Skip to main content
. 2021 Apr 7;21(8):2586. doi: 10.3390/s21082586

Table 4.

Summary of publications focused on Prostate histopathology image classification.

Classifier Reference Year AUC Accuracy Specificity Sensitivity
KNN [66] 2003 - 0.917 - -
[18] 2014 - 0.76 - -
SVM [48] 2007 - 0.876 - -
[14] 2013 0.75 - 0.83 0.81
[13] 2019 0.98 ± 0.011 for artefacts versus glands
0.92 ± 0.04 for benign versus pathological
0.95 ± 0.02 for artefacts versus glands
0.88 ± 0.07 for benign versus pathological
0.95 ± 0.03 for artefacts versus glands
0.87 ± 0.07 for benign versus pathological
0.94 ± 0.01 for artefacts versus glands
0.80 ± 0.06 for benign versus pathological
[58] 2019 - 0.655 (one-shot classification)
0.92 (Binary classification)
- -
Bag-of-Words [22] 2016 - 0.901 0.905 0.79
MLA [21] 2018 - 0.883 0.94 0.876
Boosting Cascade [20] 2006 - 0.88 - -
SVM and Random Forest [19] 2011 0.95 - 0.91 0.89
Fuzzy Set Theory + Genetic Algorithm [110] 2013 0.824 - 0.95714 0.7097
Adaboost [2] 2016 - 0.978 - -