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Abstract 

Gene delivery of antiviral therapeutics to anatomical sites where viruses accumulate and persist is a promising 
approach for the next generation of antiviral therapies. Recombinant adeno-associated viruses (AAV) are one of the 
leading vectors for gene therapy applications that deliver gene-editing enzymes, antibodies, and RNA interference 
molecules to eliminate viral reservoirs that fuel persistent infections. As long-lived viral DNA within specific cellular 
reservoirs is responsible for persistent hepatitis B virus, Herpes simplex virus, and human immunodeficiency virus 
infections, the discovery of AAV vectors with strong tropism for hepatocytes, sensory neurons and T cells, respectively, 
is of particular interest. Identification of natural isolates from various tissues in humans and non-human primates has 
generated an extensive catalog of AAV vectors with diverse tropisms and transduction efficiencies, which has been 
further expanded through molecular genetic approaches. The AAV capsid protein, which forms the virions’ outer shell, 
is the primary determinant of tissue tropism, transduction efficiency, and immunogenicity. Thus, over the past few 
decades, extensive efforts to optimize AAV vectors for gene therapy applications have focused on capsid engineering 
with approaches such as directed evolution and rational design. These approaches are being used to identify variants 
with improved transduction efficiencies, alternate tropisms, reduced sequestration in non-target organs, and reduced 
immunogenicity, and have produced AAV capsids that are currently under evaluation in pre-clinical and clinical trials. 
This review will summarize the most recent strategies to identify AAV vectors with enhanced tropism and transduc‑
tion in cell types that harbor viral reservoirs.
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Introduction
Over the last few decades, the development of adeno-
associated virus (AAV) as a vector for gene delivery has 
advanced significantly [1, 2]. Recently, the AAV-based 
drugs Luxturna, a therapy to treat inherited blindness, 
and Zolgensma, a treatment for spinal muscular dys-
trophy, were approved by the FDA for use in the US, 
signifying important milestones for the establishment 
of AAV-based therapeutics in the clinic. The success of 
AAV as a gene delivery vector is due to several charac-
teristics, including its nonpathogenic nature, its good 

safety profile, and its ease of production to clinical grade. 
Moreover, the minimal genome requirements of AAV to 
replicate permit replacement of most of the genome with 
foreign DNA, resulting in a packaging capacity of up to 
4.7 kb in standard AAV vectors, or about half of that in 
self-complementary AAV vectors (Fig.  1). Importantly, 
AAV vectors display a broad species tropism that is mal-
leable. So far, the approved AAV-based drugs and most 
clinical trials utilizing AAV vectors aim to supplement a 
defective gene with a new, working copy [3], but many 
studies have investigated AAV for the delivery of non-self 
therapeutic genes.

A promising application of AAV-based therapeutics is 
the delivery of gene-editing enzymes to correct defec-
tive genes [4]. In pre-clinical studies, several groups have 
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reported the effective use of AAV-delivered CRISPR/
Cas9 technologies to edit genes in animal models for 
diseases including Duchenne muscular dystrophy, 
hypercholesterolemia, and urea cycle disorders [5–9]. 
Similarly, the delivery of gene editing technologies to 
inactivate and eliminate viral reservoirs that enable per-
sistent/chronic infections has recently gained substantial 
attention [10–14]. Indeed, recent reports of viral genome 
elimination using meganucleases and CRISPR/Cas9 
in animal models for HSV and HIV chronic infection, 
respectively, support the use of AAV vectors as a treat-
ment for chronic viral infections [10, 15, 16]. The AAV-
mediated delivery of antiviral therapies is not limited to 
gene-editing enzymes. For example, several groups have 
used AAV vectors to deliver other antiviral therapeutics 
such as RNA inference molecules and virus-neutralizing 
antibodies [17, 18].

AAV-mediated delivery of curative antiviral therapeu-
tics to sites of persistent viral infection requires much of 
the same vector optimization as traditional gene therapy, 
including promoter/transgene optimization for expres-
sion at therapeutic levels, efficient transduction of target 

cells, and limiting the immune response to the vector 
and transgene [19]. The simple premise underlying cura-
tive approaches to persistent viral disease is the delivery 
of virus-specific antiviral therapies to silence, mutate, or 
eliminate viral reservoirs within specific anatomical com-
partments. A high degree of precision is required on at 
least two levels to avoid off-target effects: specificity of 
target cell/tissue transduction and antiviral agent speci-
ficity for the virus and not the host. This review sum-
marizes the strategies currently used to optimize AAV 
capsids, the principal determinant of vector tropism. We 
have focused on tissue-specific delivery of antiviral thera-
pies targeting chronic/persistent viral infections in the 
liver, the peripheral nervous system, and T cells. These 
tissues/cells are important reservoir sites for numerous 
high impact human viral pathogens including hepatitis 
B virus (HBV), hepatitis C virus (HCV), Herpes simplex 
virus (HSV), Varicella Zoster Virus (VZV) and human 
immunodeficiency virus (HIV), all of which have a high 
public health burden.

AAV is a non-enveloped Dependoparvovirus, fam-
ily Parvoviridae, with a capsid containing 60 subunits of 

Fig. 1  AAV vector biology. a genome organization of wild type AAV2 depicting its ssDNA genome and the 7 viral RNAs expressed from 2 genes Rep 
(Black boxes) and Cap (Grey boxes) and via the p5, p19 or p40 promoters. b crystal structure of the AAV2 virion (pdb: 1lp3) depicting the fivefold 
axis of symmetry (left, arrow) and threefold axis of symmetry (right, arrow). The AAV virion contains 60 VP proteins in a 1:1:10 ratio (VP1:VP2:VP3). 
c production of replication incompetent AAV vectors via transient plasmid transfection into 293 producer cells that express adenovirus type 5 E1 
genes. Vectors containing standard or scAAV genomes can be generated following co-transfection of AAV packaging (AAV Rep and Cap containing), 
adenovirus type 5 helper (E2A, E4 and VA RNA expressing) and AAV vector plasmids without (standard) or with (scAAV) D region deletion in the left 
ITR
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three different proteins (VP1, VP2, and VP3) that have 
a common C-terminus and are produced via alterna-
tive translation of the AAV cap gene (Fig. 1). AAV cap is 
the major determinant of native AAV cell/tissue tropism 
and is thus a key modifiable genetic element to optimize 
transduction efficiency. Each capsid subunit has nine var-
iable regions, peptide loops that protrude from the virion 
surface, that play a role in capsid assembly, genome pack-
aging, cellular receptor interactions, and antigenic deter-
minants for anti-capsid cellular and humoral immune 
responses [20].

Over 100 different AAV serotypes have now been iso-
lated from humans, non-human primates (NHPs), and 
other species that exhibit a wide array of tissue and cell 
tropisms, determined mainly by the primary attachment 

receptor and co-receptor specificity of each serotype 
(Table  1). These naturally occurring, distinct serotypes 
have been widely screened for their ability to transduce 
many types of target cells and organs. Still, anti-AAV 
antibodies, which effectively neutralize AAV vectors 
and reduce transduction efficiency, are common in the 
human population and often cross-reactive, limiting the 
widespread clinical use of many serotypes clinically [21, 
22]. Therefore, it is important to optimize the AAV capsid 
being used for each therapeutic application individually.

Several strategies have been developed to optimize the 
AAV capsid for gene delivery, including rational design, 
directed evolution, and phylogenetic reconstruction of 
ancestral capsids (Fig.  2). These strategies offer several 
potential advantages that would be beneficial clinically, 

Table 1  Commonly used AAV vector capsids, their origin, receptor usage and in vivo tropism

Bold—used widely to target in vivo

NHP unknown non human primate, NA not applicable, HSPG Heparan sulfate proteoglycan, FGFR fibroblast growth factor receptor, HGFR hepatocyte growth factor 
receptor, PDGFR Platelet derived growth factor receptor, EGFR epidermal growth factor receptor, CNS Central nervous system

AAV 
capsid

Naturally 
occuring

Likely species 
origin

Engineered AAV Receptor 
usage

Other cellular 
receptor

Co-receptors Tissue culture 
activity

In vivo tissue 
tropism

AAV1 Y NHP N Y Sialic acid Moderate Skeletal muscle, 
CNS, airway, 
retina, heart, 
liver

AAV2 Y Human N Y HSPG FGFR-1, HGFR, 
αVβ1 and 
αVβ5 integrins, 
Laminin recep‑
tor, CD9

Good Skeletal muscle, 
CNS, retina, liver

AAV3 Y Human N Y HSPG FGFR-1, HGFR, 
Laminin recep‑
tor

Moderate Skeletal muscle, 
liver

AAV4 Y African green 
monkey

N N Sialic acid Unknown Poor CNS, retina, 
kidney, lung

AAV5 Y Human N Y Sialic acid PDGFR Poor Skeletal muscle, 
CNS, airway, 
retina

AAV6 Y Human N Y HSPG, Sialic acid EGFR Moderate Skeletal muscle, 
airway, heart

AAV7 Y Rhesus macaque N Unknown Unknown Unknown Poor Skeletal muscle, 
CNS, retina, liver

AAV8 Y Rhesus macaque N Y Unknown Laminin receptor Poor Skeletal muscle, 
CNS, airway, 
retina, heart, 
liver

AAV9 Y Human N Y Galactose Laminin receptor Poor Skeletal muscle, 
CNS, airway, 
retina, heart, 
liver

AAV.rh10 Y Rhesus macaque N Unknown Unknown Laminin receptor Poor Skeletal muscle, 
CNS, airway, 
retina, heart, 
liver

AAV.DJ N NA Y Unknown HSPG Unknown Good Liver, CNS, retina

AAV.LK03 N NA Y Unknown Unknown Unknown Poor Human liver
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such as the ability to alter vector tropism, the ability to 
avoid vector sequestration in non-target tissues, the abil-
ity to reduce innate immune responses against the vector, 
the ability to evade pre-existing anti-vector humoral and 
cellular immune responses, and the ability to use lower 
effective AAV doses. Thus, engineering approaches that 
generate novel capsids derived from natural or artificial 
AAV capsids with optimized target tissue specificities 
and minimal antigenicity are an attractive solution to 
improve vector tropism for cells and tissues that harbor 
persistent viral infections (Fig. 3).

Section I: Approaches to identify optimal AAV 
capsids
Since AAV1 was first identified in the 1960s as a con-
taminant of an adenovirus infected cell culture [21], 
many different AAV serotypes have been identified that 
display distinct yet overlapping tissue tropisms, under-
scoring the potential of AAV as a gene transfer tool for 

clinical use [23–25]. AAV is endemic and widespread 
in human populations. Thus, pre-existing humoral and 
cellular immunity presents a significant impediment to 
clinical use of AAV vectors, particularly when a human-
derived serotype is used. Across numerous studies, the 
prevalence of anti-AAV neutralizing antibodies varies 
by serotype and geographical distribution. For example, 
AAV2 has the highest prevalence of anti-capsid anti-
bodies [26–31]. Importantly, anti-AAV antibodies also 
exhibit a high degree of cross-reactivity [32], as seen in 
a recent longitudinal follow-up study of subjects who 
received intravascular AAV2-FIX in a clinical trial for 
severe hemophilia B. In this study, the participants had 
persistent multi-serotype cross-reactive neutralizing 
antibodies against the infused vector serotype AAV2, as 
well as serotypes AAV5 and AAV8, at up to 12–15 years 
post-vector administration [33]. These findings demon-
strate that the presence of multi-serotype cross-reactive 
broadly neutralizing antibodies is a significant potential 

Fig. 2  Methods for the identification of AAV capsids. The AAV capsid is the primary determinant of cell/tissue tropism. Efforts to identify novel 
capsids with enhanced target specificity and low immunogenicity are divided into two broad categories: native/fossil capsid isolation and capsid 
engineering (rational design or directed evolution). Native/fossil capsid isolation is achieved through live virus isolation from tissue culture, 
AAV-specific PCR or genome mining. AAV capsid engineering relies upon modification of key structural and genetic elements via rational design 
or directed evolution. Rational design exploits known aspects of AAV biology and structure, often focusing on surface-exposed regions of the 
AAV capsid. Directed evolution couples library-generated AAV capsid diversity and a selection scheme to identify variants with distinct properties. 
Strategies to generate AAV capsid libraries include error-prone PCR, DNA shuffling, and random peptide insertion. The libraries are then screened in 
cell culture systems, animal models, or a combination of both. Figure created with BioRender.com
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challenge to using AAV vectors in clinical applications 
as it limits the number of prospective patients that could 
benefit from AAV-based therapies. The long-lasting 
cross-reactive immunity also limits the ability to poten-
tially re-administer a therapeutic via an alternative vector 
serotype. Thus, the search for new AAV serotypes that 
can evade host immune responses plus achieve high-level 

gene transfer in desired target cells and tissues at low 
vector doses continues.

Natural AAV isolate screening
The first 6 identified AAV serotypes were isolated as live 
viruses from human or non-human primate (NHP) cell 
cultures and included AAV2, the first to be vectorized. 

Fig. 3  Identification of AAV variants with tropism for sites of persistent viral infections. The eradication or inactivation of viral reservoirs by direct 
delivery of virus-specific gene-editing enzymes or RNA-interference molecules represents a potentially curative strategy for persistent viral 
infections that currently affect billions of people worldwide. AAV is a promising delivery vector for these classes of antiviral therapy. Several AAV 
vectors discussed in this review and indicated below exhibit a high degree of tropism for the peripheral nervous system, liver, and CD4+ T cells, 
reservoir sites for Herpes simplex virus-1, 2 (HSV-1,2); Varicella Zoster virus (VZV); Hepatitis B virus (HBV); and Human immunodeficiency virus (HIV-1). 
Figure created with BioRender.com
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AAV2 vectors can transduce many tissue types, includ-
ing liver, muscle, lung, retina, and brain [3], and most 
early pre-clinical and clinical trials used AAV2 vectors 
to treat congenital diseases, including Leber’s congeni-
tal amaurosis, retinal dystrophy caused by RPE-65 defi-
ciency [33–36]. For example, in 2017, subretinal injection 
of the rAAV2-RPE65 became the first FDA-approved 
AAV-based gene therapy for a genetic disease [37]. More 
recently, the search for new serotypes with beneficial 
properties has resulted in PCR-based strategies that 
amplify AAV DNA from samples derived from humans, 
NHP, and other species [23, 24, 38]. To date, over a hun-
dred variants have been isolated, mostly from humans 
and NHP, and many have been vectorized (Table  1). 
Notably, two of the first new serotypes isolated were the 
rhesus macaque-derived AAV8 and the human-derived 
AAV9 serotypes that have shown strong tropism for liver 
or multiple organs, respectively [39–41]. These serotypes 
have gained widespread clinical interest for use in dis-
eases such as hemophilia B, where high FIX expression 
levels sufficient to elicit a phenotypic correction have 
been achieved using AAV8 vectors in hemophilia patients 
[42–50]. Ultimately, the isolation of new AAV serotypes 
with a wide range of tissue tropisms – primarily deter-
mined by different receptor and co-receptor usage [3, 
28, 51, 52] – has significantly expanded the AAV vector 
tool kit with isolates that can transduce various tissues 
and partially evade neutralizing antibodies. This under-
scores the usefulness of screening for natural AAV across 
a wide swath of species. However, the isolation and char-
acterization of novel variants is time-consuming, which 
has motivated the generation of novel engineered capsid 
mutants and library screening approaches to maximize 
the number of potential vector capsids that can target the 
tissue of interest.

Directed evolution
Directed evolution has been widely used to identify new 
AAV capsids with beneficial properties via the screening 
of mutant capsid libraries, either in cell culture or in vivo. 
While the screening methods used have varied, to date 
three main approaches have been used to generate large 
AAV capsid libraries from which beneficial capsid vari-
ants are selected. The first approach to be used for AAV 
library generation relied on the observation that target-
ing peptides can be inserted into exposed surface loops of 
the AAV2 capsid at specific sites without altering capsid 
assembly [53]. Subsequently, it has been demonstrated 
that mutants generated by this screening approach can 
be retargeted to alternative cell types and evade antibody 
neutralization [53–56]. Libraries with random peptide 
insertions of 7–12 amino acids at AAV2 cap position 
587/588 are now widely used to identify tissue-tropic 

mutant capsids. This approach has even been expanded 
to insert peptides at the same location in other serotypes 
such as AAV9 [57–62]. The second main approach used 
to generate AAV capsid libraries utilizes error-prone 
PCR of the AAV2 cap gene to create functional mutants 
and has been used to identify capsids with altered recep-
tor binding affinity and the ability to evade neutralizing 
antibodies [63, 64]. Error-prone PCR has also been used 
to beneficially mutagenize other AAV serotypes. For 
example, surface-exposed residues found in the AAV9 
cap gene were mutagenized via error-prone PCR, which 
enabled the identification of mutants with ablated tro-
pism for liver and enhanced cardiac or musculoskeletal 
gene transfer [65]. The third main approach used to gen-
erate AAV capsid libraries pioneered DNA shuffling and 
PCR-mediated reassembly of randomly sheared AAV cap 
gene fragments from different AAV serotypes to generate 
capsid chimeras [66–69]. This DNA shuffling approach 
has also successfully identified novel capsids with altered 
tropism, the ability to evade neutralizing antibodies, or 
both. For example, AAV-DJ, a widely used chimera of 
serotypes 2, 8, and 9, was selected for its ability to evade 
neutralizing antibodies relative to other serotypes [66], 
and AAV-LK03, a chimera of 7 different serotypes, was 
selected for its ability to transduce human hepatocytes 
in humanized FRG mice [70], and is currently being 
evaluated in a clinical trial for hemophilia A [71]. In sum-
mary, directed evolution of AAV offers researchers the 
capability to select capsids from large and highly diverse 
mutant capsid libraries that provide distinct advantages 
over existing vectors, and has led to the identification of 
many new AAV capsids with beneficial properties such 
as improved transduction efficiency, reduced immuno-
genicity, broadened tissue tropism, or refined tissue tro-
pism for specific cell populations [62, 65, 66, 72–77].

Rational design
The utility of AAV as a gene therapy vector has fueled 
research to understand the basic biology of AAV. Sixty 
years after the discovery of AAV, structures for multiple 
AAV serotypes have now been resolved, allowing for a 
better understanding of capsid assembly and the basis for 
attachment to cell surface receptors [78–81]. This infor-
mation, along with details about capsid receptor interact-
ing domains, intracellular trafficking, uncoating, genome 
replication, and neutralizing epitopes, has informed the 
rational design of AAV vectors with enhanced proper-
ties through several different approaches. One approach 
to rational design relies on direct modification of the 
existing capsid amino acid footprint to transfer beneficial 
characteristics from one capsid to another. This approach 
may involve the substitution or deletion of single amino 
acids or entire domains between different AAV capsids. 
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Examples of this approach include direct modification 
of single surface-exposed tyrosine residues to phenyla-
lanine, preventing tyrosine-mediated ubiquitination and 
degradation of capsids after internalization [82]; substitu-
tion of variable loop domain residues to create a capsid 
with reduced immunogenicity [83]; or the substitution/
deletion of an entire receptor binding domains that con-
fer novel tropism upon the donor or recipient capsid 
[84]. Another approach to rational capsid design involves 
inserting non-virus elements into the capsid to convey 
beneficial properties. This has been primarily done to 
retarget AAV to alternate cellular receptors. For example, 
small targeting molecules have been linked to the AAV 
capsid via direct genetic fusion to AAV capsid proteins 
or via chemical conjugation to surface-displayed bio-
tin acceptor peptides or split inteins. These studies have 
enabled AAV retargeting to cellular receptors including 
CD4, CD30, CD34, CD133, Her2/neu, and EpCAM, and 
offer great hope for developing AAV vectors with speci-
ficity for individual cell types [85–92]. A more recent 
approach to rational design has created entirely artificial 
AAV capsids using phylogenic analyses to reconstruct 
the gene sequences from common ancestors of extant 
AAVs. Reconstructed ancestral AAV capsids generated 
via this approach appear to be more thermostable and 
are highly potent for several different cell and tissue types 
[93, 94]. In a similar approach, germline endogenous 
viral elements (EVEs) from the Dependoparvovirus line-
age have also been identified in a number of mammals, 
birds and marsupials [95–99]. These EVEs are now being 
used to guide the rational design of novel AAV vectors 
based on their distinct structural elements that could 
provide unique vector properties or tropisms [99]. As we 
continue to learn more about AAV and how it interacts 
with cells and tissues, new rational design strategies will 
be developed that enable us to discover improved vectors 
for different therapeutic applications.

Section II: Identification of liver‑tropic AAV vectors
AAV‑mediated delivery of antiviral therapies for chronic 
liver infections
Hepatitis B virus (HBV), hepatitis C virus (HCV), and 
hepatitis D virus (HDV) are hepatotropic viruses that 
cause viral hepatitis and can establish persistent/chronic 
infections in the liver. In 2015, an estimated 257 million 
people were living with chronic HBV infection, with an 
estimated 5% of these co-infected with the satellite HDV, 
an incomplete virus that requires HBV to establish infec-
tion and worsens HBV infection severity. A further 71 
million people are estimated to have chronic HCV infec-
tion. It is estimated that approximately 4% of all new 
cancers are caused by chronic HBV and HCV infections 
[100], and together they were responsible for 1.34 million 

deaths in 2015 due to complications from cirrhosis and 
hepatocellular carcinoma (HCC), a figure projected to 
increase by > 60% in 2040 [101]. While a curative treat-
ment has been recently developed for HCV, chronic HBV 
infection remains incurable, although viremia can be 
suppressed with antiviral drugs, and infection can be pre-
vented by vaccination [100, 102–104].

Current antiviral treatments for HBV infection include 
nucleoside analogs (NAs) and immunomodulatory ther-
apy, which can effectively suppress HBV replication, 
lower the rates of cirrhosis and HCC, and reduce the 
rate of mother-to-child transmission [105, 106]. How-
ever, these treatments require long-term adherence and 
rarely result in a permanent cure. The basis of HBV per-
sistence is covalently closed circular DNA (cccDNA), the 
template for HBV genome replication and transcription 
in infected hepatocytes [107]. The cccDNA reservoir in 
hepatocytes is stable and can be maintained without the 
need for re-infection, as newly formed infectious parti-
cles can recycle from the cytoplasm back into the nucleus 
and replenish the reservoir [108]. Thus, elimination or 
inactivation of the cccDNA reservoir is the ultimate goal 
of new curative therapeutic strategies [12, 108–110].

Gene therapy to eliminate, mutate, or silence the HBV 
genome has been explored pre-clinically by a number of 
groups in several cell culture systems and animal models 
[reviewed elsewhere [12, 14, 109, 111]]. Some strategies 
include the delivery of RNA interference (RNAi) activa-
tors to inhibit HBV gene expression or the delivery of 
gene-editing enzymes such as CRISPR/Cas9, zinc finger 
nucleases, and transcription activator-like effector nucle-
ases that cleave cccDNA, resulting in its degradation 
or inactivation through the introduction of mutations. 
Various delivery methods have been employed, includ-
ing non-viral delivery using lipoplexes and adenoviral 
or lentiviral vectors. Of relevance to this review, recent 
studies have reported that AAV vectors can effectively 
deliver anti-HBV therapeutics to hepatocytes in vitro and 
the liver in vivo [18, 28, 111–116]. Therefore, AAV vec-
tors are attractive gene transfer tools to deliver anti-HBV 
therapeutics due to their well-characterized liver trans-
duction capabilities and safety profile.

In addition to the inherent potency and specificity 
of gene editing enzymes or RNAi activators for HBV, 
AAV vector optimization to maximize transduction and 
transgene expression in human hepatocytes is critical to 
gene therapy’s effectiveness for viral infections. In recent 
years, significant advances in the development of liver-
tropic AAV vectors have emerged from the gene therapy 
field that can also be harnessed to treat persistent hepatic 
infections [117]. Due to the liver’s essential role in metab-
olism and systemic delivery of proteins into blood, many 
inherited and acquired diseases, such as hemophilia (A 
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and B), α − 1 antitrypsin deficiency, and ornithine tran-
scarbamylase deficiency, affect the liver and can poten-
tially be corrected by liver-targeted gene therapy [2, 3, 72, 
118]. For example, several clinical trials for hemophilia B 
have produced an array of data about AAV in humans, 
useful for improving hepatocyte tropism, transduction 
efficiency, and reducing immunogenicity [119]. Most 
of these studies have focused on engineering the AAV 
capsid, one of the major tropism determinants, through 
directed evolution, rational design, or a combination of 
both [120–122].

Optimization of AAV vectors for liver‑targeted applications
Recent efforts to improve AAV vectors for liver-targeted 
applications have focused on three areas: (1) maximizing 
human hepatocyte tropism, (2) evasion of neutralizing 
antibodies, and (3) streamlining pre-clinical evaluations 
of liver transduction efficiency for novel AAV capsids. 
The first two have mostly focused on engineering the 
AAV capsid, which largely determines both tropism and 
antigenicity. The third is motivated by discrepancies in 
transduction levels observed in clinical trials compared 
to those obtained in pre-clinical studies in cell culture 
and animal models. Over the last few years, liver human-
ized mouse models have emerged as an important tool to 
study AAV transduction differences between serotypes at 
the pre-clinical stage. To effectively study antiviral thera-
pies against HBV, liver humanized mice are crucial since 
HBV cannot replicate in most small mammals. In these 
xenograft models, primary human hepatocytes (PHHs) 
are transplanted into immunodeficient mice with genetic 
mutations that elicit murine liver injury. This deficit con-
fers a growth advantage to PHH over murine hepato-
cytes, enabling high engraftment levels [123–126]. Still, 
it is unclear how well these models recapitulate in  vivo 
delivery in humans.

As previously discussed, AAV2 has successfully been 
used to treat blindness in clinical trials. In contrast, an 
AAV2 vector used for liver-targeted expression of FIX 
in early clinical trials for hemophilia B showed low effi-
cacy, an interesting result given the robust transduction 
of human hepatocyte-derived cell lines by AAV2 vec-
tors in vitro. A recent study suggests that tissue culture 
adaptations, possibly dating back to the early propaga-
tion of AAV2 in  vitro, caused increased affinity for its 
primary cellular receptor heparan sulfate proteoglycan 
(HSPG). This resulted in enhanced transduction of pri-
mary hepatocytes and cell lines in vitro, while simultane-
ously reducing hepatocyte transduction in vivo [127]. In 
the same study, clade B isolates found in primary human 
liver samples that are similar to AAV2 showed reduced 
in  vitro tropism for hepatocyte cells, but increased tro-
pism for human hepatocytes in humanized FRG mice. 

Furthermore, these primary isolates could be adapted for 
tissue culture in Huh7 cells via iterative passaging with 
adenovirus type 5, but this resulted in attenuated in vivo 
transduction of hepatocytes. This study demonstrated 
the complexities of optimal capsid identification when 
using different in vitro or in vivo systems for selection.

The generation of AAV capsid libraries followed by a 
selective screen has significantly increased the reper-
toire of AAV capsids with modified transduction prop-
erties. In 2014, Lisowski et al. used the humanized liver 
FRG mouse model to identify AAV capsid mutants with 
improved human hepatocyte transduction in  vivo [70]. 
This directed evolution methodology selected for vari-
ants with human hepatocyte receptor binding and entry 
capabilities. The group identified the capsid mutant 
AAV-LK03, which is closely related to AAV3B, differ-
ing only by eight amino acid changes. In an in vivo vec-
tor specificity analysis in humanized FRG mice, they 
showed that AAV-LK03 exhibits a stronger tropism for 
human hepatocytes in humanized mouse livers than 
AAV8, and AAV-LK03 is now being evaluated in a phase 
I/II clinical trial to treat hemophilia A (ClinicalTrials.gov: 
NCT03003533). Early results from this trial indicate that 
albeit safe at lower doses, high doses resulted in severe 
adverse events and subsequent loss of transgene expres-
sion in patients [71]. Recently, a rational design approach 
has been used to optimize AAV-LK03 for gene therapy 
applications via site-directed mutagenesis of surface-
exposed residues. The site selection was informed by 
previous studies in AAV3B, which demonstrated that the 
elimination of specific surface-exposed serine and thre-
onine residues enhances transduction efficiency while 
retaining viral tropism and cellular receptor interactions 
[128]. This study showed that applying rational design to 
library-derived variants is a promising tool for achieving 
superior results in clinical settings.

Since AAV-LK03 was first characterized, several stud-
ies have reported conflicting results regarding the supe-
riority of AAV-LK03 over other liver-tropic serotypes in 
mice with human livers and NHP [114, 129–131]. In one 
comparative study of liver gene transfer using natural and 
engineered AAV serotypes, AAV3B, AAV8, AAVrh10, 
and AAV-LK03 all transduced NHP livers and human 
hepatocytes. In contrast to Lisowski et  al., AAV-LK03 
was not found to be superior to either AAV3B or AAV8 
as a potent liver-specific vector [129]. More recently, 
the experimental variables that could affect AAV trans-
duction of human hepatocytes were analyzed in a study 
using liver humanized FRG mice [132]. This study dem-
onstrated that NTBC cycling, PHH donor origin, and the 
AAV vector dose could substantially affect transduction 
efficiency in human hepatocytes. These experimental 
variables could partially explain the discrepancies in AAV 
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vector transduction efficiency seen between different 
laboratories using the FRG mouse and aid in the much-
needed standardization of chimeric liver mouse models.

Although enhanced liver transduction efficiency has 
been seen with AAV-LK03 in some studies, this mutant 
is still moderately sensitive to pre-existing levels of neu-
tralizing antibodies in humans [133]. To directly coun-
teract humoral immunity against novel AAV capsids, a 
recent directed evolution study screened evolved human 
hepatotropic AAV capsids –obtained after five rounds of 
selection in FRG mice– against pools of human immu-
noglobulins pooled from thousands of patients to select 
capsids that can evade neutralization [120]. In this study, 
independent results from two laboratories showed that 
the newly identified capsid mutants AAV-NP40 and 
AAV-NP59 display superior transduction of human 
hepatocytes over AAV-LK03, regardless of human hepat-
ocyte repopulation levels in liver humanized FRG mice. 
Importantly, reduced seroreactivity was seen for AAV-
NP40 and AAV-NP59 relative to AAV-LK03 using serum 
from a cohort of 50 healthy US adults of mixed gender.

In another directed evolution approach, intravenous 
immunoglobulin was passively transferred into liver 
humanized mice before administering the AAV capsid 
library to identify mutants that could evade AAV neu-
tralizing antibodies and transduce human hepatocytes 
in vivo [134]. After four cycles of selection, mutant AAV-
LP2-10, composed of capsids derived from AAV2, AAV6, 
AAV8, and AAV9, was the dominant isolate. Using 
immunohistochemistry and flow cytometry as metrics 
for transduction efficiency in humanized mice, AAV-
LP2-10 transduced human hepatocytes at similar levels 
to AAV8. Of note, several studies have reported AAV8 
as a poor functional transducer of human hepatocytes 
in vivo [70, 135]. Nevertheless, AAV-LP2-10 was able to 
robustly escape pooled human immunoglobulins rela-
tive to AAV1, AAV2, AAV3, AAV6, AAV8, and AAV9. In 
twenty serum samples from the healthy donors, mutant 
AAV-LP2-10 had low neutralizing antibody titers, simi-
lar to AAV9 –one of the serotypes with the lowest preva-
lence of anti-AAV antibodies in healthy humans [31].

Individually, directed evolution and rational design 
have successfully created novel AAV vectors with 
enhanced liver-transduction capabilities and lower 
immunogenicity profiles. However, the combination 
of both methods has gained popularity in recent years 
[121, 134]. This approach involves the rational design of 
mutant libraries with targeted mutations in residues that 
are likely to affect capsid function during the screening 
process, thus maximizing the identification of mutants 
with desired features. A recent study combined rational 
design with directed evolution to select for liver-tar-
geted AAV3B-derived variants [122]. The library design 

only allowed for randomization of residues in surface-
exposed VRs while keeping the backbone sequence intact 
to maintain structural integrity. Moreover, to reduce the 
likelihood of detrimental amino acid substitutions, the 
allowed amino acids at each mutated site were limited to 
those that occur naturally at each residue in 150 native 
serotypes. The combinatorial AAV3B capsid library was 
serially screened for five rounds in vitro using 3D human 
hepatocellular carcinoma spheroid cultures. From this 
screen, variant capsid AAV3B-DE5, which contains 24 
amino acid substitutions compared to AAV3B, became 
predominant. Although validation experiments in FRG 
mice demonstrated that AAV3B-DE5 transduces human 
hepatocytes at similar levels to AAV-LK03, the serore-
activity of AAV3B-DE5 relative to the parental AAV3B 
capsid improved significantly, showing that extensive 
changes in the amino acid sequence of VRs can effec-
tively reduce pre-existing antibody neutralization with-
out including neutralizing antibodies during the selection 
process.

In summary, the identification of liver-tropic AAV vec-
tors in pre-clinical settings using animal models and cell 
culture systems has been extensively optimized to select 
for variants that can both transduce hepatocytes at high 
levels and escape pre-existing immunity. As the liver is an 
important target for gene delivery in many gene therapy 
applications, humanized liver mouse models will con-
tinue to be used in the search for vectors that meet both 
criteria.

Section III: Identification of peripheral nervous 
system tropic AAV vectors
Neurons of the peripheral nervous system (PNS) have 
long been identified as key target cells in the study of 
pain. They are also major targets for treatment of the 
incurable and persistent alphaherpesviruses HSV-1, 
HSV-2, and varicella zoster virus (VZV), which are highly 
prevalent amongst humans [136–138]. After establish-
ing an infection through peripheral mucosa, the respira-
tory tract or conjunctiva, human alphaherpesviruses all 
establish lifelong latent infections in neuronal cell bodies 
of sensory ganglia of the somatic or autonomic nervous 
system where their genomes persist in a latent episomal 
form that allows them to evade host immune responses 
and sporadically reactivate to initiate disease pathogen-
esis at peripheral sites.

The capability to deliver anti-viral therapeutics to sen-
sory neurons in  vivo or influence them via overexpres-
sion of genes or inhibitors would be extremely valuable, 
and AAV vectors have been identified as useful tools 
to accomplish this. As discussed below, multiple stud-
ies have shown that localized delivery of AAV vectors 
to individual ganglia results in efficient gene delivery to 
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sensory neurons. Unfortunately, the small size of sensory 
ganglia limits the effectiveness of this approach on a large 
scale as both somatic and autonomic ganglia of the PNS 
are found throughout the body in multiple distinct loca-
tions so that comprehensive gene delivery would require 
many localized administrations. For example, there are 
62 dorsal root ganglia (DRG) in humans, two for each of 
the 31 cervical, thoracic, lumbar, and sacral nerve pairs 
that emerge from each side of vertebrate along the spi-
nal column. As an alternative to localized delivery, efforts 
have been made to identify natural or engineered AAV 
capsid variants that can facilitate gene delivery to multi-
ple sensory ganglia when delivered through a single vec-
tor administration route that results in more widespread 
delivery. Here we review studies that have investigated 
gene transfer to sensory ganglia following local or sys-
temic AAV vector delivery.

Dorsal root ganglia
DRG houses neuronal cell bodies of the somatic nervous 
system that project from cervical, thoracic, lumbar, and 
sacral vertebrate and are involved in the relay of sensory 
information from peripheral sites to the central nervous 
system (CNS). DRG have been identified as a primary 
target for pain, spinal cord injury, and neurodegenerative 
disease studies. These clusters of neurons are also major 
’reservoirs’ for viral DNA during latent VZV and geni-
tal HSV infections [139–141], as alphaherpesvirus DNA 
can be detected in multiple DRG along the spine during 
latent infections. This makes DRG essential targets for 
curative antiviral therapies requiring gene transfer.

Localized AAV delivery routes such as direct lumbar or 
sciatic nerve injections can facilitate efficient gene trans-
fer to individual or multiple closely situated DRG. Fol-
lowing localized injection directly into the DRG or the 
sciatic nerve, AAV vectors including serotypes 1, 2, 5, 6, 
7, 8, 9, rh10, and an engineered AAV2-retro vector can all 
efficiently transduce neurons of the DRG in mouse, rat, 
and pig animal models [142–148]. In one of these studies, 
a head-to-head comparative analysis was performed in 
mice using seven different serotypes after localized deliv-
ery to the DRG. Serotypes 1, 5, and 6 performed best with 
up to 90% of neurons, both IB4+ and CGRP+, expressing 
the GFP transgene after 12 weeks [145]. Although local-
ized delivery demonstrates the promise of AAV for DRG 
gene transfer, comprehensive gene delivery to multiple 
DRG situated along the spine will likely require a more 
generalized approach, so other studies have investigated 
widespread DRG gene delivery via different AAV delivery 
routes.

Indirect uptake via localized AAV delivery to afferent 
nerve terminals that project from peripheral sites has 
shown promise as an approach to transduce multiple 

ganglia. In one such study, AAV8-GFP vectors were 
injected into the footpad of mice, resulting in the trans-
duction of > 90% of sensory neurons in multiple DRG that 
innervate the footpad [149]. Furthermore, efficient co-
labeling of HSV+ neurons was seen from the AAV8-GFP 
vector, demonstrating the utility of this delivery approach 
in potential anti-HSV therapies. In a similar approach, 
an engineered AAV capsid vector (PHP.S) was delivered 
directly into the knee joint of mice, and uptake by nerves 
that innervate the knee from the DRG was seen, with 
up to 7% of lumbar L2-L5 neurons, including TRPV1+ 
neurons, transduced [150]. In the same study, delivery of 
therapeutic transgenes that target muscarinic receptors 
showed that it was possible to increase or decrease knee 
neuron excitability, thus demonstrating the use of AAV 
for studying the role of the DRG in pain responses. While 
the footpad and knee delivery routes show promise for 
DRG transduction in rodents, they may not translate well 
to large animal models. Other systemic delivery routes 
have also been studied as alternatives.

Delivery of therapeutic transgenes to multiple DRG 
via the cerebrospinal fluid (CSF) or blood offers a more 
straightforward route to widespread gene delivery in 
multiple DRG, and several groups have investigated this. 
When delivered via intrathecal (IT) injection, AAV vec-
tors can efficiently transduce sensory neurons in multi-
ple DRG [144, 147, 151–156] and AAV serotypes 5, 6, 8, 9 
and rh10, as well as an engineered AAV8 capsid (AAV8.2) 
containing the AAV2 phospholipase A2 domain, have all 
shown efficient DRG transduction following IT delivery 
in mouse, rat, and macaque animal models. While these 
studies offer promise for future studies in humans, a pre-
clinical study investigating gene transfer following IT 
delivery of an AAV9 vector expressing α-1-iduronidase 
(IDUA) to infant rhesus macaques offers the most hope 
for the future development of AAV-mediated antiviral 
therapies against alphaherpesviruses in humans [151]. 
This study showed that 4–29% of neurons within the 
cervical, thoracic, and lumbar DRG of 4 study animals 
expressed the IDUA transgene as long as three years and 
eight months post AAV administration.

Intravenous delivery of AAV vectors should, in theory, 
enable gene delivery to any cell within close proximity of 
the vasculature. However, unlike IT administration, IV 
delivery results in the circulation of AAV vectors through 
organs that are not part of the nervous system, such as 
the liver and spleen, where vector is often sequestered at 
high levels before it has a chance to see the target organ. 
Subsequently, sensory DRG likely see a lower relative 
effective AAV dose via IV delivery than IT, and mostly, 
AAV vectors do not appear to transduce sensory ganglia 
as efficiently through this administration route. Unfor-
tunately, non-specific sequestration is inherent to most 
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naturally occurring AAV capsids. However, one approach 
to prevent this has been to screen AAV capsid libraries 
for engineered variants that can transduce sensory gan-
glia when delivered IV to bypass non-specific sequestra-
tion. In  vivo library selection has been used to identify 
AAV capsids with enhanced tropism for neurons of the 
CNS and PNS with great success and has yielded at least 
one novel capsid (AAV.PHP.S) that can efficiently trans-
duce up to 82% of DRG neurons in mice after IV delivery 
[59, 61, 157]. While the PHP.S capsid does not appear to 
transduce other sensory ganglia as efficiently [10], future 
in vivo library selections may identify new AAV capsids 
that transduce DRG neurons and other sensory ganglia 
with high efficiency via any delivery route.

Trigeminal ganglia
In mammals, two trigeminal ganglia (TG) sit below the 
brain, and house cell bodies of tactile, proprioceptive, 
and nociceptive afferent somatic sensory neurons that 
innervate the face. These TG are responsible for relay-
ing craniofacial sensory and motor nervous stimuli from 
the left or right side of the face into the CNS through a 
large sensory root and small motor root that enters the 
brainstem. Like the DRG, the TG is a target for studies of 
pain, but it is also a reservoir for viral DNA during latent 
VZV and craniofacial HSV infection [139–141], and is 
a source of reactivating virus during cold sore or other 
head and neck HSV/VZV flare-ups. The TG is therefore 
an important target for curative anti-alphaherpesvirus 
gene therapies.

Direct injection of AAV delivery into the TG is 
extremely challenging due to its location immediately 
below the brain. Therefore, attempts to transduce sen-
sory neurons of the TG using AAV vectors have mainly 
focused on indirect vector transductions methods involv-
ing delivery via projecting efferent neurons of the face 
or IV administration. Transduction of the TG has been 
attempted via delivery of AAV to the eye since efferent 
neurons from the TG project into the conjunctiva of the 
eye, but species-specific differences have been seen in 
delivery efficiency. In mice, the delivery of AAV to the 
eye has proved inefficient for TG delivery with minimal 
transduction of sensory neurons seen [158]. Conversely, 
in the rabbit, efficient transduction of TG neurons is seen 
following delivery to the eye, with AAV/HSV co-infection 
of sensory neurons also observed, demonstrating that 
this delivery approach could be used in the assessment 
of potential anti-HSV therapies [149]. As an alternative 
to the eye, intradermal AAV injection into the snout has 
been assessed in mice since efferent neurons project from 
the TG into the whisker pad. Following mouse whisker 
pad delivery, neuronal transduction in the TG can be 
seen from AAV1, AAV7, AAV8, or AAV9 vectors, with 

the highest levels (over 20%) seen with AAV1 [158]. Fur-
thermore, it has been shown that gene editing meganu-
cleases targeting HSV sequences can directly cleave HSV 
DNA in the TG of mice when AAV1 vectors are delivered 
via the whisker pad and a latent HSV infection is estab-
lished via ocular challenge [159]. More recent efforts to 
target the TG have shown that IV administration of cer-
tain serotypes can provide more efficient transduction 
of the TG in mice. We have found that AAV8 and AAV.
rh10 vectors can deliver transgenes to the TG with high 
efficiency when delivered IV [10]. Furthermore, when a 
triple serotype (AAV1/AAV8/AAV.rh10) combination 
HSV-specific meganuclease therapy is delivered IV, up 
to 55% of latent HSV-1 DNA found in the TG of mice 
during latent infections can be eliminated [10]. This data 
demonstrates the promise of AAV vectors for targeting 
the TG and also shows that the treatment/cure of per-
sistent alphaherpesvirus infections may eventually be 
feasible.

Autonomic sensory ganglia
The autonomic nervous system (ANS) is a branch of 
the PNS that unconsciously controls many bodily func-
tions and can be divided into sympathetic ’fight-or-flight’ 
neurons, parasympathetic ’rest-and-digest’ neurons, 
and enteric neurons that control motor functions of the 
GI tract. The potential to transduce autonomic neurons 
would be useful for studying many aspects of neuro-
logical function across multiple body systems, and AAV 
vectors have been investigated to this end. Like somatic 
neurons, autonomic neurons of the sympathetic, para-
sympathetic, and enteric nervous systems can also harbor 
latent alphaherpesvirus DNA within neuronal cell bodies 
of distinct ganglia [160–162], so the ability to transduce 
autonomic neuronal populations is also important for the 
development of curative antiviral gene therapeutics tar-
geting HSV and VZV.

While more limited in number than studies in the 
somatic nervous system, some studies have shown that 
ANS neurons can be efficiently targeted with AAV vec-
tors. In mice, AAV8 and AAV9 vectors can efficiently 
transduce up to 57% of myenteric and submucosal neu-
rons of the GI tract when delivered systemically via IV 
injection [163, 164]. In guinea pigs, AAV8 can transduce 
myenteric and submucosal gut neurons when delivered 
IV [165]. In cynomolgus macaques, AAV9 can transduce 
myenteric neurons of the stomach and small and large 
intestine after IV administration [165]. More recently, we 
were able to show that the neurons of the superior cer-
vical ganglia (SCG), a part of the sympathetic ANS, can 
also be transduced with high efficiency by AAV vectors 
delivered IV. We found that AAV8 and AAV.rh10 vec-
tors can transduce HSV infected neurons of the SCG in 
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latently HSV-1 infected mice with high efficiency and 
that latent viral loads in the SCG can be reduced by more 
than 90% following triple serotype (AAV1/AAV8/AAV.
rh10) HSV-specific meganuclease delivery [10]. Overall, 
these studies demonstrate the potential of AAV vectors 
for use in studying diseases of the autonomic nervous 
system.

AAV‑mediated toxicity in sensory ganglia
Despite the promise shown by AAV vectors for gene 
delivery to sensory neurons in vivo, several recent stud-
ies in large animals suggest that IV or IT delivery of high 
doses of AAV vectors may lead to asymptomatic injury 
to sensory neurons in  vivo. Mononuclear cell infiltra-
tion and minimal to moderate asymptomatic degen-
eration of DRG neurons and associated axons has been 
seen in NHP, and more severe sensory neuronal lesions 
were seen in pig DRG [166–169]. While the toxicity seen 
in the DRG of NHP receiving AAV has been described 
as subclinical in some studies [151], a more comprehen-
sive meta-analysis of 256 NHP receiving AAV vectors 
revealed that DRG pathology is almost always seen in 
NHP following AAV delivery as it was detected in 83% 
of animals receiving AAV via CSF delivery, and 32% of 
animals receiving AAV via IV injection. Furthermore, 
abnormal DRG pathology was shown to be independ-
ent of the different capsids (5), promoters (5), transgenes 
(20), or purification methods used for each AAV vector. 
These studies raise legitimate concerns for future studies 
that target sensory neurons of the PNS via AAV vectors. 
However, a recent study suggests that AAV-associated 
DRG toxicity can be reduced when a microRNA target is 
included in the vector backbone that selectively knocks 
down transgene expression in the DRG [170]. Further 
NHP studies addressing the mechanism and extent of 
adverse AAV-mediated pathology in DRG and other sen-
sory ganglia will be needed as AAV vectors are advanced 
for use in therapies targeting the PNS.

Section IV: Identification of CD4+ T cell tropic AAV 
vectors
CD4+ T lymphocytes are hematopoietic cells that 
play a major role in controlling infectious pathogens 
during the initiation of humoral and cellular immune 
responses by the host. Due to the many different and 
complex roles they play in host immune responses, 
CD4+ T cells have been identified as important tar-
gets in the study of autoimmune diseases, such as the 
severe combined immunodeficiencies (SCID), and for 
the development of cell-based immune-mediated ther-
apeutics, such as chimeric antigen receptor (CAR) T 
cells. CD4+ T cells have also been identified as impor-
tant targets for gene therapies targeting HIV, which 

selectively infects CD4+ T cells and CD4+ myeloid 
cells after infection and establishes lifelong infections 
via integration of its genome into the host chromo-
some. Unlike hepatocytes or sensory neurons, CD4+ 
T cells are ubiquitously found throughout the body in 
blood and other lymphoid and non-lymphoid tissues, 
which makes their transduction in  vivo for the treat-
ment of HIV highly challenging. This is of high impor-
tance for developing curative gene therapies against 
HIV that require widespread CD4+ T cell gene transfer 
to every infected cell throughout the body. Fortunately, 
despite the observed toxicity in the DRG, AAV vectors 
have generally shown a good safety profile when deliv-
ered systemically at high doses in several animal mod-
els, so they are being investigated as tools to deliver 
different types of therapeutics to CD4+ T cells both 
in vivo and ex vivo.

CD4+ T cells can be isolated from whole blood and 
transduced with gene therapeutics ex vivo before trans-
plantation, or they can be directly targeted in  vivo in 
blood and tissues when vectors are delivered systemi-
cally. For some therapeutic purposes, CD4+ T cells can 
also be targeted indirectly via transduction of hemat-
opoietic progenitor cells that can differentiate into the 
lymphocyte lineage and become CD4+ T cells. AAV vec-
tors have shown promise for all these approaches to T 
cell transduction, and AAV capsids showing promise for 
CD4+ T cell delivery have included naturally occurring 
capsids and capsids identified via directed evolution or 
rational design.

Initial attempts to determine whether naturally occur-
ring AAV vectors could transduce hematopoietic cells 
identified AAV6 as a serotype that could efficiently trans-
duce mouse myeloid cells [171]. Subsequent studies then 
demonstrated that AAV6 could efficiently transduce 
human CD34+ hematopoietic progenitor cells [172] 
and CD4+ T cells [173, 174], and AAV6 is now the vec-
tor of choice for many to deliver gene-editing enzymes 
or knock-in donors to primary T cells in the generation 
of CAR T cells or HIV receptor knockout CD4+ T cells 
ex vivo [173–177]. Gene editing of human CD34+ cells 
with AAV6 has also been shown to improve lymphopoie-
sis in a humanized mouse model of X-linked SCID 
(SCID-X1) that transplants ex vivo gene edited progeni-
tor cells from SCID-X1 patients [178]. In an alternative 
approach, Smith et  al. screened human hematopoietic 
cells for naturally occurring AAVs and identified 18 novel 
clade F AAV capsids that, when vectorized, were able to 
transduce hematopoietic progenitor cells that repopu-
lated all lineages when transplanted in humanized mice 
[179]. While highly promising, a recent study suggests 
that these new isolates do not perform as well as AAV6 
in human hematopoietic gene-editing studies [180], and 
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AAV6 remains the current capsid of choice for ex  vivo 
transduction of CD4+ T cells.

Approaches to identify capsids that transduce T cells 
using directed evolution or rational design have been 
few but show promise. In one study, AAV2 error-prone 
PCR, AAV2 loop insertion, and AAV shuffle libraries 
were pooled and screened for variants with improved 
transduction of the H9 T cell line [181]. Capsid variants 
with AAV2 loop peptide insertion were isolated after 
several rounds of screening that had increased transduc-
tion, demonstrating the utility of this approach. In two 
other studies, rational design was used to target either 
the AAV2 or the AAV6 capsid to CD4+ T cells via the 
surface display of small targeting molecules called direct 
ankyrin repeat proteins (DARPins) that have specificity 
for CD4 [88, 89]. These studies demonstrated that, when 
ablated of their native tropism, CD4-specific DARPin 
retargeted vectors can efficiently transduce CD4+ T 
cells both in  vitro and in  vivo. However, transduction 
of human CD4+ T cells was more efficient than rhesus 
macaque CD4+ T cells.

While efforts continue to identify better capsids that 
efficiently target CD4+ T cells, several recent animal 
studies have shown that systemic delivery of AAV-based 
therapeutics may offer a realistic pathway to effective 
anti-HIV therapies. Studies in HIV transgenic mice, 
humanized BLT mice infected with HIV, and SIV infected 
macaques have shown that AAV9 or AAV-DJ vectors 
expressing the SaCas9 gene in combination with sgRNAs 
that target the HIV or SIV long terminal repeat (LTR), 
and/or HIV gag can be used to excise portions of the HIV 
provirus in vivo when delivered systemically. HIV provi-
rus excision was demonstrated in these studies in whole 
blood, CD4+ T cells, lymphoid, and non-lymphoid tis-
sues throughout the body following a single AAV vector 
infusion [16, 182, 183], and up to 80% of SIV provirus 
DNA was lost from lymph nodes in SIV infected rhe-
sus macaques that were pre-screened to be negative for 
exposure to AAV9 [16]. These studies suggest that with 
further work to identify new capsids with better in vivo 
tropism, effective AAV-mediated anti-HIV gene therapy 
could one day be a reality.

Conclusions
Across the global human population, multiple persis-
tent viral infections affect billions of people. While some 
of these infections are not associated with disease, or 
only cause disease in immunocompromised individu-
als, the proportion of viral infections that causes disease 
is of significant medical importance [184]. For instance, 
many persistent viral infections are risk factors for cancer 
development, accounting for 10–15% of all cancers [100, 
185]. Although some are preventable by vaccination or 

treatable with drugs, as is the case for HBV, the perma-
nent elimination of viral DNA from anatomical sites that 
sustain infection remains a challenge. Recent advances 
in gene-editing, antibody, and RNAi technologies rep-
resent promising therapeutic approaches to mutate or 
eliminate viral reservoirs. A fundamental aspect of these 
approaches is the localized and specific delivery of thera-
peutic agents to particular cell types, tissues, and organs. 
Recent advances and current challenges in developing 
AAV as a delivery vector for the treatment of monogenic, 
inherited diseases can inform the development and opti-
mization of AAV as a vector for antiviral therapies to 
treat persistent infections (Fig. 3).

AAV vectors are a promising tool to achieve this 
because of their lack of pathogenicity, long-term trans-
duction capacity, and relatively low immunogenicity, 
given their widespread natural prevalence in humans. 
As discussed here, the preclinical development of 
AAV vectors via capsid engineering in recent years has 
resulted in vectors with enhanced tissue tropism and 
potent transduction efficiencies in the liver, the periph-
eral nervous system, and CD4+ T cells, demonstrating 
the potential of AAV vectors to access anatomical sites 
harboring viral reservoirs. Nonetheless, significant chal-
lenges remain and have been best illustrated by stud-
ies in large animal models and clinical trial outcomes. 
A substantial obstacle for the implementation of AAVs 
as gene therapy vectors is the immunogenicity result-
ing from pre-existing anti-AAV antibodies, which many 
groups have undertaken preclinically by in vivo selection 
of AAV capsid libraries using directed evolution, rational 
design, or a combination of both. Other approaches to 
circumvent pre-existing immunity have explored AAV-
specific plasmapheresis for the selective removal of cir-
culating antibodies that can neutralize AAV vectors and 
the administration of immunosuppressive drugs before 
AAV administration. However, the effectiveness of these 
approaches has yet to be evaluated in humans [186–188].

The fast-paced preclinical development of novel 
AAV capsids for specific applications has significantly 
expanded the AAV catalog and holds promise for iden-
tifying vectors with desired properties for different appli-
cations. However, the extensive AAV ‘toolkit’ will require 
head-to-head comparisons of immunogenicity, biodistri-
bution, and cell/tissue/organ transduction efficiencies to 
narrow down the best vectors to be evaluated clinically.
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