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Abstract: The pavement inspection task, which mainly includes crack and garbage detection, is
essential and carried out frequently. The human-based or dedicated system approach for inspection
can be easily carried out by integrating with the pavement sweeping machines. This work proposes
a deep learning-based pavement inspection framework for self-reconfigurable robot named Panthera.
Semantic segmentation framework SegNet was adopted to segment the pavement region from other
objects. Deep Convolutional Neural Network (DCNN) based object detection is used to detect
and localize pavement defects and garbage. Furthermore, Mobile Mapping System (MMS) was
adopted for the geotagging of the defects. The proposed system was implemented and tested with
the Panthera robot having NVIDIA GPU cards. The experimental results showed that the proposed
technique identifies the pavement defects and litters or garbage detection with high accuracy. The
experimental results on the crack and garbage detection are presented. It is found that the proposed
technique is suitable for deployment in real-time for garbage detection and, eventually, sweeping or
cleaning tasks.

Keywords: pavement cracks detection; garbage detection; machine learning; self-reconfigurable;
pavement sweeping robot

1. Introduction

The development of urban pavement infrastructure systems is an integral part of
modern city expansion processes. Every year, the pavement infrastructure has been
growing multiple folds due to developing new communities and sustainable transport
initiatives. Maintaining a defects free, clean, and hygienic pavement environment is a
vital yet formidable Pavement Management System (PMS) task. Pavement inspection,
i.e., identifying defects and litter or garbage with cleaning, are mandatory to achieve a
defects-free and hygienic pavement environment. Generally, in PMS, human inspectors
are widely used for defect and cleanness inspection. However, this method takes a long
inspection time and needs a qualified expert to systematically record the severity of defects
and mark defects’ spatial location. Furthermore, routine cleaning of lengthy pavement is a
tedious task for sanitary workers.

Autonomous robots are suited for repetitive, dull, dirty, tedious, and time-consuming
tasks. The emphasis on automation in construction using robots is reported in [1] where a
detailed study on how robots potentially value add to the construction workflow, quality
of work and project timeline in less explored areas of construction robotics. Tan et al. [2]
introduced robot inclusive framework targeting robots for construction sites, that proposes
a measure of robot-inclusiveness, different categories for robot interaction, design criteria
and guidelines to improve robot interaction with the environment.
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An initial attempt for autonomous sweeping using a robotic system was reported in [3],
where the robot is designed to autonomously sweep road curbside as current methods
to clean road curbside is very labour intensive and repetitive. Pavement cleaning robots
have many design limitations, such as the robots are of fixed shape and cannot cover
the different sizes of pavement width, and are not equipped with real-time garbage and
pavement crack detection algorithms. As a result, limited efficiency is achieved during the
pavement cleaning tasks.

1.1. Literature Review

Self-reconfigurable robots are becoming a viable alternative for fixed morphology
robots. These robots are developed with an inherent capability to autonomously change
their kinematics [4] to overcome difficulties in handling a given task and traversing the
environment. The advantage of using a self-reconfigurable robot named hTetro over fixed-
shaped robots for indoor cleaning is demonstrated in [5,6]. The self-reconfigurable robot
application was extended for an outdoor pavement sweeping robot named Panthera with
its design disclosed in [7] and its vision-based reconfiguration ability based on pedestrian
detection and their velocity was demonstrated in [8,9]. The Panthera robot’s autonomy
index is reported as 2.4 on the scale of 10 using the framework reported in [10]. Panthera’s
previous work does not include the garbage and pavement inspection task, which is an
essential aspect. This paper aims to increase Panthera robot’s use case and index by
autonomous inspection of pavement and its geotagging information. Also, the crack
detection scheme will be useful for extending it to the drain inspection robots as reported
in [11].

Computer vision with Machine Learning (ML) and Deep Learning (DL) based defect,
and cleanness inspection is an emerging technique [12–18]. It has been widely used for
the detection of material defects, drivable region detection in autonomous vehicle , waste
management industries [19–21]. In contrast with manual inspection scheme, computer
vision with ML-based inspection methods are faster, high-precision, and more suitable
for routine infrastructure and cleanness inspection task. Emanuel et al. [22] using image
percolation to detect cracks and demonstrated that it is robust to blurring or image quality
degradation. An autonomous crack inspection robot has been implemented in [23] where
it is able to process the image data fast, with low cost and in variable lighting conditions.
Fan et al. [24] proposed an enhanced road crack detection scheme using the Deep Convolu-
tion Neural Network (DCNN), bilateral filtering, and adaptive threshold algorithms. Here,
DCNN was used to determine the defect in the image, bilateral filtering for smoothed the
crack region, and adaptive threshold method from extract the cracks from the road surface.
The real-time road crack mapping system was proposed in [25] where the crack detection
network was trained with longitudinal, transverse, and alligator type defects images and
optimized by the Bayesian optimization algorithm. The author reported that the crack
detection network classifies the road defects with 97% accuracy. The deep neural network
system for the detection of cracks on road were demonstrated in [26]. Here,the pavement
inspection which includes the detection of garbage apart from the cracks and potholes in
road conditions is carried out.

The asphalt pavement crack detection and classification system were reported in [27].
The detection network in [27] was built with three convolution pooling layers and two
fully connected layers. The trained model obtained was having an accuracy of 98% defect
detection. In [28] Ting yang et al proposed modified SegNet based scalable crack detection
model for inspecting concrete and asphalt pavement and bridge deck cracks. The CNN
network was built with VGG16 net without the top layer, initialized with open-source pre-
trained weights, trained with 2000 high-resolution crack images, and achieve 83% defect
detection accuracy. In another study [29], YOLOV2 deep learning framework was trained
to automated pavement distress analysis. The network was trained with 7240 images,
and the trained model obtained an F1 score of 0.8780 for distress detection. Besides, the
author reported that the network accurately detects the alligator cracks but struggles
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with transverse cracks. Another study reported on Sobel and Canny edge detection
approach for detecting pavement cracks and attain an Classification Accuracy Rate (CAR)
as 79.99% reported in [30]. However, most of the defect inspection scheme was used offline,
and very few works have reported on the pavement cleanness inspection using a deep
learning scheme.

The CNN based approaches were reported in the literature for its effectiveness in
recognizing garbage, cleanness inspection, and garbage sorting. Chen et al. proposed a
computer vision-based robot grasping system for automatically sorting garbage. Here,
Fast Region Convolution Neural Network (F-RCNN) is employed for detecting different
objects in a given scene [31]. Gaurav et al. [32] developed a smartphone application called
SpotGarbage to detect and locate debris outdoors. A pre-trained AlexNet CNN model was
used to detect the garbage in images captured outdoors. The training images were obtained
using Bing’s image search API. The model has achieved a classification accuracy of 87%
for this application. However, it only reports on the garbage detected or not detected as
a heap, while not considered the type of objects in the garbage which is also the focus of
present work in context of pavements.

An alternative approach that involves the use of a Support Vector Machine (SVM)
with Scale Invariant Feature Transform (SIFT) functionality to identify the recyclable waste
is provided in [33]. Images of solid waste are used in this method for classification, but
it fails to identify the location of garbage. However, 94% of accuracy is achieved for the
given task. Rad et al. [34] has proposed a model using overfeat-googlenet to outdoor
garbage detection. In this work, 18,672 images of various types of garbage are used to train
a Convoluted Neural Network (CNN) in the identification of solid waste from outdoor
environments, such as newspapers, food containers, cans, etc. The network reached an
accuracy of 68.27% for the detection of debris in this application. Similar work was carried
out for for identification and classification of solid and liquid debris using the MobileNet
V2 Single Shot Detector (SSD) framework and the SVM model was used to estimate the size
of liquid spillage [35]. Recently, Fulton et al. [36] have proposed a deep-learning framework
based debris detector for underwater vehicles. As an outcome of their study, CNN and
SSD have better performance metrics when compared with YOLOV2 and Tiny-YOLO. The
above mentioned study ensure that deep learning framework is an optimal method for
pavement inspection task, i.e., crack and garbage detection.

1.2. Objectives

Taking account of the above facts,the objectives of present paper fixed as: (a) Incor-
porating deep learning-based vision system for pavement segmentation on Panthera, (b)
Detection of the pavement cracks, (c) Geo tagging of the pavement cracks after detection
for effective monitoring, and (d) Deep Convolution Neural Network (DCNN) based vision
system for cleanliness inspection task.

The rest of the paper is organized in five sections as follows: Section 2 gives the brief
overview of the Panthera robot mechanical, sensory, and electrical components. Section 3
describes the defects and garbage detection framework. Experimental results are discussed
in Section 4. Conclusions and future work are finally presented in Section 5.

2. Panthera Robot Architecture

The design and specifications of the the self-reconfigurable pavement inspection and
cleaning robot Panthera are discussed here for brevity. Figure 1 shows the reconfiguration
on pavement and the robot specifications are listed Table 1.



Sensors 2021, 21, 2595 4 of 23

b) Panthera on pavement in extended statea) Panthera on pavement in contracted state

Figure 1. Self-reconfigurable pavement inspection and cleaning robot Panthera.

Table 1. Panthera specifications.

Parameter Dimension Unit

Panthera height 1.65 m
Panthera width (Retracted) 0.80 m
Panthera width (Extended) 1.70 m

Side brush’s diameter 0.27 m
Wheels radius and numbers 0.2, 8 m, unit

Drive Differential –
Driving power 700 W
Turning radius Zero m

Continuous working time >4 hrs
Working speed 3 km/h
Driving speed 5 km/h

Net weight 530 Kgs
Payload 150–200 Kgs

Platform locomotion Omnidirectional –
Power source Traction batteries DC 24 V

Sensors RGBD Camera –

The proposed architecture has adopted the following key features include

• Self-reconfigurable pavement sweeping robot Panthera can reconfigure its shape with
contracted and extended state shown in Figure 1a,b respectively. This feature enables
it to travel on different pavement widths, avoid static obstructions, and response to
the pedestrian density.

• With reconfigurable mechanism, Panthera can access variable pavement width.
• Panthera has omnidirectional locomotion, which helps in taking sharp turns, avoiding

the defects, potholes, etc.
• The Panthera is equipped with vision sensors to detect the garbage or litters on the pave-

ment and also the cracks present on it using the images taken during daylight conditions.

2.1. Mechanical Components

Figure 2 shows the mechanical system and key functional components of Panthera
robot. It comprises of (a) reconfigurable mechanism unit (b) locomotion and steering
mechanism unit and, (c) sweeping and suction unit.
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Panthera Mechanical and Functional Units

Reconfiguration 

mechanism unit

Locomotion and 

suspension unit

b) Differential wheels for locomotion 
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c) Sweeping brushes with the 
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Sweeping and Suction 

with storage unit

a) Contracted and extended frame 

mechanism
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v

vi

vii
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Figure 2. Mechanical and other functional components of Panthera.

2.1.1. Reconfigurable Mechanism

The reconfiguration unit consists of the expanding and contracting mechanism as
shown in Figure 2a. The central beam contains a machined shaft with a single-lead Acme
threaded screw. The shaft has right-handed threads in one half and left-handed thread
in another. The dimension of the Panthera in its full extended and retracted state are
1.75 × 1.70 × 1.65 meters and 1.75 × 0.80 × 1.65 meters respectively and is shown in
Figure 1. The power sources, vacuum units suction drum were accommodated on the
central, left, and right beam or frames.

2.1.2. Locomotion and Steering Units

The locomotion and steering action is attained using four steering units having two
in-wheel motors in each resulting in the thrust for locomotion provided by eight powered
wheels. Each steering units have two in-wheeled motors resulted in a differential wheel, as
shown in Figure 2b (iii). The rotation sequence of the eight wheels will result in the steering
or locomotion. When all the eight wheels are synchronized to rotate in one direction,
then forward or backward locomotion is obtained. For sideways locomotion, the steering
units are turned by 90◦ first by the rotating the two wheels in each steering unit using
differential drive pivot turn. Hence the omnidirectional feature of the platform is achieved.
The suspension unit is shown in Figure 2b (iv) which is pivoted to move about an axis as
shown in Figure 2b (v).

2.1.3. Sweeping and Vacuum Units

Figure 2c shows the sweeping and vacuum units. The suction motor attached to the
collecting box with the inlet opening of the diverging section is shown in Figure 2c (vi).
The sweeper brushes, as shown Figure 2c (vii), move the materials from the pavement
towards the vacuum cleaner inlet duct with an opening dimension of 20 × 14 cm, which is
the height of a typical cool-drinks can. The scrubbing brushes, that are actuated using the
rotary motors are made to engage and disengage against the ground by the screw action,
as shown in Figure 2c (viii). Note that the identification of the garbage on streets becomes
essential for twofold reasons (a) For effective cleaning of dirty areas (b) With the limited
dimension of vacuum inlet of these machine objects bigger in dimension should be avoided
else it may jam the vacuum inlets.
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2.2. Electrical and Programming Units

Figure 3 illustrates the electrical and functional components which consists of (a)
sensory units, (b) electrical units, and (c) programming and control units.

Panthera Sensory and other Functional Units

Sensory Units Electrical Unit

b) Traction batteries and electrical components

c) Robot operating system and 

Arduino for sensory feedback and 

control logics 

Programming and 

control Units

a) Different sensory units

iii

ii

i

iv

i
ii iv

iii

v

vi

Figure 3. Sensory, electrical, programming and control units in Panthera.

2.2.1. Sensory Units

Panthera sensory system comprise of various sensing devices include mechanical
limit switch, Intel Realsense depth sensor, absolute encoder and GNSS tracking module. A
short description for the sensory units are as follows:

• Vision system: Intel Realsense D435 depth camera is utilized in panthera vision sensor
as shown in Figure 3a (i). The camera has wide field of view (85.2◦ × 58◦ × 94◦)
and high pixel resolution 1920 × 1080 which is fixed in center of the front panel of
Panthera robot.

• Global Navigation Satellite System (GNSS) receiver was used for getting the geo-
graphical location of the defect region, as shown in Figure 3a (ii). The GNSS device
namely NovAtel’s PwrPak7D which is robust and accuracy of 2.5 cm to few meters
A 16 GB internal storage device is used to log the locations of the robot. The device
is shown in Figure 3a (ii). The accuracy can further be improved by combining the
wheel odometry data along with the filters.

• Mechanical limit switches: In order to to limit the the reconfiguration of the robot
between 0.8 to 1.7 meters the mechanical switch was used Figure 3 a (iii) . Limit switch
with roller type plunger is attached at the end of the lead screw to limit the movement
of the re-configuring frame safely. The limit switch, when triggered, results in an
immediate stop in the rotation of the lead screw shaft.

• Absolute encoders: Absolute encoders were used to get the feedback for the steering
rotation achieved by differential action of the wheels, as shown in Figure 2b (iii) and
Figure 3a (iv). The A2 optical encoder from US Digital was mounted on top of the
four steering units and communicated using RS-485 serial bus utilizing US Digital’s
Serial Encoder Interface (SEI) was used.

2.2.2. Electrical Units

The electrical unit block with the traction batteries mounted on the frame of the robot
is shown in Figure 3b (i). The traction batteries of 24 Volts connected in parallel to power
the sweeping robot Panthera. The differential wheels attached with the hub is connected
directly to the DC brushed geared motor Figure 3b (ii) of 24 Volts and 130 rpm. To power
these actuators, Roboclaw as shown in Figure 3b (v) of 24 and 30 Amperes rating was used to
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provide electrical pulses as per the control velocity set in logic written for micro-controller
board based on the ATmega328P, here Arduino Mega shown in Figure 3b (iii).

2.2.3. Control Units

Figure 4 shows the block diagram of the Panthera control system hardware archi-
tecture. The hardware architecture comprises of five control blocks includes the primary
control system, Deep Neural Network Processing (DNNP) unit, localization control, recon-
figuration control, and cleaning module control unit. The primary control system is built
with an industrial PC, which comprises 8 core CPU,16GB RAM, and separate GPU cards
for running deep neural network function in real-time. Here, the primary system uses GPU
for running the SegNet framework and NVIDIA Jetson nano GPU embedded board for run
the inspection CNN module. The NVIDIA Jetson nano comprises of ARM A57 CPU and
128 Core maxwell GPU with 4GB memory and running on Ubuntu 18. The primary control
system contains the Robot Operating System (ROS) master function, which generates the
control message to the Jetson nano GPU, localization, reconfiguration, and cleaning module.
The central processing unit utilizes a server-client communication model to communicate
with other modules. The real sense vision module is connected to the primary control
system unit using a USB 3.0 communication interface. The TensorFlow an open-source
deep learning framework is configured in both units to run the deep learning function.

Figure 4. Hardware architecture.

The other control modules include localization, reconfiguration, and cleaning device
control unit are powered with Arduino-Mega microcontroller and configured as ROS slave
for communicating with the primary control system. The slave units handle the various
sensor interface and generate the required control and Pulse Width Modulation (PWM)
signal to motor drivers.

3. Defect and Garbage Detection Framework

Functional block diagram of pavement inspection framework is shown in Figure 5.
It comprise of pavement segmentation module, defect and garbage detection and defect
localization module.
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Figure 5. Pavement defects and cleanness inspection framework.

3.1. Input Layer

The input layer takes in the raw image obtained after sampling the video into images.
The input layer converts each frame into a specific size of the image. Here, input layer that
resizes the extracted images into 640× 480 pixels.

3.2. Pavement Segmentation

Figure 6 shows the SegNet [37] based pavement segmentation module. SegNet is an
Deep Learning (DL) based Semantic image segmentation framework which is widely used
in autonomous driving vehicle, industrial inspection, medical imaging, and satellite image
analysis. In this work, SegNet DCNN module was adopt to segment the pavement region
from other objects.

Figure 6. SegNet block diagram.

The SegNet architecture is comprised of deep convolution based encoder layer and
a corresponding set of decoder layers followed by using a pixel-wise classification layer.
The encoder and decoder part consists of thirteen convolution layers, Rectified Linear Unit
(ReLU) activation function, and 7× 7 kernels based max-pooling layers. At the encoder
side, convolution and max-pooling operation are performed. Similarly, up-sampling and
convolutions operation is executed at the decoder side. While performing max-pooling
operation in the encoder side, corresponding max-pooling indices (locations) are stored for
use in decoding operation. Finally, K- class softmax classifier is connected with decoder
output to compute the class probabilities for every pixel individually. For retaining the
higher resolution feature maps, fully connected layers are removed at deep encoder output.
Furthermore, a Stochastic Gradient Descent(SGD) algorithm is used for train and optimize
the SegNet framework with a learning rate and momentum of 0.002 and 0.9, respectively. A
training set with 20 samples is used for training CNN. The model with the best performance
on the validation data set in each epoch was selected.
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3.2.1. Pavement Defects and Garbage Detection

Multi-layer CNN model for defect and garbage detection task is shown in Figure 7.
Here, Dark flow framework has been used to build the multi-layer CNN model which is
an python-based network builder with a TensorFlow backend. The difference between a
Dark flow and traditional CNN is that the in traditional CNN, the classifier uses an entire
image to perform any classification whereas in a Dark Flow based network, the images are
split into multiple grids and within each grid for generating multiple bounding boxes. A
trained model outputs the probability that an object is present in a bounding box and if
that probability goes above a specified value in a specific bounding box, then the algorithm
extracts features from the that specific part of the image to locate the object.

Figure 7. CNN architecture and layers description.

In short, in a dark flow-based network, the network searches for the desired objects
in regions that have higher probability than the threshold value as opposed to searching
it throughout the entire image which more exhaustive and prone to error. This makes it
a much cleverer CNN for performing object classification and localization and it is faster
than many other model builders as it only carries out prediction in selected grid cells which
makes it a great candidate for using it in real-time.

The multi-layer CNN (Figure 7) consist of 9 convolutional layers, 6 pooling layers
and an output layer with softMax activation function. The number below the curved
braces gives the information of all the layers such as padding, and the number inside, i.e.,
32,64,192, etc., represents filter size and stride.

3.2.2. Convolutional Layers

Convolutional layer repeatedly performs the operation of convolution between the
input image and chosen filter. The operation of convolution involves performing a element-
by-element multiplication of a sub array of input image with the chosen filter and the
result of each of these element-by-element multiplication is summed which corresponds
to an one single element in the output of the convolutional layer. The size of the sub
array is equal to the size of the filter. Once the result is obtained from a sub array of the
input image, a different sub-array is chosen to perform the similar operation. The new
sub-array is selected based on the stride length (s) i.e., the new sub-array would be chosen
by shifting across a specified number of rows and columns from the previous sub-array
and this convolution operation is continued until the entire input image is covered. There
are various hyperparameters involved in this operation: stride length(s), padding (p), filter
size (K). The stride length determines the number of units that will be shifted by the filter
at one time. In other words, the stride is the amount by which the filter shifts to perform
the convolution. The padding determines the number of zero padding layers applied to
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the input data before performing the convolution operation. In this work, valid padding
was used with null zero padding (p = 0). The operation of the convolution has been
represented by the following Equation (1):

( f ∗ g)(t) ,
∫ ∞

−∞
f (τ) g(t− τ)dτ (1)

where, f donates input function and g denotes filter function of convolution.

3.2.3. Pooling Layer

The general rule of thumb in constructing a CNN network involves a convolutional
layer followed by a pooling layer. This is done to enhance the feature extraction process
while reducing the spatial dimension of the input from the preceding layer. This process
of reducing the spatial dimension is known as down sampling and this process improves
the efficiency and speed of the network. Moreover, it is used to generalize the model by
reducing overfitting. The pooling layer applies non-linear down sampling on the activation
maps which, in turn, reduces the spatial size of the representation. This layer also reduces
computation time by reducing the number of parameters required. In this paper, Max
pooling was used as a filter for this layer. In max pooling layer, the maximum value within
the region covered by the filter is taken and assigned as the output value.

3.2.4. SoftMax Layer

The final layer in the proposed network is the SoftMax layer. SoftMax layer is usually
for classification as it provides a probabilistic distribution of the classes. The class that
has the highest probability is provided as the result. This can also be looked at as an
activation function.

3.2.5. Activation Function

In the proposed network, leaky Rectified Linear Unit (ReLU) is used as the activation
function for the convolutional layers and the linear for the final convolutional layer. The
need for non-linearity in the network requires us to pick leaky ReLU as the activation
function. The Equations (2) and (3) indicates the underlying mathematical operation
corresponding to Leaky ReLU.

f (z) = az, i f z < 0 (2)

where a = 0.01
f (z) = z, i f z > 0 (3)

The Equation (4) indicates the mathematical operation for linear function.

f (z) = w ∗ z (4)

3.2.6. Bounding Box

This work is focused on object localization. Customized CNN network is used to
find the Region of Interest (RoI) or exact location in the color image. The output from
the above process is wrapped inside bounding box. The bounding box is constructed to
divide the images into segments of equal area and to generate target vector for them using
Equation (5). The bounding box for training would be as follows.

y = [P Xmin Ymin Xmax Ymax C1 C2]
T (5)

where P is the binary value which determine the object of interest in the image, Xmin and
Ymin is upper left X and Y-coordinate of the bounding box. Similarly, Xmax and Ymax lower
right X and Y-coordinate of the bounding box. The value of the argument C1 will be one if
belongs to class 1 else zero. Similarly, the value of C2 is equal to one if the object belongs
to class 2, else zero. Furthermore, Intersection Over Union (IOU) method Equation (6) is
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utilized to eliminate the overlapping bounding boxes. IOU is the ratio of area of overlap to
the area of union.

IOU =
(A ∩ B)
(A ∪ B)

(6)

In this work, IOU threshold is fixed to 0.5. If the calculated IOU and actual IOU of
bounding box is equal to or more than 0.5, then the obtained output is correct, else the
it will be considered as false prediction by bounding box coordinates. Table 2 shows the
average IOU matching of all bounding boxes in text set.

Table 2. Evaluation metrics associated to the bounding box predictions.

Average IOU Matching Over All Confidence

0.7044 0.589

3.3. Mobile Mapping System for Defect Localization

Mobile Mapping System (MMS) [38,39] is the final component of proposed system,
which is used for tracking the location of the defects. The MMS technique stamped the Geo
referencing parameters into defect detected images and forward to a remote monitoring
unit or PMS for finding and fixing a pothole or other defects. The MMS function was run
in the primary control unit and used three data for accomplishing the defect localization
includes physical distance data d estimated by realsense rs-measure API function, and two
hardware modules data such as wheel encoder which provide the odometeric distances
and Global Navigation Satellite System (GNNS) data which provide latitude and longitude
information. The generated MMS data is forward to a remote monitoring unit through a
4G wireless communication module. Figure 8 shows one of the independent test trials, i.e.,
carried without the Panthera robot being moved in the public park connectors. The image
highlights the location of the defects on the map which will assist in the faster maintenance
of the pavement.

Figure 8. Independent trial for the mobile mapping system and the defect identification. (a) Defect location on global map,
(b,c) detected defects and patches.

4. Experiments and Results

This section describe the experimental results of proposed system. The experiment has
been performed in three phases: data set preparation, training the SegNet and inspection
CNN (defects and garbage detection), and validating the trained models. Generally, the
detection or segmentation performance of DNN relies on various parameters, including
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the size of the training data set, data-set class balance, illumination conditions, and hyper-
parameters (learning rate, batch size, momentum, and weight decay). These parameters
play a key role in network performance and computational cost in both training and testing
phases. Learning rate directly affects the time taken for the training to converge. A small
learning rate makes the training longer, whereas a high learning rate may lead to large
weight updates and overshoots. The batch/sample size affects the computational cost and
should be chosen according to hardware memory. Hence, these parameters need to be
tuned appropriately. After some trials, it is found that a learning rate of 0.02, a momentum
of 0.9, and a training set of 20 samples provide satisfactory results in our application.

4.1. Data set Preparation and Training the Model

The dataset preparation, training, and testing flow diagram for proposed system as
shown in Figure 9.

Figure 9. Flow diagram for training the pavement inspection framework.

Here, the data-set preparation process involves collecting the pavement images, pave-
ment defects, and garbage images with different pavement background. The data-set
consists of 3000 image samples of pavement collected from different locations in Singa-
pore. The image acquisition is done from the robot perspective under different lighting
conditions. The collected images are balanced for two different classes (1) pavement defect
(cracks and damages) and (2) garbage (tissue paper, food packing paper, polythene cover,
metal bottle, and plastic).



Sensors 2021, 21, 2595 13 of 23

For training and testing the model, fixed resolution of the image size 640× 480 was
used throughout the experimental trials. In-order to enhance the CNN learning rate and
to control the over-fitting, data expansion techniques such as rotation, scaling, and image
flipping were used in the training phase. The K-fold cross-validation process is utilized
for the model assessment (In this case K = 10 was fixed). The data-set is divided into 10
sections and one among the 10 sections is used for testing the model and the remaining
9 has been used for model training. To eliminate biasing conditions due to a particular
training or testing data-set, this process has been repeated 10 times. Besides, the results
from the performance matrix are repeated over 10 times and the mean results are provided.
The resulting images from the highest accuracy models are given here.

The CNN models SegNet and inspection are realized using Tensor-flow 1.9 module on
Ubuntu 18.04 operating system. The models are trained using a computer that uses Intel
Core i7-8700k, 64 GB of RAM, and NVIDIA GeForce GTX 1080 Ti Graphics Card. To assess
the performance of the proposed scheme, standard statistical methods such as accuracy,
precision, and recall was adopted. Equations (7)–(10) shows the accuracy, precision, recall
and Fmeasure respectively.

Accuracy(Acc) =
tp + tn

tp + f p + tn + f n
(7)

Precision(Prec) =
tp

tp + f p
(8)

Recall(Rec) =
tp

tp + f n
(9)

Fmeasure(F1) =
2× precision× recall

precision + recall
(10)

ηmiss =
ηmissnum
ηtestset

× 100% (11)

η f alse =
η f alsenum

ηtestset
× 100% (12)

As per the standard confusion matrix, the variables tp, f p, tn and f n are true posi-
tives, false positives, true negatives and false negatives respectively. The ηmiss represents
the target object not recognized by the network and η f alse represents objects detected as
target object.

4.2. Validation of Defect and Garbage Detection Framework

After training the model, the effectiveness of the trained CNN framework was tested
in offline and real time mode with Panthera. To carry out the offline experiments, the
trained model was loaded into Jetson nano and tested in laboratory with locally collected
1200 defect and garbage’s images. Figure 10 shows the detection results of defect and
garbage’s tested in offline. In this experiment the detection model detect most of defect
and garbage with higher confident level with mean average precision (mAP) of 92% for
defect and 95% for garbage.

In order to evaluate the real time defect and cleanness inspection, six hundred meter
pavement was selected as a test bed which is located near our institution. Before carrying
out the experiment, the pavement defect region are manually notified which is used to
compare the detection results of proposed system. For cleanness inspection, different type
of garbage are randomly drop on the test bed and its detection was tested by model.
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]
(a) (b) (c)

(d) (e) (f)
Figure 10. Offline test results for defect detection (a–c) and garbage detection (d–f).

In this experiment, the images are capture from the Panthera robot operating inside
the university campus pavement. The vision module runs at 10 frames per second (fps),
and image resolution was set to 640× 480. The robot was moved at a slow speed on
the pavement, and the detection results are recorded from a remote monitoring unit.
Figure 11 shows the segmentation and real-time detection of the garbage on the pavement.
Figures 12 and 13 shows the defects detected on pavement along with geotagging and
google mapped results. Furthermore, Figure 14 shows the garbage detection resulst
of inspection framework along with their Geotagging information. The defects on the
pavement detected are marked by sky-red rectangle box and garbage detected are marked
by green rectangle box. In this analysis, the detection model detects a defect with the
mean Average Precision (mAP) of 88% to 92% confident level and garbage with 91% to 96%
confidence level, respectively on the data set used.

Furthermore, statistical measures has been performed for estimating the robustness of
the detection model for both online and offline experiments. Table 3 shows the statistical
measures result for online and offline experiments.

Table 3. Statistical measures for defect and garbage’s detection.

Test
Offline Test Online Test Other Metrics

Precision Recall F1 Precision Recall F1 ηmiss η f alse Overall Accuracy

Defect 93.0 91.8 92.1 89.5 87.1 86.67 4 2 93.3

Garbage 96.0 94.43 93.22 91.5 87.55 87.0 7 3 95.0
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(a) (b) (c) (d)
Figure 11. Pavement segmentation and the garbage detection results in (a–d).

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 12. Defects with geotagging information in (a–h).

Figure 13. Defect location mapped on Google map.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 14. Pavement garbage detection in real-time in (a–h).

The statistical measure indicate that the trained CNN model has detect the defect
with 93% precision for offline test and 89.5% precision for online test. Furthermore, the
model miss rate is 2% for offline test and vary 4% to 7% for online test due to different
lighting conditions. Similarly, the garbage’s are detected at precision of 96% for offline
test and 91.5% for online test. However its miss detection ratio is quite low compare to
defect detection for different lighting conditions. It is due to higher visibility of garbage
compare to defects. The study ensure that the proposed system was not heavily affect
by environment factor like varying lighting condition and shadows. It was ensured by
miss detection metrics. In this study, miss detection ratio difference is less than 4% for
environmental changes. However, 4% of miss detection are due to the invisible defects or
the defects region have been heavily covered by shadows.

Further computational cost of the models was tested by time taken for processing
one 640× 480 resolution image frame on execution hardware. Here, SegNet model was
executed on primary control system and detection model was executed on Jetson Nano
embedded GPU board. The experiments was tested for 100 images and its detection times
are recorded. The experimental results shows that the SegNet model takes average of
120 ms to segment out the pavement region from 640× 480 image frame. Furthermore,
the detection model and MMS function took average 12.2 ms for detect the defect and
garbage’s. The experiment results shows that the trained model process seven to eight
frames per second in average.

Performance Comparison with Other Semantic and Object Detection Framework

Tables 4 and 5 shows the performance comparison of proposed frameworks for se-
mantic segmentation and object detection framework with other popular other framework.
FCN-8 and UNet framework are consider for semantic segmentation model comparison
analyses. Similarly, Faster RCNN ResNet, SSD MobileNet are taken as object detection
models for comparison. All models are trained using the same dataset consisting of 3000
images and similar training time on the same GPU card. The comparison has been detailed
in Tables 4 and 5. The performance of comparison is made based on standard performance
comparison matrices. The experimental analysis indicate that SSD-MobileNet and pro-
posed system have comparable accuracy of 94.64% and 95.00%. However, in terms of
execution time and detection accuracy, Faster RCNN ResNet, has the upper hand over SSD-
MobilNet and proposed system. Here, the trade-off between the models’ computational
expense and accuracy are key parameter for chosen dark flow based proposed system
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as the candidate for trash detection task, considering the possibilities of enhancing the
detection accuracy of proposed system with a lower training rate. Similarly, performance
comparison of segmentation frameworks SegNet yields better pixel-wise classification than
other networks. Besides, the accuracy of FCN8 and UNet drops significantly when it comes
to the object classes with small pixel areas.

Table 4. performance comparison of segmentation frameworks.

Semantic Framework Pixel-Accuracy IOU F1 Score

FCN-8 85.33 86.72 86.89

U-Net 88.12 88.56 88.18

SegNet 93.30 93.18 90.93

Table 5. performance comparison of object detection frameworks.

Semantic Framework Accuracy Precision Recall

Faster RCNN ResNet 97.89 96.30 96.82

SSD MobileNet 94.64 93.25 92.88

Proposed system 95.00 93.11 92.66

4.2.1. Validation with Other Defects and Garbage Image Database

The effectiveness of defect and cleanness inspection model was tested with Cui et al
crack forest [40], Fan Yang pavement crack [41], Hiroya Maeda road damage [42], taco [43],
and Mindy yang trashnet [33] image data sets. The defect image databases [41,42,44] contains
annotated pavement and road crack images captured at different pavement and urban road
surfaces. The taco and Mindy yang image data set contains various kinds of paper trash,
plastic and metal cans taken under diverse environments.

The experiment results for defect and garbage image database are shown in
Figures 15–19 and its statistical measure are reported in Table 3. Over 150 images are
taken from each of the database for perform the statistical analysis.

(a) (b) (c) (d)
Figure 15. Defect detection results for Fan Yang cracks dataset in (a–d).

(a) (b) (c) (d)
Figure 16. Defect detection results for CrackForest dataset in (a–d).
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(a) (b) (c) (d)
Figure 17. Defect detection results for Hiroya Maeda road damage data-set in (a–d).

(a) (b) (c) (d)
Figure 18. Garbage detection results for Taco trash image dataset in (a–d).

(a) (b) (c) (d)

Figure 19. Garbage detection results for Gary Thung and Mindy Yang Trashnet dataset in (a–d).

The statistical results, given in Table 6 shows an average of 94.6% confidence level for
detecting the defects and average of 95.5% confidence level for detecting the garbage.

Table 6. Case study for the Convolution Neural Network for road defects.

Database Precision Recall F1 Average Confidence Level

Crack forest (Defect) [40,44] 94.5 91.8 92.2 96.0

Fan Yang (pavement crack) [41,45] 93.3 89.7 90.0 95.0

Road Damage Dataset [42] 92.3 88.5 89.0 93.0

TACO [43] 96.0 93.2 92.5 97.0

Trashnet [33] 94 98.5 97.6 94.0

4.3. Comparison with Existing Schemes

This section describes the comparative analysis of the proposed system with existing
pavement defect and garbage detection case studies in the literature.

The comparison has been made based on a deep learning framework used for both
pavement defects and garbage (dirt, garbage, marine debris) detection task. The detection
result of various defect and garbage detection schemes are shown in Tables 7 and 8. The
difference analysis has been reported based on CNN topology and detection accuracy.
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Table 7. Comparison with other detection schemes.

Case Study Inspection Type Algorithm Detection Accuracy

Ju Huyan et al. [46] Offline CrackU-net 98.56

Bang et al. [47] Offline deep encoder-decoder network 90.67

Naddaf-Sh et al. [25] Real time with drone multi layer CNN 96.00

Zheng Tong et al. [48] Multifunction testing vehicle FCN with a G-CRF 82.20

Mandal et al. [29] Offline YOLO v2 88.00

Majidifard et al. [49] Offline YOLO v2 93.00

Maeda et al. [42] Real time with smartphone SSD MobileNet 77.00

Zhang et al. [50] Offline CrackNet 90.00

Proposed system Online and offine 16 layer CNN 93.30

Table 8. Comparison with other garbage detection schemes.

Case Study Algorithm Detection Accuracy

Garbage detection on grass [51] SegNet + ResNet 96.00

Floor trash detection [35] Mobilenet V2 SSD 95.00

Garbage detection on marine [52] Faster RCNN Inception v2 8100

Garbage detection on marine [52] MobileNet v2 with SSD 69.00

Proposed system 16 layer CNN 95.00

In this comparison analysis, we try to provide some fair comparison with proposed
system and existing scheme based on some key differences. From above table, Crack U-
net [50] and Deep encoder-decoder [25] are based on pixel-wise crack detection architecture
and trained with 3000 and 600 defect image respectively. Here, Crack U-net obtained
detection accuracy of 99.01%, which follows the FCN style CNN layers. Similarly, the deep
encoder-decoder framework was constructed with a residual network convolution layer
and gained quite lower precision 59.65% than Crack U-net. However, both models need
a larger computing resource and less suitable for in-situ inspection. In [25,48] implemen-
tations are developed for real-time remote defect inspection where multi-layer CNN and
drone are used by Naddaf-Sh et al. and model process 5 frames per second and achieve
96.00% detection accuracy [25]. other-hand FCN - Gaussian-conditional random field
combination was used by Zheng Tong et al.. The model was tested with high computing
device NVIDIA GeForce GTX 1080 GPU fitted on multi-function testing vehicle and takes
0.162 inference time and obtained a precision of 82.20% [48].

Further other implementation such as YOLO v2 [29,49], SSD MobileNet [42], SSD
inception [42] and CrackNet [50] which are light-weight framework. Its architecture is more
suitable for real-time on-site inspection and also runs in low power computing devices.
However those models are used only on offline defect inspection and obtained detection
accuracy of 88.00% [29], 93.00% [49] 77.0% [42], 99.00% [50] respectively.

In contrast with the above implementation, the proposed model work in real-time
pavement defect detection, and its average detection accuracy is 93.3%. The proposed CNN
model was constructed with low number of convolution layers (16), which help to reduced
computational demand and results in real-time processing. The number of the hidden
layer has also reduced after convolution and max-pooling layers. In addition to that, the
training data in each class made equivalent to training to avoid data skew. Furthermore,
MMS based localized defects have an added advantage for the proposed framework and
help in the pavement monitoring system (PMS).
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Table 8 shows the overview of CNN based garbage detection which are developed
various garbage cleaning application. Here, SegNet and ResNet combination [51] was de-
veloped for garden cleaning robot for detecting garbage on grass and obtain 96% detection
accuracy. Mobilenet V2 SSD was used in floor trash detection and achieve 95.0% detection
accuracy. However that implementation not tested in any cleaning robot. The other two
implementation are based on marine garbage detection using two different framework such
as Faster RCNN InceptionV2 and MobileNetV2 with SSD. Here, under water vehicle was
used for capture the marine garbage and tested in offline and models obtained moderate
detection accuracy 81.0% and 69.0% respectively. In contrast with above mention scheme,
the proposed model detect the garbage with an average of 95% detection accuracy.

The preset framework is limited to the inspection task of pavements during the day
light conditions. The detection model is limited to very few objects, namely tin can, papers,
and plastic bottles. Also the inspection is limited to the crack detection which can not
differentiate between pothole, bumps, etc. Also the speed at which the detection task was
carried out by the robot is limited to 0.1 m/s and with a vision feedback decimated at a rate
of 10 frame per seconds. Further cleaning module has some generic limitations, including it
cannot pick up garbage bigger than the dimension of the vacuum inlet opening dimensions
as indicated in the section “Sweeping and vacuum units.” Furthermore, it is unable to clean
up heavy objects which are not classified as garbage. Some heavy objects which are small
might be stones. The weight that the vacuum can carry depends on the vacuum motor
power. However, it is noted that vacuum motor power can be changed easily by changing
the motor.

5. Conclusions and Future Work

In this article, the pavement defect and cleanness inspection using a deep learning
based framework was proposed and implemented in the self-reconfigurable pavement
sweeping robot Panthera. A lightweight DCNN model was developed and trained with
6000 defect and garbage images. The framework was configured in Jetson Nano NVIDIA
GPU and took approximately 132.2 milliseconds for detecting both pavement defects
and garbage. Moreover, the geotagging of the pavement defects was presented during
locomotion on the pavement. The experimental results show that the proposed method
identifies the pavement defects and garbage with 93.3% and 95.0% detection accuracy,
respectively. The framework is an initial attempt to use a DCNN framework on pavement
cleaning robots for inspection, which includes defect and garbage detection tasks. The
application of this work is in a pavement management system where the existing sweeping
vehicle can use its sensory feedback from the vision system for the inspection task using a
machine learning framework.

Our ongoing efforts focus on implementing a depth sensor feedback in the pavement
monitoring system for further classification of localization of garbage and crack detection.
Also, the enhance detection and segmentation framework by train the network rich data
sets taken under different lighting conditions are targeted. Furthermore, the scheme for
crossing or avoiding the cracks, collecting or not collecting the detected garbage, are being
developed for Panthera. Also the framework to scaled for the identifying defects in drains
using drain inspection robot.
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Lists the abbreviations and nomenclature used in this paper.
Term Explanation
GPU Graphical Processing Unit
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
MMS Mobile Mapping System
PMS Pavement Management System
ML Machine Learning
DL Deep Learning
VGG16 Visual Geometry Group 16
YOLOV2 You Only Look Once
CAR Classification Accuracy Rate
F-RCNN Fast Region Convolution Neural Network
SVM Support Vector Model
SIFT Scale Invariant Feature Transform
SSD Single Shot Detector
GNSS Global Navigation Satellite System
GB Giga Byte
SEI Serial Encoder Interface
DNNP Deep Neural Network Processing
RAM Random Access Memory
ROS Robot Operating System
PWM Pulse Width Modulation
DL Deep Learning
ReLU Rectified Linear Unit
RoI Region of Interest
IOU Intersection Over Union
4G Fourth Generation
tp true positives
fp false positives
tn true negatives
fn false negatives
Acc Accuracy
Prec Precision
Rec Recall
F1 F1measure
fps frames per second
MAP Mean Average Precision
FCN-8 Fully Convolutional Neural Network
SGD Stochastic Gradient Descent
Xmin upper left X coordinate of the bounding box
Ymin upper left X coordinate of the bounding box
Xmax lower right X coordinate of the bounding box
Ymax lower right X coordinate of the bounding box
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