS.

3.3. Construction of the Mykkeltveit sets

In this section, we construct the Mykkeltveit set Mr‚ w and prove some important properties of the set.

We start with the definition of the Mykkeltveit embedding of the de Bruijn graph.

Definition 3 (Modified Mykkeltveit Embedding). For a w-mer x, its embedding in the complex plane

is defined as P(x) =
Pw - 1

i = 0 xir
i + 1
w , where rw is a wth root of unity, rw = e2pi=w.

Intuitively, the position of a w-mer x is defined as the following center of mass. The w roots of unity form

a circle in the complex plane, and a weight equal to the value of the base xi is set at the root ri + 1
w . The

position of x is the center of mass of these w points and associated weights. Originally, Mykkeltveit defined

the embedding with weight ri
w (Mykkeltveit, 1972). This extra factor of rw in our modified embedding

rotates the coordinate and is instrumental in the proof.

Define the successor function Sa(x) = x1 x2 � � � xw - 1a, where a 2 S. The successor function gives all the

neighbors of x in the de Bruijn graph. A pure rotation of x is the particular neighbor R(x) = Sx0
(x), that is, the

sequence of R(x) is a left rotation of x.

We focus on a particular kind of cycle in the de Bruijn graph. A pure cycle in the de Bruijn graph, also

known as conjugacy class, is the sequence of w-mers obtained by repeated rotation: (x‚ R(x)‚ R2(x)‚ . . .).

Each pure cycle consists of w distinct w-mer s, unless x0 x1 � � � xw - 1 is periodic, and in this case, the size of

the cycle is equal to its shortest period.

The embeddings from pure rotations satisfy a curious property:

Lemma 7 (Rotations and Embeddings). P(R(x)) on the complex plane is P(x) rotated clockwise

around origin by 2p=w. P(Sa(x)) is P(R(x)) shifted by d = a - x0 on the real part, with the imaginary part

unchanged.

Proof. By Definition 3 and the definition of successor function Sa(x):

P(Sa(x)) =
Xw - 1

i = 0
(Sa(x))ir

i + 1
w

=
Xw - 2

i = 0
xi + 1ri + 1

w + arw - 1 + 1
w

= r - 1
w

Xw - 1

i = 0
xir

i + 1
w + (a - x0)

= r - 1
w P(x) + d

Note that for pure rotations d = 0, and r - 1
w P(x) is exactly P(x) rotated clockwise by 2p=w. ,

LOWER DENSITY SELECTION SCHEMES 403

The range for d is [- r + 1‚ r - 1]. In particular, d can be negative. In a pure cycle, either all w-mers

satisfy P(x) = 0, or they lie equidistant on a circle centered at origin. Figure 2a shows the embeddings and

pure cycles of 5-mers. It is known that we can partition the set of all w-mers into Nr‚ k disjoint pure cycles.

This means any decycling set that breaks every cycle of the de Bruijn graph will be at least this large. We

now construct our proposed depathing set with this idea in mind.

Definition 4 (Mykkeltveit set). We construct the Mykkeltveit set Mr‚ w as follows. Consider each

conjugacy class, we will pick one w-mer from each of them by the following rule:

1. If every w-mer in the class embeds to the origin, pick an arbitrary one.

2. If there is one w-mer x in the class such that Re(P(x)) <0 and Im(p(x) = 0) (on the negative real axis),

pick that one.

3. Otherwise, pick the unique w-mer x such that Im(p(x) < 0) and Im(P(R(x))) >0. Intuitively, this is the

w-mer in the cycle right below the negative real axis.

This set breaks every pure cycle in the de Bruijn graph by its construction, with an interesting property:

Lemma 8. Let {xi} be a path on the de Bruijn graph that avoids Mr‚ w. If Im(P(xi)) £0, then for all

j ‡ 1, Im(P(xj)) £0.

Proof. It suffices to show that in the remaining de Bruijn graph after removing Mr‚ w, there are no

edges x / y such that Im(P(x)) £0 and Im(P(y)) >0. The edge x / y means that y = Sa(x) for some a. By

Lemma 7, Im(P(R(x))) = Im(P(Sa(x))) = Im(P(y)) >0.

	 If we have Im(P(x)) <0, by clause 3 of Definition 4, x 2 Mr‚ w.
	 If we have Im(P(x)) = 0 and Re(P(x)) <0, by clause 2 of Definition 4, we have x 2Mr‚ w.
	 If we have Im(P(x)) = Re(P(x)) = 0, we would have Im(P(y)) = Im(P(R(x))) = 0, a contradiction.
	 If we have Im(P(x)) = 0 and Re(P(x)) >0, P(x) lies on positive half of the real axis, so rotating it

clockwise by 2p=w degrees we would have Im(P(y)) = Im(P(R(x))) = 0, a contradiction. ,

3.4. Upper bounding the remaining path length in Mykkeltveit sets

In this section, we show that the remaining path after removing Mr‚ w is at most O(w3) long. This

polynomial bound is a stark contrast to the number of remaining vertices after removing the Mykkeltveit

set—that is, rw - Nr‚ w*(1 - 1
w

)rw, which is exponential in w. Our main argument involves embedding a

w-mer to point in the complex plane, similar to Mykkeltveit’s construction.

a b

FIG. 2. (a) Mykkeltveit embedding of the de Bruijn graph of order 5 on the binary alphabet. The nodes of a

conjugacy class have the same color and form a circle (there is more than one class per circle). The pure rotations are

represented by the red edges. A nonpure rotation Sa(x) is a red edge followed by a horizontal shift (blue edge). The set

of nodes circled in gray is the Mykkeltveit set. (b) Weight-in embedding of the same graph. Multiple w-mers map to the

same position in this embedding and each circle represents a conjugacy class. The gray dots on the horizontal axis are

the w centers of rotations and the vertical gray lines going through the centers separate the space in subregions of

interest.

404 ZHENG ET AL.

3.4.1. From w-mers to embeddings. In this section, we formulate a relaxation that converts paths of

w-mers to trajectories in a geometric space. Precisely, we model Sa in Lemma 7 as a rotation operating on a

complex embedding with attached weights, where the weights restrict possible moves.

Formally, given a pair (z, t) where z is a complex number and t an integer, define the family of operations

Zd(z‚ t) = (r - 1
w z + d‚ t + d). When z = P(x) is the position of a w-mer x, t = W(x) =

Pw - 1
i = 0 xi is its weight,

and when 0 � d + x0 < r, Zd(P(x)‚ W(x)) = (P(Sd + x0
(x))‚ W(Sd + x0

(x))). This means Zd is equivalent to

finding the position and weight of the successor Sd + x0
.

We are now looking for the length of the longest path by repeated application of Zd that satisfies

0 � t � Wmax, where Wmax = (r - 1) w is the maximum weight of any w-mer. This is a relaxation of the

original problem of finding a longest path as some choices of d and some pairs (z‚ t) on these paths may not

correspond to the actual transition or w-mer in the de Bruijn graph (when d + x0 is negative or greater than

r - 1, then it is not a valid transition). In some sense, the pair (z‚ t) is a loose representation of a w-mer

where the precise sequence of the w-mer is ignored and only its weight is considered. On the contrary,

every valid path in the de Bruijn graph corresponds to a path in this relaxation, and an upper bound on the

relaxed problem is an upper bound of the original problem.

3.4.2. Weight-in embedding and relaxation. The weight-in embedding maps the pair x = (z‚ w) to

the complex plane. This transforms the original longest remaining path problem into a geometric problem

of bounding the length in the complex plane under some operation Sd.

Definition 5 (Weight-In Embedding). The weight-in embedding of x = (z‚ t) is Q(x) = z - t.

Accordingly, for a w-mer x, its embedding is Q(x) = Q(P(x)‚ W(x)) = P(x) - W(x).

The Zd operations in this embedding correspond to a rotation, and, maybe surprisingly, this rotation is

independent of the value d.

Lemma 9. Let x = (z‚ t). For all d, the point Q(Zd(x)) is the point Q(x) rotated clockwise 2p=w around

the point (- t‚ 0).

Proof. By definition of weight-in embedding and the operation Zd:

Q(Zd(z‚ t)) = r - 1
w z + d - (t + d) = r - 1

w (Q(z‚ t) + t) - t

In the complex plane, the rotation formula around center c and of angle h is c + eih(z - c). Therefore, the

operations Zd is a rotation around c = (- t‚ 0) of angle h = - 2p=w. ,
Figure 2b shows the weight-in embedding of a de Bruijn graph. The set Cr‚ w = f(- j‚ 0)j0 �

j � Wmaxg is the set of all the possible centers of rotation, and is shown by large gray dots on the x-axis of

Figure 2b. Because all the w-mers in a given conjugacy class have the same weight, say t0, the conjugacy

classes form a circle around a particular center (- t0‚ 0). The image after application of Sd is independent

of the parameter d, but dependent on the weight t of the underlying pair (z‚ t).

Multiple pairs of x = (z‚ t) can share the same weight-in embedding Q(x). As seen in Figure 2b, every

node belongs to two circles with different centers, meaning there are two embeddings with the same Q(x)

but different t.

Lemma 8 naturally divides any path in the de Bruijn graph avoiding Mr‚ w into two parts, the first part

with Im(P(x)) >0, and the second part with Im(P(x)) ‡0. Thanks to the symmetry of the problems, we focus

on the upper half-plane, defined as the region with Im(P(x)) ‡0. With the weight-in embedding, as long as

the path is contained in the upper half-plane, it is always traveling to the right (toward large real value) or

stays unmoved, as stated below:

Lemma 10 (Monotonicity of Re(Q($))). Assume Q(x) and Q(Zd(x)) are both in the upper half-plane.

If Q(x) does not coincide with its associated rotation center (- t‚ 0), then Re(Q(Zd(x))) > Re(Q(x)),

otherwise Q(Zd(x)) = Q(x).

Proof. The operation is a clockwise rotation where the rotation center is on the x-axis and the two

points are on the non-negative half-plane. Necessarily, the real part increased, unless the point is on the fix

point of the rotation [which is when Q(x) = (- t‚ 0)]. ,

LOWER DENSITY SELECTION SCHEMES 405

We further relax the problem by allowing rotations from any of the centers in Cr‚ w, not just from some

(- t‚ 0) corresponding to the weight in the weight-in embedding. Lemma 10 still applies in this case and

the points in the upper half-plane move from left to right. We are now left with a purely geometric problem

involving no w-mers or weights to track:

What is the longest path fzig possible where zi + 1 is obtained from zi by a rotation of 2p=w

clockwise around a center from Cr‚ w, while staying in the upper halfplane at all times

(Im(zi) � 0‚ 8i)?

We now break the problem into smaller stages as the weight-in embedding pass through rotation centers,

defined as Cr‚ w = f(- j‚ 0) j 0 � j � Wmaxg, the set of points that Q(x) could possibly rotate around

regardless of t. As there are Wmax + 1 rotation centers and the maximum Re(Q(x)) = Re(P(x)) for any w-mer

is also Wmax, we define 2Wmax subregions, two between any adjacent pair. Formally:

Definition 6 (Half Subregions). A subregion is defined as the area [- j‚ - j + 0:5) · [0‚ Wmax]

called a left subregion or [- j + 0:5‚ - j + 1) · [0‚ Wmax] called a right subregion, for 0 < j � Wmax.

We now define the problem of finding the longest path, localized to one left subregion, as follows:

Definition 7 (Longest Local Trajectory Problem). Define the feasible region (0‚ 0:5) · [0‚ Wmax],

and relaxed rotation centers C0 = f(j‚ 0) j - Wmax � j � Wmaxg. A feasible trajectory is a list of points fzig
such that each point is in the feasible region, and zi can be obtained by rotating zi - 1 around c 2 C0 clockwise

by 2p=w degrees. The solution is the longest feasible trajectory.

Again, note that this new definition is a purely geometric problem involving no w-mers and no weights

W(x) to track. zi might stagnate if it coincides with one of the rotation centers, so we do not allow

Re(zi) = - j in this geometric problem. Still, it suffices to solve this simpler problem, as indicated by the

following lemma:

Lemma 11. For fixed w and r, if the solution to the problem in Definition 7 is L, the longest path in the

de Bruijn graph avoiding Mr‚ w is upper bounded by 4WmaxL + O(w2) = O(wL + w2).

We prove this lemma in Supplementary Section S2.

3.4.3. Backtracking, heights, and local potentials. In this section, we prove L = O(w2). We fre-

quently switch between polar and Cartesian coordinates in this section and the next section. For simplicity,

let r(z) and /(z) denote the radius and the polar angle of z written in polar coordinate.

Lemma 12. Any feasible trajectory within the region (0‚ d] · [0‚ Wmax] for d � 0:5 is at most O(dw3)

long.

Proof. The key observation is if a rotation is not around the origin, Re(Q(x)) increases by O(1=w2).

To see this, assume (d‚ h) is the polar coordinate of Re(Q(x)) with respect to the rotation center. The

polar coordinate for Re(Q(Sa(x))) is then (d‚ h - 2p=w). We note that d � 0:5 as Q(x) satisfies 0 <
Re(Q(x)) < 0:5 and is at least 0.5 away from any other rotation centers. The difference in real coordinate is

d(cos (h-2p=w)- cos (h))=2d sin (h-p=w) sin (p=w). Now, we require h 2 [0‚ p] and h-2p=w 2 [0‚ p],

so sin (h - p=w) � sin (p=w) and the whole term is lower bounded by 2d sin2 (p=w) = O(d=w2) = O(1=w2).

Only O(dw2) rotations not around origin are possible in the defined region, otherwise Re(Q(x)) would

increase by O(dw2)O(1=w2) = O(d) already. Between two rotations not around the origin, only w=2

rotations around the origin can happen, or the point would have rotated p degrees and cannot stay in the

upper half-plane. This means the possible number of pure rotations is O(dw3), which is also the asymptotic

upper bound of path length. ,
This lemma is sufficient to prove L = O(w3) and a total number of steps of O(w4). To obtain L = O(w2), we

need a potential-based argument. Define u = 1 - r - 1
w , and let s(z) be the lowest point above the real axis of

form z + ju where j 2 Z. We can show that a potential function of form E(z) = - wr(s(z))=p + /(s(z)) is

guaranteed to decrease by at least 2p=w every rotation, and it can only decrease by O(w) total inside the

feasible region, which would complete the proof. This proof can be found in Supplementary Section S3.

406 ZHENG ET AL.

3.5. Lower bounding the remaining path length in Mykkeltveit sets

We provide here a constructive proof of the existence of a O(w2) long path in the de Bruijn graph after

removingMr‚ w. Since all w-mers inMr‚ w satisfy Im(P(x)) � 0, a path satisfying Im(P(x)) > 0 at every

step is guaranteed to avoid Mr‚ w and our construction will satisfy this criterion. It suffices to prove the

theorem for binary alphabet as the path constructed will also be a valid path in a graph with a larger

alphabet. We present here the constructions for even values of w.

We need an alternative view of w-mers in this section, close to a shift register. Imagine a paper ring with

w slots, labeled tag 0 to tag w - 1 with content y = y0y1 � � � yw - 1, and a pointer initially at 0. The w-mer from

the ring is yjyj + 1 � � � yw - 1y0 � � � yj - 1 = y [j‚ w - j] � y [0‚ j], assuming pointer is at tag j. A pure rotation R(x)

on the ring is simply moving the pointer one base forward, and an impure one Sa(x) is to write a to yj before

moving the pointer forward.

Let w = 2m. We create Øw=8ø ordered quadruples of tags taken modulo w: Qj = fa - j‚ a + j‚ b - j‚ b + jg
where j 2 [1‚ Øw=8ø], a = m - 1, and b = w - 1. In each quadruple Qj, the set of associated root of unity ri + 1

w

for the four tags is of form f - e - ih‚ - eih‚ e - ih‚ eihg, adding up to 0. Consequently, changing yk for each k

in Qj from 1 to 0 does not change the resulting embedding. The strategy consists of creating ‘‘pseudo-

loops’’: start from a w-mer, rotate it a certain number of times, and switch the bit of the w-mer corre-

sponding to the index in a quadruple to 0 to return to almost the starting position (the same position in the

plane but a different w-mer with lower weight).

More precisely, the initial w-mer x is all ones but xw - 1 set to zero, with paper ring content y = x and

pointer at tag 0. The resulting w-mer satisfies P(x) = - 1. The sequence of operations is as follows. First, do

a pure rotation on x. Then, for each quadruple Qj from j = 1 to j = Øw=8ø, we perform the following actions

on x: pure rotations until the pointer is at tag a - j, impure rotation S0, pure rotations until the pointer is at

tag a + j, impure rotation S0, pure rotations until pointer is at tag b - j, impure S0, pure rotations until pointer

is at tag b + j, impure S0.

Each round involves exactly w + 1 rotations since the last step is to an impure rotation S0 at tag b + j,

which increases by one between quadruples Qj and Qj + 1. The total length of the path over all Qi is at least

cw2 for some constant c. Figure 3 shows an example of quadruples and a generated long path that fits in the

upper half-plane.

The correctness proof for the construction is presented in Supplementary Section S4 and the construction

for odd w is presented in Supplementary Section S5.

4. DISCUSSION

4.1. Relationship between UHS and selection schemes

Our construction of a UHS of relative size O(ln (w)=w) and remaining path length w also implies the

existence of a forward selection scheme with density O(ln (w)=w), only a ln (w) factor away from the lower

bound on density achievable by forward and local schemes.

Unfortunately, this construction does not apply for an arbitrary UHS. In general, given a UHS with

relative size d and remaining path length w, it is still unknown how to construct a forward or a local scheme

with density O(d). As described in Section 3.1, we can construct a UHS from a scheme by taking the set Cf

a b

FIG. 3. (a) For w = 40, each set of four arrows of the same color represents a quadruple set of root of unity. There are

a total of five sets. They were crafted so that the four vectors in each set cancel out. (b) The path generated by these

quadruple sets. The top circle of radius 1 is traveled many times (between tags r1 and r2 in each quadruple), as after

setting the 4 bits to 0, the w-mer has the same norm as the starting point.

LOWER DENSITY SELECTION SCHEMES 407

of contexts yielding new selections. However, it is not always possible to go the other way: there are UHS

that are not equal to a set of contexts Cf for any function f.

We are thus interested in the following questions. Given a UHS U with relative size d, is it possible to

create another UHS U0 from U that has the same relative size d and corresponds to a local scheme (i.e.,

there exists f such that U0 = Cf)? If not, what is the smallest price to pay (extra density compared to relative

size of the UHS) to derive a local scheme from UHS U?

4.2. Existence of ‘‘perfect’’ selection schemes

One of the goals in this research is to confirm or deny the existence of asymptotically ‘‘perfect’’ selection

schemes with a density of 1=w, or at least O(1=w). A study of UHS might shed light on this problem. If

such a perfect selection scheme exists, asymptotic perfect UHS defined as (O(1=w)‚ w)-UHS would exist.

On the contrary, if we denied the existence of an asymptotic perfect UHS, this would imply nonexistence of

a ‘‘perfect’’ forward selection scheme with density O(1=w).

4.3. Asymptotic results and practical uses of minimizer schemes

This line of research places more focus on asymptotic densities of minimizers (and naturally, asymptotic

densities of local schemes, and asymptotic relative proportion and path length of UHS). That is, we focus

on characterization of these quantities in the limit where w and k, the window length (number of k-mers in a

window) and the length of a k-mer, go to infinity. On the contrary, for current practices, the values of w and

k are relatively small, with w below 100 and k below 30 for the vast majority of use cases. While our results

are not immediately useful to analyze these practical scenarios as we do not attempt to determine the

constants behind the big-O notation, we believe that further refinement of our approaches can close the gap

between theory and practice, and make rigorous analyses possible for practical minimizer and/or local

schemes.

4.4. Remaining path length of minimum decycling sets

There is more than one decycling set of minimum size (MDS) for given w. The Mykkeltveit set

(Mykkeltveit, 1972) is one possible construction, and a construction based on very different ideas is given

in Champarnaud et al. (2004). The number of MDSs is much larger than the two sets obtained by these two

methods. Empirically, for small values of w, we can exhaustively search all the MDSs on the binary

alphabet: for 2 � w � 7 the number of MDSs is, respectively, 2, 4, 30, 28, 68 288, and 18 432.

While experiments suggest that the longest remaining path in a Mykkeltveit depathing set defined in the

original article is around Y(w3), matching our upper bound, we do not know if such bound is tight across all

possible minimal decycling sets. The Champarnaud set seems to have a longer remaining path than the

Mykkeltveit set, although it is unknown if it is within a constant factor, bounded by a polynomial of w of

different degree, or is exponential. More generally, we would like to know what is the range of possible

remaining path lengths as a function of w over the set of all MDSs.

AUTHOR DISCLOSURE STATEMENT

H.Z. declares no competing financial interests. C.K. is a cofounder of Ocean Genomics, Inc. G.M. is V.P.

of software development at Ocean Genomics, Inc.

FUNDING INFORMATION

This work was partially supported, in part, by the Gordon and Betty Moore Foundation’s Data-Driven

Discovery Initiative through grant GBMF4554 to Carl Kingsford, by the U.S. National Science Foundation

(CCF-1256087, CCF-1319998), and by the U.S. National Institutes of Health (R01GM122935).

SUPPLEMENTARY MATERIAL

Supplementary Material

408 ZHENG ET AL.

REFERENCES

Champarnaud, J.-M., Hansel, G., and Perrin, D. 2004. Unavoidable sets of constant length. Int. J. Algebra Comput. 14,

241–251.

Chikhi, R., Limasset, A., and Medvedev, P. 2015. Compacting de Bruijn graphs from sequencing data quickly and in

low memory. Bioinformatics 32, i201–i208.

DeBlasio, D., Gbosibo, F., Kingsford, C., et al. 2019. Practical universal K-mer sets for minimizer schemes, 167–176.

In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health

Informatics, BCB’19. ACM, Niagara Falls, NY, New York, NY.

Deorowicz, S., Kokot, M., Grabowski, S., et al. 2015. KMC 2: Fast and resource-Frugal k-Mer counting. Bioinformatics

31, 1569–1576.

Golomb, S.W. 2014. Nonlinear shift register sequences, 110–168. In Shift Register Sequences. https://

www.worldscientific.com/worldscibooks/10.1142/936. World Scientific. Singapore.

Grabowski, S., and Raniszewski, M. 2013. Sampling the suffix array with minimizers, 287–298. In Iliopoulos, C.,

Puglisi, S., and Yilmaz, E, eds. String Processing and Information Retrieval. Lecture Notes in Computer Science

9309. Springer International Publishing. Switzerland.

Jain, C., Dilthey, A., Koren, S., et al. 2017. A fast approximate algorithm for mapping long reads to large reference

databases, 66–81. In Sahinalp, S.C., ed. Research in Computational Molecular Biology. Lecture Notes in Computer

Science. Springer International Publishing. Switzerland.

Li, H., and Birol, I. 2018. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100.

Lothaire, M. 2002. Algebraic Combinatorics on Words, vol. 90. Cambridge University Press. Cambridge, United

Kingdom.

Marçais, G., DeBlasio, D., and Kingsford, C. 2018. Asymptotically optimal minimizers schemes. Bioinformatics 34,

i13–i22.

Marçais, G., Pellow, D., Bork, D., et al. 2017. Improving the performance of minimizers and winnowing schemes.

Bioinformatics 33, i110–i117.

Marçais, G., Solomon, B., Patro, R., et al. 2019. Sketching and sublinear data structures in genomics. Annu. Rev.

Biomed. Data Sci. 2, 93–118.

Mykkeltveit, J. 1972. A proof of Golomb’s conjecture for the de Bruijn graph. J. Comb. Theory Ser. B 13, 40–45.

Orenstein, Y., Pellow, D., Marçais, G., et al. 2016. Compact universal K-mer hitting sets, 257–268. In Algorithms in

Bioinformatics. Lecture Notes in Computer Science. Cham, Springer.

Roberts, M., Hayes, W., Hunt, B.R., et al. 2004a. Reducing storage requirements for biological sequence comparison.

Bioinformatics 20, 3363–3369.

Roberts, M., Hunt, B.R., Yorke, J.A., et al. 2004b. A preprocessor for shotgun assembly of large genomes. J. Comput.

Biol. 11, 734–752.

Schleimer, S., Wilkerson, D.S., and Aiken, A. 2003. Winnowing: local algorithms for document fingerprinting, 76–85.

In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. SIGMOD’03. ACM.

New York, New York, USA.

Ye, C., Ma, Z.S., Cannon, C.H., et al. 2012. Exploiting sparseness in de novo genome assembly. BMC Bioinformatics

13, S1.

Address correspondence to:

Dr. Guillaume Marçais

Computational Biology Department

Carnegie Mellon University

Pittsburgh, PA 15213

USA

E-mail: gmarcais@cs.cmu.edu

LOWER DENSITY SELECTION SCHEMES 409

https://www.worldscientific.com/worldscibooks/10.1142/936
https://www.worldscientific.com/worldscibooks/10.1142/936

