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Abstract: The aim of this research is mainly concerned with the numerical examination of Darcy–
Forchheimer relation in convective magnetohydrodynamic nanofluid flow bounded by non-linear
stretching sheet. A visco-elastic and strictly incompressible liquid saturates the designated porous
medium under the direct influence of the Darcy–Forchheimer model and convective boundary. The
magnetic effect is taken uniformly normal to the flow direction. However, the model is bounded to a
tiny magnetic Reynolds number for practical applications. Boundary layer formulations are taken
into consideration. The so-formulated leading problems are converted into highly nonlinear ordinary
problems using effectively modified transformations. The numerical scheme is applied to solve the
governing problems. The outcomes stipulate that thermal layer receives significant modification
in the incremental direction for augmented values of thermal radiation parameter Rd. Elevation in
thermal Biot number γ1 apparently results a significant rise in thermal layer and associated boundary
layer thickness. The solute Biot number is found to be an enhancing factor the concentration profile.
Besides the three main profiles, the contour and density graphs are sketched for both the linear and
non-linear cases. Furthermore, skin friction jumps for larger porosity and larger Forchheimer number.
Both the heat and mass flux numbers receive a reduction for augmented values of the Forchheimer
number. Heat flux enhances, while mass flux reduces, the strong effect of thermal Biot number. The
considered problem could be helpful in any several industrial and engineering procedures, such as
rolling, polymeric extrusion, continuously stretching done in plastic thin films, crystal growth, fiber
production, and metallic extrusion, etc.

Keywords: Darcy-Forchheimer theory; nonlinear stretching; nanofluid; magnetohydrodynamics;
convective conditions

1. Introduction

A simple base fluid, for example, water, ethylene glycol, and oil, etc., when upgraded
with the suspension of nanometric metallic strong conductive particles, is termed as
nanofluid. Such a formulation sufficiently intensifies the conduction abilities of the base
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fluid. Numerous applications have been discovered for the so-called nanofluids in the
industrial and engineering aspects as well as in bio-medicine. For example, vehicle cooling,
heat exchangers, cooling and transformer cooling, electronic cooling, and many others
are typical and widely used applications of nanofluids. These are also applicable in the
medical treatments, especially cancer and tumor treatments, resonance imaging, and
wound treatment, etc., and they are typically dependent on the conductive nature of
nanofluids. Choi [1] introduced the definition of nanofluid in his experimental work
where he proved that the suspension of nanoparticles in typical fluids drastically changes
the thermo-physical properties of the fluid. Later on, Buongiorno [2] modeled the same
concept in the perspective of convective transport of nanofluids. Adding details to the
concept of nanofluids, Buongiorno emphasized the fact that the Brownian diffusion and
Thermophoresis are two major slip factors in the transport of nanofluids. Afterwards,
several interesting attempts have been reported by renowned researchers of fluid mechanics.
For instance, Khan et al. [3] reported convection phenomena in nanofluid flow passing a
linear stretching surface using the Keller–Box numerical method for the final solutions of
the modeled governing problems. An interesting study of Mustafa et al. [4] disclosed an
analysis on stagnation spot flow of nanofluids involving linear stretched sheet. For more
details on this topic, one can see [5–24] and cross references cited therein.

Flow past a linear as well as nonlinear stretching surface relates the fluid mechanics
with several important industrial and engineering setups, such as hot rolling, polymeric ex-
trusion, continuously stretching done in plastic thin films, crystal growth, fiber production,
and metallic extrusion, etc. Numerous articles are available in the literature that explain
the flow caused by stretching surfaces, whether linear or nonlinear rates. The importance
of linear stretching cannot be neglected but the flow caused by non-linear stretching rates
have always played a significant role in the above mentioned procedures, especially in
polymeric extrusion. In all such scenarios, the work of Cortell [25] is considered to be a
pioneer. He considered a viscous fluid for studying heat and mass transfer developments
driven by a nonlinear or linear stretching in the sheet. The prescribed wall temperature
and constant wall temperature were both discussed in this study. Vajravelu [26] reported a
study on exploration of heat transfer developments in a viscous fluid flow past a stretching
sheet surface using power law velocity distribution with nonlinear stretching rate. Rana
and Bhargava [27] reported a study on the fluid flow analysis and heat transfer aspects
involving a nonlinear stretching rate in nanofluids flow over a sheet.

The type of nanofluids governed in the categorical classification of non-Newtonian
fluids have gained special attention for numerous engineering and industrial applications
based on their extended contributions in nuclear, chemical, metallic, polymeric, and plastic
industries. Shampoos, paints, apple sauce, katchup, as well as different type of oils are
typical genuine examples of non-Newtonian fluids. Having extended viscosity, the non-
Newtonian fluids are best treated by involving the viscoelastic terms (second grade model),
which is known as sub-categorical classification of differential non-Newtonian liquids
related with the normal stress attribute. For a better understanding of this model, one can
read [28–34] and the references cited therein.

The studies mentioned above are either concerned with a linear stretching surface
with effective convective heating or nonlinear stretching sheets without the involvement
of convective conditions together with the Darcy–Forchheimer model. Here, for the first
time, we involve convective conditions to consider a visco-elastic and strictly incompress-
ible nanoliquid (nanofluid) flow bounded by a nonlinear flat stretching surface. Firstly,
the model shapes in mathematical form using the famous Navier stokes equations for
incompressible non-Newtonian nanofluid. The leading problems are then transformed
into highly nonlinear ordinary problems via suitable transformations. A numerical scheme
is implemented for finding the final solutions. From now onward, fluid means means
incompressible viscoelastic nanofluid. The next section will physically justify the existence
of the problem and mathematical expressions with properly defined boundary conditions.
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The rest of the article comprises of the results and discussion, a graphical display, and
concluding remarks.

2. Problem Formulation

In this numerical investigation, we have invoked the convective boundary on the
flow of nanofluid passing over a nonlinear flate stretching surface. These conditions are
invoked to balance the temperature difference within the system. The system relies on
Darcy–Forchheimer medium saturated via nanofluid over the stretching surface. Cartesian
coordinates are considered to analyze the fluid flow. The flow direction is assumed along
positive x−direction, whereas no-movement is allowed towards vertical. An induced
magnetic effect is directly invoked to the surface normal direction via MHD; however, a
tiny Reynolds number helps to dismiss the magnetic impact. The nonlinear stretching rate
is taken into account via n as a positive integer, whereas the stretching velocity is assumed
as u = Uw = mxn at the bottom line. However, the velocity diminishes away from the
surface and attains zero value at free surface (u = 0). The coefficient of heat and mass flux
(h1 and h2) are involved in convective boundary conditions. Figure 1 sketches a physical
display.

Boundary layers  

Porous Medium 

u=0,                   

u=Uw=mxn,                           

Convectively heated Non-linearly stretching sheet  
B0 

u 

v 

O 

Figure 1. Physical model and coordinate system.

The modified Navier stokes problems are given below:
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where qr is known as radiative heat flux. Given by Rosseland’s approximation:

qr = −
∂(T4)

∂y

(
4σ∗

3k∗

)
, (4)

where σ∗ =Stefan–Boltzmann constant and k∗ = mean absorption, respectively. Here, in,
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∼= T4, (5)
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)
. (6)

Therefore, the energy equation has the following final form:
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Equations (1), (2), (7), and (8) are known as the governing equations with the follow-
ing boundary conditions, as per the present model,

u = Uw = mxn, h1(Tf − T) = −k
∂T
∂y

, v = 0, h2(C f − C) = −DBr
∂C
∂y

at y = 0, (9)

u = 0,
∂u
∂y

= 0, C = C∞, T = T∞ as y→ ∞. (10)

In the above governing equations, µ is taken as dynamic viscosity, ν
(
= µ/ρ f

)
is

known as kinematic viscosity, ρ f is taken as density, σ is involved for electrical conductivity,
α = k/(ρc) f is well known thermal diffusive force, k is typical thermal conductiveness, h1 =

hpx
n−1

2 and h2 = hqx
n−1

2 are known as non-uniform heat and mass (transfer) coefficients,
respectively, τ is known as the ratio given between the effective nanoparticles heating
capacity versus effective fluid heating capacity, DBr is known for Brownian diffusion, DTh
is thermophoretic factor, and B0 is magnetic effect. Defining,

v = −1
2

x
n−1

2

[(
n− 1
n + 1

)
∂ f
∂η

η + f (η)
]√

2mν(n + 1), u = mxn ∂ f
∂η

,

φ(η) =
C− C∞

Cw − C∞
, θ(η) =

T − T∞

Tw − T∞
, η =

1
2

√
2ρ f lm(n + 1)

µ
x

n−1
2 y.

(11)

Using (15) in (1), (2), (9) and (10) we have
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Here, γi for i = 1, 2 are the convective parameters extracted from h1 = hpx
n−1

2 and

h2 = hqx
n−1

2 known as non-uniform heat transfer coefficient and mass transfer coefficient,
respectively. Fr is used for inertial frame, M is involved for magnetic impact, λ is treated
as porosity, Pr is the typical Prandtl, Le is the well known Lewis number, k0 is taken as
viscoelastic parameter, and Nb and Nt Brownian diffusion and thermophoretic factors,
respectively. Mathematically,
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Furthermore, using Rex = mxn+1/ν, the local tiny Reynolds, the non-dimensional
forms of physical quantities, are given below:
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3. Methodology

RK45 is one of the most frequently used numerical methods for solving IVPs for its
accuracy and efficiency. The built-in codes involve basic concept of converting Boundary
value problems into the initial value problems and subsequent problems are solved using
a parallel scheme with RK45, such as shooting technique, secant method, etc., using an
appropriate set of initial guesses to approximate the solutions. Herein, the boundary
value problems are converted into initial value problems together with the given boundary
conditions and thereafter, careful selection of initial guess for repeated iterations of the
numerical scheme are chosen to obtain the solutions.

4. Results and Discussion

In this section, we have described the consequences noticed in flow profiles for all
relevant parameters that are involved in leading problems of present nanofluid model.
The arguments are comprehended by physical justifications as to why the variation is
occurred and what consequence is being witnessed. The results are obtained using the
numerical method and the data are graphically plotted in increasing and decreasing curves
to witness the difference. The first section of the graphs belongs to the velocity profile,
the second to temperature distribution, and third is related with the concentration of
nanoparticles. In particular, Figure 2 is plotted to see the variation in velocity profile
against augmented trend of visco-elastic parameter k0. The physical reasoning of the
behavior noted for this parameter is connected with the combination of k1 and kinematic
viscosity µ having an inverse relation with fluid viscosity. For larger values of k0, the fluid
viscosity shows a decline, and a consequent increasing trend is witnessed in the relative
profile. The magnetic parameter M that is given in Figure 3 with a relevant variation in
fluid motion produces a reduction. Physically, the affect of magnetic field is always in
anti-directional with the fluid flow because of the surface normal bumps. The certain
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effect of magnetic field in the direction normal to the fluid flow is, for sure, the reason
behind this trend of decline in fluid velocity. The similar trend in velocity profile can
be figured out for the Forchheimer number Fr that is given in Figure 4, but this time
the decline is related with a higher friction and retardation offered by porous medium.
The larger the Forchheimer number, the higher the frictional force that is offered to fluid
motion and the consequence is a decline in fluid velocity. The thermal layer receives
significant modification in the incremental direction for augmented values of thermal
radiation Rd given in Figure 5. The influence of thermal radiation eases the way of heat
flux with a more convenient convection and the corresponding profile receives significant
enhancement. Physically, thermal radiation is responsible for the enhancement of the
thermal state of the fluid. Elevation in thermal Biot number γ1 apparently results in a
significant increase of the thermal layer and associated boundary layer thickness enhances,
as shown in Figure 6. The heat flux coefficient that is involved in constitution of the said
parameter is a sufficient justification for this behavior of thermal profile. Thermophoresis
and Brownian motion are the two important factors of nanofluid flow and boundary layer
phenomenon. By definition, Brownian motion is an uncertain movement of some particles
(nanoparticles in this case) in the given medium for any time t > 0. The parameters are both
closed influential to each other as well as on the flow profiles. Here, the thermophoresis
enforces a stronger thermophoretic push to the given nanoparticles and the nanoparticles
receive certain inpredictive enhanced motion and, therefore, a disturbance appears and
thermal profiles increase for both of the given factors shown in Figures 7 and 8, respectively.
Figures 9–12 are related with the third important flow profiles, the concentration profiles,
which is solely based on the concentration of nanoparticles. In particular, Figure 9 presents
the display of variation that is noticed in concentration profile with respect to the elevation
in Schmidt number. Physically, the inverse relationship between Brownian diffusion and
kinematic viscosity is sufficient to justify the reducing trend noticed in concentration profile
for augmented values of Schmidt number. The solute Biot number is an enhancing factor
the concentration profile that is given in Figure 10. The coefficient of mass flux involved in
the constitutive expression justifies this variation. An enhancement is noticed for elevated
values of thermophoresis given in Figure 11. A decline can be seen in concentration profile
for augmented Brownian diffusion parameter given in Figure 12. For sure, the decline is
based on the in-predictive and uncertain fluctuation of nanoparticles. Figures 13 and 14
are the contour graphs sketched for both the linear and non-linear case, respectively, while
Figures 15 and 16 are the density graphs. A minor but significant difference can be seen in
both the linear and non-linear case settled at n = 1 & 1.5, respectively. Relevant data for
skin-friction, heat, and mass flux numbers are given in Tables 1 and 2, respectively. Skin
friction jumps for larger porosity and a larger Forchheimer number, therefore, declines
the easy movement of fluid.The heat flux and mass flux both receive a reduction for the
augmented values of Forchheimer number. Thermal radiation is an enhancing factor for
both of the flux rates. An opposite trend is noticed in both Nusselt and Sherwood numbers
for thermal Biot number. Heat flux enhances, while mass flux reduces with the passage
of time.
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   Fr =  0.5, M = 0.3, n = 1.5, Λ = 0.2,  

 k0 = 0.0, 0.4, 0.8, 1.2
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Figure 2. Visco-elastic parameter versus velocity field.

   Fr =  0.2, k0=0.2, n = 1.5, Λ = 0.2,  

 M  = 0.0, 0.35, 0.54, 0.71
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Figure 3. Magnetic number versus velocity field.
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Fr = 0.0, 0.4, 1.0, 1.5

   M  =  0.2, k0=0.2, n = 1.5, Λ = 0.2,  
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0.4
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Figure 4. Forchheimer number versus velocity field.

  n = 1.5, k0 = 0.5, M = 0.3, Fr =  0.5, Λ = 0.2, Pr = 2.0, Γ1 = 0.5, Nt = 0.2, Nb = 0.3,

  Γ2 = 0.5, Sc = 1.0,     

Rd  = 0.0, 0.2, 0.4, 0.6

1 2 3 4 5
Η

0.1

0.2

0.3

0.4
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ΘHΗL

Figure 5. Thermal radiation parameter versus thermal profile.
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  n = 1.5, k0 = 0.5, M = 0.3, Fr =  0.5, Λ = 0.2, Pr = 2.0, Rd  = 0.5, Nt = 0.2, Nb = 0.3,

  Γ2 = 0.5, Sc = 1.0,     

Γ1 = 0.0, 0.2, 0.27, 0.4

1 2 3 4 5 6
Η

0.1

0.2

0.3

0.4

ΘHΗL

Figure 6. Thermal Biot number versus thermal profile.

  n = 1.5, k0 = 0.5, M = 0.3, Fr =  0.5, Λ = 0.2, Pr = 2.0, Rd  = 0.5, Γ1= 0.5, Nb = 0.3,

  Γ2 = 0.5, Sc = 1.0,     

 Nt = 0.1, 0.5, 0.9, 1.3

1 2 3 4 5 6
Η

0.1

0.2

0.3

0.4
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ΘHΗL

Figure 7. Thermophoresis versus thermal profile.
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  n = 1.5, k0 = 0.5, M = 0.3, Fr =  0.5, Λ = 0.2, Pr = 2.0, Rd  = 0.5, Γ1= 0.5, Nt = 0.2,

  Γ2 = 0.5, Sc = 1.0,     

 Nb = 0.1, 0.5, 0.9, 1.3

1 2 3 4 5 6
Η

0.1

0.2

0.3

0.4

0.5

ΘHΗL

Figure 8. Brownian diffusion versus thermal profile.

  n = 1.5, k0 = 0.5, M = 0.3, Fr =  0.5, Λ = 0.2, Pr = 2.0, Γ1 = 0.5, Nt = 0.2, Nb = 0.3,

  Γ2 = 0.5, Rd  = 0.5,      

 Sc = 1.2, 1.5, 1.9, 2.5 

1 2 3 4 5 6 7
Η
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0.2

0.3

0.4
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ΦHΗL

Figure 9. Schmidt number versus concentration profile.
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  n = 1.5, k0 = 0.5, M = 0.3, Fr =  0.5, Λ = 0.2, Pr = 2.0, Rd  = 0.5, Nt = 0.2, Nb = 0.3,

  Γ1 = 0.5, Sc = 1.0,     

Γ2 = 0.2, 0.3, 0.5, 0.7

1 2 3 4 5 6 7
Η
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0.2
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Figure 10. Solute Biot number versus concentration distribution.

  n = 1.5, k0 = 0.5, M = 0.3, Fr =  0.5, Λ = 0.2, Pr = 2.0, Rd  = 0.5, Γ1= 0.5, Nb = 0.3,

  Γ2 = 0.5, Sc = 1.0,     

 Nt = 0.1, 0.15, 0.22, 0.28 

2 4 6
Η

0.1

0.2

0.3

0.4

0.5

0.6

ΦHΗL

Figure 11. Thermophoresis versus concentration distribution.
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  n = 1.5, k0 = 0.5, M = 0.3, Fr =  0.5, Λ = 0.2, Pr = 2.0, Rd  = 0.5, Γ1= 0.5, Nt = 0.2,

  Γ2 = 0.5, Sc = 1.0,     

 Nb = 0.1, 0.5, 0.9, 1.3

1 2 3 4 5 6 7
Η

0.1

0.2

0.3

0.4
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0.6

ΦHΗL

Figure 12. Brownian diffusion versus concentration distribution.
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Figure 13. Contour graph for linear case.
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Figure 14. Contour graph for nonlinear case.
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Figure 15. Density graph for linear case.
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Figure 16. Density graph for nonlinear case.

Table 1. Numerical data obtained for skin friction setting n = 1.5.

k0 M Fr λ −RexCx

0.0 0.2 0.5 0.2 1.461310
0.2 0.551837
0.4 0.261381
0.1 0.0 0.5 0.2 0.984064

0.2 0.993470
0.4 1.021130

0.1 0.2 0.0 0.2 0.872001
0.3 0.946589
0.6 1.016160

0.1 0.2 0.5 0.0 0.945417
0.2 0.993470
0.4 1.039140
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Table 2. Numerical data obtained for Nusselt and Sherwood numbers setting n = 1.5, k0 = 0.1.

M Fr λ Rd Pr Nt Nb Sc γ1 γ2 −θ′(0) −φ′(0)

0.0 0.5 0.2 0.5 2.0 0.2 1.8 1.0 0.5 0.5 0.382563 0.284189
0.2 0.381299 0.283494
0.4 0.377592 0.281461
0.3 0.0 0.2 0.5 2.0 0.2 1.8 1.0 0.5 0.5 0.388611 0.287151

0.3 0.383151 0.284375
0.6 0.378095 0.281800

0.3 0.5 0.0 0.5 2.0 0.2 1.8 1.0 0.5 0.5 0.386118 0.286148
0.3 0.376684 0.280965
0.6 0.367978 0.276224

0.3 0.5 0.3 0.0 2.0 0.2 1.8 1.0 0.5 0.5 0.243061 0.280613
0.3 0.326357 0.280770
0.6 0.400512 0.281073

0.3 0.5 0.3 0.5 1.0 0.2 1.8 1.0 0.5 0.5 0.314527 0.282394
1.5 0.353191 0.281437
2.0 0.376684 0.280965

0.3 0.5 0.3 0.5 2.0 0.1 1.8 1.0 0.5 0.5 0.383141 0.284704
0.3 0.370253 0.277406
0.6 0.351170 0.267780

0.3 0.5 0.3 0.5 2.0 0.2 1.0 1.0 0.5 0.5 0.433003 0.27166
1.6 0.390927 0.279511
2.2 0.348077 0.283071

0.3 0.5 0.3 0.5 2.0 0.2 1.8 1.0 0.5 0.5 0.376684 0.280965
1.5 0.377924 0.321943
2.0 0.379042 0.348489

0.3 0.5 0.3 0.5 2.0 0.2 1.8 1.0 0.1 0.5 0.145086 0.285651
0.3 0.298417 0.282539
0.6 0.402833 0.280441

0.3 0.5 0.3 0.5 2.0 0.2 1.8 1.0 0.5 0.1 0.458177 0.090822
0.3 0.408401 0.208285
0.6 0.364879 0.307814

5. Conclusions

Here, in this research we have focused on the features of Darcy–Forchheimer relation
in nanofluid flow bounded by a convectively heated non-linear stretching plane sheet.
A visco-elastic and strictly incompressible nanofluid saturates the designated porous
medium under the direct influence of the Darcy–Forchheimer model. The magnetic effect
is taken non-uniformly normal to the flow direction. However, the model is bounded
to tiny magnetic Reynolds number for practical applications. The salient findings are
summarized below:

• A decreasing trend in velocity profile is noted for a stronger effect of Forchheimer
number Fr.

• The thermal layer receives significant modification in the incremental direction for
augmented values of thermal radiation Rd with a more convenient convection.

• Elevated values of thermal Biot number γ1 apparently result a in significant increase
of the thermal layer.

• The two important factors of nanofluid flow and boundary layer phenomenon,
the thermophoresis and the Brownian motion, apparently develop a rising trend
in thermal profile.

• The solute Biot number is an enhancing factor for the concentration profile.
• Skin friction rises for larger porosity, while both the heat flux and mass flux receive a

reduction for augmented values of Forchheimer number.
• A significant part of this study is the contour and density graphs.
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Nomenclature:

MHD Magnetohydrodynamics
RK45 Runge Kutta 45 method
PDE Partial Differential Equation
ODE Ordinary Differential Equation
u(x, y), v(x, y) velocity components in cartesian coordinates/m·s−1

u = mxn Horizontal velocity /m·s−1

m constant/s−1

T, C Local temperature and concentration of nanoparticles
T∞ Ambient temperature/K
Cb Drag coefficient
K Permeability/H ·m−1

B0 Magnetic field/A ·m−1

σ Electric conductivity/(Ohm ·m)−1

ρ Density/kg·m−3

k1 viscoelastic coefficient
α Thermal diffusivisity/m2·s−1
qr, Rd Radiation
Nux Local Nusselt number
C f Skin-friction (wall drag force)
Rex Local Reynolds number
Le Lewis number
DB Brownian Diffusion/m2· s−1

DT Thermophoretic diffusion/m2· s−1

M Magnetic number
λ viscoelastic parameter
Pr Prandtl number
Nt Thermophoresis parameter
Nb Brownian diffusion parameter
τ Ratio of heat capacity of fluid and nanoparticles
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