
biosensors

Article

A Self-Powered Portable Flexible Sensor of Monitoring Speed
Skating Techniques

Zhuo Lu 1, Yongsheng Zhu 2, Changjun Jia 2, Tianming Zhao 3 , Meiyue Bian 2, Chaofeng Jia 1, Yiqiao Zhang 1

and Yupeng Mao 1,2,*

����������
�������

Citation: Lu, Z.; Zhu, Y.; Jia, C.; Zhao,

T.; Bian, M.; Jia, C.; Zhang, Y.; Mao, Y.

A Self-Powered Portable Flexible

Sensor of Monitoring Speed Skating

Techniques. Biosensors 2021, 11, 108.

https://doi.org/10.3390/bios11040108

Received: 26 February 2021

Accepted: 1 April 2021

Published: 7 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Physical Education, Northeast Normal University, Changchun 130024, China;
luz560@nenu.edu.cn (Z.L.); jiacf829@nenu.edu.cn (C.J.); zhangyq052@nenu.edu.cn (Y.Z.)

2 Physical Education Department, Northeastern University, Shenyang 110819, China;
2001276@stu.neu.edu.cn (Y.Z.); 2071367@stu.neu.edu.cn (C.J.); 2001264@stu.neu.edu.cn (M.B.)

3 College of Sciences, Northeastern University, Shenyang 110819, China; zhaotm@stumail.neu.edu.cn
* Correspondence: maoyupeng@pe.neu.edu.cn

Abstract: With the development of 5G technology, contemporary technologies such as Internet of
Things (IoT) and Big Data analyses have been widely applied to the sport industry. This paper focuses
on the design of a portable, self-powered, flexible sensor, which does not require an external power
supply. The sensor is capable of monitoring speed skating techniques, thereby helping professional
athletes to enhance their performance. This sensor mainly consists of Polyvinylidene Fluoride (PVDF)
with polarization after a silvering electrode and a flexible polyester substrate. Flexible sensors are
attached to the push-off joint part of speed skaters and the ice skate blade. During motion, it produces
different piezoelectricity signals depending on the states of motion. The monitoring and analyzing of
the real-time sensor signals will adjust the athlete’s skating angle, frequency, and push-off techniques,
thus improving user training and enhancing performance. Moreover, the production of piezoelectric
signals can charge the capacitor, provide power for small electronic equipment (e.g., wireless device),
and extend the applications of wearable flexible sensors to the Big Data and IoT technologies in the
sport industry.

Keywords: wearable sensor; self-powered; sport monitoring; speed skating

1. Introduction

Speed skating is one of the most popular sports in the Winter Olympic Games. When
skating, athletes wear Clap Skates, which need professional athletes’ high strength, en-
durance, and speed. In addition to personal physical fitness improvement, performance
enhancement is also considered vital in the game. To enhance it, more scientific skating
techniques need to be considered, such as push-off timeliness, absolute speed, skating
strategies and physiological monitoring, among others. With 5G evolution, infinite biosen-
sors are applied to the kinematics field [1–8]. With IoT technology where sensors are
integrated, coaches can better understand athletes’ physical conditions, and adjust timely
training programs and skating techniques to help athletes achieve better performance.
At present, speed skating auxiliary sensors with training have challenges, such as huge
volume, not being portable, and non-real-time data. These challenges affect the skating
state of professional athletes [9–11]. Therefore, it is important to develop a flexible portable
sensor that will overcome these challenges [12–18].

In recent times, the proposal of a nanogenerator has gained much attention [19–26].
This component can transform micro-chemical energy into electric energy in the environ-
ment. The environment affects the amount of produced electric energy, such as pressure,
temperature, and humidity [27–30]. The manufactured sensor based on the nanogenerator
does not require an external power supply or battery to provide electric energy. This
is beneficial since there is no need for a battery and it is expected to be the upcoming
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candidate in sensor generation [31–35]. Therefore, by improving the materials, a flexible
sensor for sport detection can be designed. It will not be influenced by temperature and
humidity, and during the speed skating sport, it can be applied to monitor, in real-time,
athletes’ skating techniques.

The portable, self-powered, flexible sensor that is discussed in this paper can mon-
itor speed skating techniques without an external power supply. The sensor consists of
Polyvinylidene Fluoride (PVDF) with polarization after a silvering electrode and a flexible
polyester substrate. Moreover, the sensor can be easily attached to speed skating athletes’
push-off joints and ice skate blades. Based on the piezoelectric effect, the sensor produces
a piezoelectric signal during its movement. The signal has sensing information that is
used to analyze the skating techniques [36–38]. The sensor can maintain a certain output
piezoelectric voltage after it is damaged. Concurrently, the produced electric energy can
charge the capacitor to move the electronic devices. In practical applications, it shows that
this component can transmit and receive the skating states of athletes by use of a wireless
method. In this paper, our work explores more application scenarios for a wearable, flexible
sensor that applies Big Data and IoT technologies in the sport industry.

2. Experimental
2.1. Sensor Fabrication

First, the PVDF power (1.5 g) was dissolved in dimethylformamide solution (8.5 g) at
50–70 ◦C. After vigorous stirring for 2 h, the mixture was sealed airtight and left to stand
for 16 h. The PVDF film was obtained through a spin-coating process. The PVDF slurry
was dropwised on a pre-cleaned Si substrate; the speed was fixed at 900 r/min and the
time was fixed at 60 s. Then, the PVDF film was dried at 120 ◦C for 12 h. The thickness of
the PVDF film can be controlled by the spin-coating speed and coating times. Secondly,
both sides of the PVDF film were evaporated with Ag electrodes (300 nm). Finally, the
film was polarized in an oil bath at 90 ◦C under a 20 kV/mm electric field. The sensor was
packaged with polyester (PET) film to protect the PVDF film.

2.2. Characterization and Measurement

The morphology and structure of the sensor was performed by optical microscopy
(SDPTOP-CX40M, Ningbo Sunny Instruments Co., Ltd, Ningbo, China.). The performance
of the sensor was collected by an automatic measurement platform (containing a pro-
grammable mechanical arm and oscilloscope). A professional Olympic athlete assisted
with the practical applications. Two sizes of the sensor were used to measure the sensing
performance. The small-sized sensor (7 cm × 1 cm × 0.05 cm) was attached to the hip joint,
and the big-sized sensor (17 cm × 2 cm × 0.05 cm) was fixed on the ice skate blade. All the
tests were measured in an indoor skating rink and the temperature was kept at 14–26 ◦C.

3. Results and Discussion

The self-powered portable flexible sensor is designed to monitor the state of physiolog-
ical joint changes and the track of the sliding motion in real-time. According to the signal
output, a personalized sport technique improvement prescription can be made by coaches
so as to adjust the athlete’s technical motions and help improve sport performance. There-
fore, PVDF was chosen as the sensing material because of its fast response and high output.
In the process of speed skating, the hip joint is the most representative technique, which
can better reflect the athlete’s special technical level. Therefore, the sensors are designed as
flexible and wearable intelligent sensors to fit on the hip joint. The package of the flexible
materials greatly improves the comfort, and normal sliding is not affected. In addition, the
improvement of skate blades is also one of the strategies to improve the performance of
the athlete. Therefore, we attach the sensor to the skate blade to measure the correlation
between the skate motion and sliding technique. Considering that the extreme motion
conditions may cause damage to the sensor and some key data may become corrupted,
lost or unavailable, the sensors are packed with polyester (PET). Even if the sensors have
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a large-area breakage, the key motion data will still output. They can better record the
athlete’s sport technique in each stage of sliding, and then assist the athlete with carrying
out high-level sport training. Figure 1a shows the tester wearing ice skates. The sensors are
attached to the hip joint of tester and the skates, respectively. The information of the joint
bending angles, motion frequencies and skate blade vibrations can be collected by sensors
during skating. The whole process does not need an external power supply, and the skate
blade works to charge the capacitors. It provides ideas for driving a variety of portable
devices in the future, and more possibilities for motion monitoring technology. Flexible
sensors can be cut and bent according to actual needs (Figure 1b). The basic structure of
the sensor and its morphology under the optical microscope (inset) are shown in Figure 1c.
The PVDF piezoelectric film may be easily damaged due to its flexible and thin features.
We use a 0.125 mm thick polyester (PET) substrate to reinforce the PVDF piezoelectric layer.
Our reinforced sensor is more durable. Figure 1d shows the sensor fixed on the root of the
ice skate. During the skating process, the sensor transmits sport information in real-time
(joint bending angles, motion frequencies and skate blade vibrations) and the output can
be collected to charge capacitors for driving smart, wearable devices.
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Figure 1. (a) The design of the self-powered portable flexible sensor; (b) optical image of the sensor;
(c) structure and micrograph of sensor (inset); (d) the sensor attached to the ice skate blade (the insets
show the rectifying circuit and the wireless visual panel).

The progress of sensor production is shown in Figure 2a. The fabrication contains
a coating PVDF layer, evaporating Ag electrodes and polarization; more details can be
seen in the experimental section. The data of the sensor are collected by a sto1102c, micsig
oscilloscope (origin: Shenzhen, China, Figure 2b). Figure 2c shows the output power of the
sensor. With the increase in resistance, the output voltage significantly increases, and the
instantaneous output power of the sensor reaches the maximum of 16 MΩ. At this time,
the output piezoelectric voltage of the sensor is 6.09 V and the power is 2.32 µW. Figure 2d
shows the working mechanism. When the deformation is not applied on the sensor, the
dipoles in PVDF will be arranged in an ordered way, and a large number of charges will be
bound on the surfaces due to the built-in electric field. When the deformation occurs, the
dipole direction will be changed, and the built-in electric field will be reduced, releasing
the surface bound charges [39,40]. The output signal can be detected in the external circuit.
Finally, when the deformation disappears, the dipoles will return to the original state and
the released charges will be rebound to the surface again. The opposite signal can be
detected in the external circuit [41–47].

The performance of the sensor in different application scenarios is tested and analyzed
in Figure 3. This sensor can be attached to the hip joint to capture the skating frequency
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and for mimicking the motion of joint; the deformation is applied by the stepper motor
(Figure 3a). As shown in Figure S2, the response time is less than 43 ms. Figure 3b shows
the output piezoelectric voltage against different joint bending angles at the same frequency
(1.5 Hz). The results are treated with normalization and the baseline is the output at 15◦.
As the angles are 21, 25 and 30◦, the piezoelectric voltage enhances 23.5, 42.1 and 65.3%,
respectively. The red line is a linear fit and the linear fitting of Equation (1) is as follows:

y = 0.1951 + 0.01698x
(r) = 0.999

(1)

where y represents the output voltage (V) and x represents the bending angles (degree). The
linearity is up to 0.999. Figure 3c shows the output piezoelectric voltage against different
frequencies at the same bending angles (15◦). The baseline is the output piezoelectric
voltage at 1 Hz. As the angles are 1.25, 1.5 and 1.75 Hz, the change of piezoelectric voltage
output is less than 2%. These results show that the sensor can accurately monitor the
angle change during skating. Another sensor is attached on the ice skate blade. During
the skating process, the output of the sensor may be affected by the skating strides and
frequencies. Figure 3d shows the measuring equipment for mimicking the vibration on the
skate blade. Figure 3e shows the normalized voltage against different skating strides at
the same skating frequency (1.25 Hz). As the skating stride angle increases, the hip joint
increases from 3 to 6, 9 and 12◦, and the normalized voltage is 0, 17.5, 43.5 and 133.9 Hz,
respectively. The red line is a linear fit, and the linear fitting of Equation (2) is as follows:

y = 0.41795 + 0.1426x
(r) = 0.92757

(2)

where y represents the output voltage (V) and x represents the vibration (degree). The
linearity is up to 0.92757. Figure 3f shows the normalized voltage against different skating
frequencies at the same skating stride (3◦). As the skating frequency increases from 0.5 to
2 Hz, the normalized voltage is 0, 2.3, 3.6 and 15.4 Hz, respectively. Figure 3g shows the
signals from two sensors (one attached to the knee-joint and another attached to the ice
skate blade) for four motion states (small skating stride with low skating frequency, small
skating stride with high skating frequency, big skating stride with low skating frequency,
and big skating stride with high skating frequency). When the skating state is small skating
stride with low skating frequency, the output piezoelectric voltages of the sensors are 1.12 V
(hip joint) and 2.4 V (skating state), respectively. When the skating state is small skating
stride with high skating frequency, the output piezoelectric voltages of the sensors are
1.15 V (hip joint) and 2.38 V (skating state), respectively. When the skating state is big
skating stride with low skating frequency, the output piezoelectric voltages of the sensors
are 4.17 V (hip joint) and 9.21 V (skating state), respectively. When the skating state is
big skating stride with high skating frequency, the output piezoelectric voltages of the
sensors are 4.67 V (hip joint) and 9.17 V (skating state), respectively. Figure 3h shows the
relationship between the motion state and the response of the sensors. The response of the
sensor can be calculated from the following equation:

R% =

∣∣∣∣V0 − Vi

Vi

∣∣∣∣× 100% (3)

where V0 represents the output piezoelectric voltage at 1.12 V. Sensors can be attached
on the joints and equipment to monitor the joint angle, motion frequency and other
information of the tester in the skating process. Via this information, we can correct the
speed skating techniques, improving the athlete’s sport performance.

As shown in Figure 4a, the sensor is connected to a 4.7 µf capacitor through a rectifying
bridge. The capacitor can be charged to 2.20 V in 50 s, and the charged capacitor can drive
other portable devices, such as Bluetooth and WiFi. Faster motion frequencies and larger
bending angles can shorten the charging time. Figure 4b shows the output piezoelectric



Biosensors 2021, 11, 108 5 of 10

voltage of the sensor in a normal speed skating temperature environment (Figure S1a).
The temperatures of Olympic venues for speed skating are between 16 to 20 ◦C and the
test temperature is kept at 14–20 ◦C. With the temperature ranging from 14 to 20 ◦C, the
normalized voltage changes less than 2%. The sensors are not affected by temperatures
and can work well for skaters. In addition, the durability of the sensor has been tested.
Under the same working frequency, the output piezoelectric voltage is stable for 3.5 h
(Figure 4c). A high-intensity and fierce skating process may damage the flexible sensor.
Therefore, we cut the sensor to test the performance (Figure S1b). Figure 4d shows the
output piezoelectric voltage after cutting the sensor. The results show that the sensor can
maintain over 90% of the output piezoelectric voltage after cutting 6 mm, and the sensor
can still maintain about 30% output piezoelectric voltage after cutting 12 mm. Compared
with other works, the self-powered portable flexible sensor has higher output (Table S1).
The sensor can continually work under extreme conditions. The sensor still maintains 74%
of the initial output voltage in 2000 s, even if the damage is up to 65% (Figure S1c). Details
of the output are shown in Figure S1d. Moreover, the output electrical energy can charge
capacitors for driving other smart, wearable devices.
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Figure 2. (a) The sensor fabrication; (b) measuring system; (c) output voltage and output power of
the sensor; (d) working mechanism.

The speed skating performance depends on three major techniques: start action,
straight line speed and curve skill. As shown in Figure 5a, the sensors are attached to the
hip joint and ice skate blade, respectively. Under four sport states, the output is shown in
the inset. Figure 5b shows the responses of the sensor for four sport states. These results
show that the signal can be real-time recorded and accurately reflect the sport information
(joint bending angles, motion frequencies and skate blade vibrations), assisting athletes
in correcting speed skating techniques immediately. During the skating process, the self-
powered sensor can charge the capacitor (Figure S3). A 4.7 µf capacitor can be charged
to 1.32 V in 50 s. Figure 5c shows that when the capacitor is charged to 5 V, the GPS can
be driven to transmit signals, and the position information can be recorded (Video S1).
A real-time monitoring system for athletes is shown in Figure 5d. The system consists of the
self-powered portable sensor, a wireless transmitter and a visual panel. The piezoelectric
signal of the sensor can be transmitted by wireless transmitter. The times and the numbers
of LEDs on the visual panel, which are lit up, can reflect the sport states (Video S2). This
system can help coaches and athletes quickly find technical weaknesses and improve their
skating skills.
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Figure 3. The sensing performance testing of the sensor; (a) the measurement system for mimicking the motion of the
knee-joint; (b) the relationship between the output voltage and bending angles (the red line showing the fitting line); (c) the
normalized output piezoelectric voltage against different frequencies at the same bending angles (15◦); (d) the measurement
system for mimicking the vibration on the skate blade; (e) the relationship between the output voltage and bending vibration
(the red line showing the fitting line); (f) the normalized voltage against different skating frequencies at the same skating
stride (3◦); (g) the signals from two sensors (one attached to the knee-joint and another attached to the ice skate blade) for
four motion states (small skating stride with low skating frequency, small skating stride with high skating frequency, big
skating stride with low skating frequency and big skating stride with high skating frequency); (h) the relationship between
motion state and the response of the sensors.
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Figure 5. (a) Output piezoelectric voltage of speed skating during four sport states; (b) response
of the sensor; (c) position information recorded by GPS system; (d) a simple wireless system for
monitoring motion state.

4. Conclusions

In conclusion, this study proposed a type of self-powered flexible sensor that is used
to monitor skating states in real-time. The sensor can be easily attached to the tester’s
body surface joint or commonly-used equipment to help monitor sport performance. With
the piezoelectric effect, this sensor can collect the human body’s kinetic energy during its
motion. Moreover, it can produce a piezoelectric signal that contains sensing information
while the sensor is in the moving state. During the piezoelectric signals analysis, the
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professional athletes are able to adjust their training programs in real-time. The production
of Piezoelectric signals can also charge the capacitor to drive small electronic devices.
In practical applications, the experiment of a wireless transmitting piezoelectric signal
exhibited the potential for this self-powered flexible sensor. This study has extended the
applications of wearable flexible sensors that use Big Data and IoT technologies in the
sport industry.
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