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Nonalcoholic fatty liver disease (NAFLD) represents one of the most common chronic liver diseases in the world. It has been
reported that epigallocatechin-3-gallate (EGCG) plays important biological and pharmacological roles in mammalian cells.
Nevertheless, the mechanism underlying the beneficial effect of EGCG on the progression of NAFLD has not been fully
elucidated. In the present study, the mechanisms of action of EGCG on the growth, apoptosis, and autophagy were examined
using oleic acid- (OA-) treated liver cells and the high-fat diet- (HFD-) induced NAFLD mouse model. Administration of
EGCG promoted the growth of OA-treated liver cells. EGCG could reduce mitochondrial-dependent apoptosis and increase
autophagy possibly via the reactive oxygen species- (ROS-) mediated mitogen-activated protein kinase (MAPK) pathway in OA-
treated liver cells. In line with in vitro findings, our in vivo study verified that treatment with EGCG attenuated HFD-induced
NAFLD through reduction of apoptosis and promotion of autophagy. EGCG can alleviate HFD-induced NAFLD possibly by
decreasing apoptosis and increasing autophagy via the ROS/MAPK pathway. EGCG may be a promising agent for the treatment
of NAFLD.

1. Introduction

Tea, made from the leaves of Camellia sinensis, has long been
considered a popular beverage worldwide [1–3]. Tea can be
mainly classified into three types according to the
manufacturing processes, including green tea (nonfermen-
ted), oolong tea (semifermented), and red and black teas
(fermented) [4]. The functional constituents of tea can be
attributable to the polyphenolic compounds, particularly cat-
echins [1]. Four main catechins have been identified in green

tea, such as epigallocatechin-3-gallate (EGCG), epigallocate-
chin, epicatechin-3-gallate, and epicatechin, with EGCG as
the most active and abundant compound [3, 5]. These cate-
chins have different hydroxyl groups on the B-ring with the
presence/absence of a galloyl moiety [4]. EGCG exhibits
strong binding to bioactive macromolecules, such as DNA
and proteins via π-π stacking interaction, hydrogen bonding,
and hydrophobic interaction [5, 6].

EGCG, a flavone-3-ol phenolic compound, has eight free
hydroxyl groups [2], which might contribute to its diverse
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biological and pharmacological properties, such as antiamyloi-
dogenic [7], chemopreventive [8], renoprotective [9], antican-
cer [10], antiaging [11], antiautoimmune [12], and antiviral
[13] activities. Nonalcoholic fatty liver disease (NAFLD), a
common chronic liver disease, has been considered one of
the leading causes of end-stage liver disease, liver transplanta-
tion, and hepatocellular carcinoma [14–16]. The prevalence of
NAFLD is growing in parallel with the global obesity epi-
demics, hypertension, type 2 diabetes, hyperlipidemia, and
metabolic syndromes [15, 16]. It has been shown that EGCG
could attenuate high-fat diet- (HFD-) induced NAFLD in rats
and mice [17–19]. Nevertheless, the inhibitory effects and
detailed mechanisms of EGCG in the initiation and progres-
sion of NAFLD need to be further investigated.

In this study, the mechanism of action of EGCG on the
growth, apoptosis, and autophagy of oleic acid- (OA-)
treated liver cells was elucidated. The HFD-induced NAFLD
mouse model was further adopted to confirm the effect and
mechanism of EGCG on NAFLD.

2. Materials and Methods

2.1. Cell Culture. Human liver cell lines L02 and QSG-7701
were purchased from Feiya Biological Technology Co., Ltd.
(Yancheng, Jiangsu, China). The cells were cultured in Dul-
becco’s modified Eagle’s medium (DMEM) with 10% fetal
bovine serum (FBS) and 1% streptomycin/penicillin. Before
each experiment, the cells were starved for 12 h in serum-
free DMEM. Then, the cells were treated with the medium
containing the 0.5mM OA-bovine serum albumin (BSA;
fatty acid-free, low endotoxin) complex (4 : 1, molar ratio),
with or without a concentration of 50μM EGCG for 24h.
The medium with only BSA was selected as the control [20].

2.2. Oil Red O (ORO) Staining. Cells were fixed in 4% para-
formaldehyde for 15min, incubated with isopropyl alcohol
for 20min, and stained with ORO solution for 20min,
followed by being counterstained with hematoxylin at room
temperature. The staining intensity of ORO was measured
by ImageJ software (National Institutes of Health, Bethesda,
MD, USA) [21].

2.3. Cell Growth Assay. The 5-ethynyl-2′-deoxyuridine
(EdU) experiment was carried out using economical kits
(RiboBio, Guangzhou, China). The cell proliferation rate
was calculated as the percentage of positive cells to total cells.
In addition, the cell counting kit-8 (CCK-8) detection kits
(Beyotime, Shanghai, China) were used to detect cell viabil-
ity. Cell viability was expressed as a percentage to the control
group [22].

2.4. Flow Cytometry Assay. Cells were incubated with propi-
dium iodide (PI)/RNase A mixture for 20min. A FACSVerse
flow cytometer (BD, San Jose, CA, USA) was adopted to analyze
the cell cycle. The apoptotic level was examined by Annexin V-
FITC/PI assay kits (KeyGen, Nanjing, Jiangsu, China) and
further analyzed using a FACSVerse flow cytometer.

2.5. Immunofluorescence Staining. The green fluorescent pro-
tein- (GFP-)-red fluorescent protein- (RFP-) microtubule-

associated protein 1 light chain 3 (MAP1LC3/LC3) plasmid
has been used to detect the autophagic level [23]. Then, the
GFP-RFP-LC3 plasmid (Hanbio, Shanghai, China) was
transfected into the cells. After 48 h of incubation, the cellular
fluorescence was determined using an Eclipse Ti fluorescent
microscope (Nikon, Melville, NY, USA). The autophago-
somes (yellow dots) and autolysosomes (red dots) were cal-
culated as the ratios of positive-stained cells to total cells [24].

2.6. Monodansylcadaverine (MDC) Staining.Morphologically,
the formation of autophagic vacuoles in the cytoplasm is a
typical characteristic of autophagy. MDC is a key marker for
autophagic vacuoles [25]. Briefly, the liver cells were stained
with 50μmol/L MDC for 30min at 37°C. Then, the cells were
fixed with 5% paraformaldehyde and immediately observed
under an Eclipse Ti fluorescent microscope (Nikon).

2.7. Measurement of Reactive Oxygen Species (ROS). Cellular
ROS levels were measured by 2′,7′-dichlorodihydrofluores-
cein diacetate (Beyotime).

2.8. Determination of Antioxidant Activity. The total super-
oxide dismutase (SOD) activity was determined using the
kit with WST-8 (Beyotime). The catalase (CAT) activity
was analyzed using the CAT assay kit (Beyotime). The gluta-
thione peroxidase (GSH-Px) activity was detected by the
GSH-Px assay kit with nicotinamide adenine dinucleotide
phosphate (Beyotime).

2.9. Western Blot.Western blot assay was adopted to determine
the expression levels of proteins. The primary antibodies, such
as anti-cyclin D1/E1, anti-cyclin-dependent kinase (CDK) 2/4,
anti-p21, anti-p27, anti-beclin-1, anti-P62, anti-LC3A/B, anti-
extracellular signal-regulated protein kinase 1/2 (ERK1/2),
anti-phospho- (p-) ERK1/2 (Thr202/Tyr204), anti-c-Jun N-
terminal kinase (JNK), anti-p-JNK (Thr183/Tyr185), anti-
p38, and anti-p-p38 (Thr180/Tyr182), and the horseradish
peroxidase-conjugated secondary antibody were purchased
from Cell Signaling Technology (CST, Danvers, MA, USA).
Anti-B-cell lymphoma-2 (Bcl-2), anti-Bcl-2-associated X
protein (Bax), anti-B-cell lymphoma-extra large (Bcl-xl), anti-
Bcl-xl/Bcl-2-associated death promoter (Bad), anti-cleaved cas-
pase-3/9, anti-cleaved poly-ADP-ribose polymerase (PARP),
and anti-β-actin were obtained from Proteintech (Chicago,
IL, USA). The bands were detected with a chemiluminescence
system (Thermo, Rockford, IL, USA). Band intensities were
analyzed by densitometry using ImageJ software.

2.10. Animals. The animal experiment was approved by the
Committee of Medical Ethics and Welfare for Experimental
Animals of Henan University School of Medicine (HUSOM-
2017-208). C57BL/6J mice (8 weeks old, male), HFD (60%
kcal as fat), and low-fat diet (LFD, 10% kcal as fat) were
obtained from Vital River Laboratory Animal Technology
Co., Ltd. (Beijing, China). All mice were maintained on a
12h light/dark cycle and allowed access to food and water ad
libitum. Mice were fed either HFD (n = 12) or LFD (n = 6)
for a total of 14 weeks. After feeding for 10 weeks, HFD-fed
mice were assigned to the HFD group (n = 6) and HFD
+EGCG (50mg/kg/day) group (n = 6). The mice were treated
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for an additional 4 weeks. Food/water intakes and body
weights of the mice were measured. Then, the mice were killed
and blood samples were collected. The liver, brown fat, and
white fat were removed and weighed.

2.11. Biochemical Analysis. The concentrations of triglyceride
(TG), total cholesterol (TC), alanine aminotransferase
(ALT), and aspartate aminotransferase (AST) in the plasma
were examined by an automated hematology analyzer (BC-
6900, Mindray, Shenzhen, Guangdong, China). The contents
of TG and TC in liver cells and tissues, as well as nonesteri-
fied fatty acid (NEFA) in liver tissues were detected by com-
mercial enzyme-linked immunosorbent assay kits (Jiancheng
Bioengineering Institute, Nanjing, Jiangsu, China).

2.12. Hematoxylin and Eosin (HE) Staining. Liver tissues
were fixed in 10% neutral formalin, embedded in paraffin
wax, sectioned at 4μm, and then stained with HE.

2.13. Immunohistochemistry (IHC). Liver samples were
respectively stained with anti-Ki67 (CST), anti-beclin-1,
and anti-cleaved caspase-3 antibodies. The proliferation
index, autophagic index, and apoptotic index were deter-
mined by the ratios of positive cells to total cells.

2.14. Statistics. All data were presented as the mean ±
standard error of themean. Differences between the two
groups were determined by the two-tailed Student’s t-test
and one-way analysis of variance using GraphPad Prism 6
software. P < 0:05 was considered to indicate a statistically
significant difference.

3. Results

3.1. EGCG Promotes the Growth of OA-Treated Liver Cells.
As shown in Figures 1(a) and 1(b), OA induced the accumu-
lation of lipid in OA-treated liver cells, as further evidenced
by the increased levels of TC and TG (Figures 1(c) and
1(d)). Treatment with EGCG reduced the lipid level in OA-
treated liver cells (Figures 1(a)–1(d)). The viability and pro-
liferation of liver cells were decreased by OA; nevertheless,
EGCG promoted the viability and proliferation of OA-
treated liver cells (Figures 1(e)–1(g)). In addition, the results
showed that OA triggered cell cycle arrest at the G1 phase
and EGCG reversed the trend (Figures 2(a) and 2(b)). Many
cell cycle-related proteins have been identified in mammals,
such as cell cycle regulatory proteins, including cyclin
D1/E1 and CDK2/4, as well as inhibitory cell cycle regulators,
including p21 and p27 [26, 27]. Our data suggested that OA
increased the expressions of cyclin D1, cyclin E1, CDK2, and
CDK4 but downregulated the protein levels of p21 and p27;
however, administration of EGCG exhibited reverse trends
(Figures 2(c) and 2(d)). Taken together, the data indicate that
EGCG can promote the growth of OA-treated liver cells
through promoting G1 phase cell cycle progression.

3.2. EGCG Decreases Apoptosis in OA-Treated Liver Cells. As
shown in Figures 3(a) and 3(b), the data suggested that OA
increased the early and late apoptotic cell populations,
whereas EGCG decreased the early and late apoptosis in

OA-treated liver cells. The ratios of Bax/Bcl-2 and Bad/Bcl-
xl are regarded as key factors in regulating apoptosis.
Increased ratios of Bax/Bcl-2 and Bad/Bcl-xl are key phe-
nomena in mitochondrial-dependent apoptosis in mammals
[28, 29]. Furthermore, cleaved caspase-3/9 could induce
apoptosis through the mitochondrial-mediated pathway
[30]. PARP, a nuclear enzyme involved in DNA repair, is
an important target for caspases during apoptosis [31]. The
data showed that OA increased both the Bax/Bcl-2 and
Bad/Bcl-xl ratios and the expression levels of cleaved cas-
pase-3/9 and cleaved PARP, which were reversed by the
administration of EGCG (Figures 3(c) and 3(d)). The results
suggest that OA can induce mitochondrial-dependent apo-
ptosis in liver cells and EGCG could reduce the apoptotic
levels in OA-treated liver cells.

3.3. EGCG Increases Autophagy in OA-Treated Liver Cells.
Autophagy is responsible for the degradation of intracellular
protein aggregates, invasive pathogens, and damaged organ-
elles and therefore is essential in maintaining cellular homeo-
stasis and responding to stress conditions [32, 33]. A crucial
step in autophagy is the conversion of LC3 from the nonlipi-
dated form (LC3-I) to the lipid-conjugated form (LC3-II)
[33, 34]. Autophagic turnover could be molecularly monitored
using a GFP-conjugated LC3 and the conversion of LC3-I to
LC3-II [35]. In the present study, the GFP-RFP-LC3 plasmid
was transfected into liver cells and further detected by fluores-
cence microscopy. Treatment with OA decreased the numbers
of free red dots (autolysosomes) and yellow dots (autophago-
somes), whereas administration of EGCG showed the oppo-
site effects (Figures 4(a) and 4(b)). A similar trend was
observed inMDC staining (Figures 4(c) and 4(d)). Apart from
LC3, beclin-1 and P62 have also been considered specific
markers of autophagy [33, 36]. The expression levels of
beclin-1 and LC3 in the OA group were lower than those in
the control group, but the protein levels of these two factors
were higher in the OA+EGCG group than in the OA group.
Furthermore, the expression level of P62 exhibited a reverse
trend (Figures 4(e) and 4(f)). These results together suggest
that the autophagic level is downregulated in OA-treated liver
cells and treatment with EGCG could upregulate the autoph-
agy machinery.

3.4. EGCG Suppresses the ROS/Mitogen-Activated Protein
Kinase (MAPK) Pathway in OA-Treated Liver Cells. ROS
such as hydroxyl radical, hydrogen peroxide, and superoxide
anion are normally generated as by-products of aerobic
metabolism [37, 38]. ROS can be scavenged by the antioxi-
dant defense system that mainly includes GSH-Px, SOD,
and CAT [37–39]. Compared with the control group, the
ROS levels were increased, but GSH-Px, SOD, and CAT
activities were downregulated in the OA group, which can
be reversed by the administration of EGCG (Figures 5(a)
and 5(b)). The results suggest that EGCG can reduce OA-
induced oxidative stress in liver cells. It has been shown that
ROS can activate theMAPK pathway and attenuation of ROS
by ROS scavengers could deactivate MAPK signaling [40,
41]. As shown in Figures 5(c) and 5(d), OA reduced the
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Figure 1: Continued.
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expression of p-ERK1/2 but increased the levels of p-JNK
and p-p38, while administration of EGCG exhibited reverse
effects on the kinases. The data suggest that EGCG may
suppress the ROS/MAPK pathway in OA-treated liver cells.

3.5. EGCG Attenuates HFD-Induced NAFLD in Mice. Com-
pared with the mice fed with LFD for 10 weeks, HFD-fed
mice exhibited increased body weight, indicating that an
alimentary obesity model had been successfully established.
In addition, compared to the LFD group, HFD-fed mice
showed decreased food and water intakes, as well as increased
weights of liver, white fat, and brown fat. Treatment with
EGCG reversed these changes except for the food intake
(Figures 6(a)–6(h)). Furthermore, HFD-fed mice exhibited
increased levels of TC, TG, ALT, and AST when compared
to the LFD group, which could be reversed by the treatment
with EGCG (Figures 6(i)–6(l)). Moreover, HFD-fed mice
showed upregulated levels of TC, TG, and NEFA in the liver
when compared with the LFD group, which were reduced by
the administration of EGCG (Figures 6(m)–6(o)). Compared
to the LFD group, the HFD group exhibited a higher apopto-
tic index, as well as a lower proliferation index and autopha-
gic index, which could be reversed by the administration of
EGCG (Figures 7(a)–7(d)). These results indicate that EGCG
can attenuate HFD-induced NAFLD in mice.

4. Discussion

NAFLD, the most common chronic liver disease, leads to
end-stage liver disease, liver transplantation, and hepatocel-
lular carcinoma [14–16]. It has been shown that EGCG plays
important biological and pharmacological roles in mammals.
Nevertheless, the effect and mechanism of EGCG in the
process of NAFLD are largely unknown. Human normal
liver cells QSG-7701 and L02 have been widely adopted to
investigate the mechanism of action of novel drugs and
donors [42, 43]. OA, a monounsaturated fatty acid, has been
successfully used in the establishment of the NAFLD model
[44]. In this study, QSG-7701 and L02 cells were adopted to
examine the effects of EGCG on NAFLD induced by OA
in vitro. A recent study has revealed that epoxy stearic acid,

a type of oxidative product from OA, can induce cytotoxicity
and G0/G1 phase cell cycle arrest in HepG2 cells [45]. Our
data indicated that OA decreased the viability and prolifera-
tion of liver cells and induced G1 phase cell cycle arrest. The
changes could be reversed by the administration of EGCG.
These data together indicate that EGCG acts as an effector
molecule in promoting the growth of OA-treated liver cells.

Apoptosis is a conserved cell death pathway which can
play key roles in the maintenance of organismal homeostasis
and normal eukaryotic development [46, 47]. Two main
apoptotic pathways have been identified in mammals: the
mitochondrial-mediated intrinsic pathway and the death
receptor-mediated extrinsic pathway [48]. Bcl-2 family pro-
teins are involved in the regulation of apoptosis, such as
Bax, Bad, Bcl-2, and Bcl-xl [49]. Many apoptotic stimuli
can activate caspases, and PARP is activated by cleaved cas-
pase-3, leading to the occurrence of apoptosis [31, 38, 49].
It has been reported that OA could induce apoptosis by
increasing the levels of Bax and PARP but decreasing the
level of Bcl-2 in HepG2 cells [50]. Another study shows that
OA can promote the expressions of both cleaved caspase-3
and PARP1 [51]. Similarly, our data indicated that OA
induced the early and late apoptosis, as well as increased
the ratios of both Bax/Bcl-2 and Bad/Bcl-xl and the expres-
sions of cleaved caspase-3/9 and cleaved PARP in liver cells.
EGCG significantly reduced the apoptotic levels in the OA
group. The data suggest that the apoptotic levels are
increased in OA-treated liver cells and treatment with EGCG
could reduce apoptosis.

Autophagy, an evolutionarily conserved catabolic path-
way, serves to deliver cytoplasmic materials to lysosomes
for recycling and degradation, leading to macromolecular
synthesis and energy production [36, 52]. Autophagy is acti-
vated by many environmental factors, including cytokines,
hormones, and nutrients [53]. Recent studies have indicated
that autophagy is impaired in lipid-overloaded hepatocytes
and in the liver from the NAFLD murine model and NAFLD
patients [54–56]. In line with the above studies, we observed
that the autophagic levels were decreased in OA-treated liver
cells. Another study has reported that EGCG can increase the
autophagic level by increasing lysosomal acidification and
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Figure 2: Effects of EGCG on cell cycle progression of OA-treated QSG-7701 and L02 cells. (a) Flow cytometry assay was used to determine
cell cycle distribution. (b) Cell cycle distribution was analyzed. (c) Western blot analysis for the expression levels of cyclin D1, cyclin E1,
CDK2, CDK4, p21, and p27 in each group. β-Actin was used as the loading control. (d) The densitometry analysis of each factor was
performed in each group, normalized to the corresponding β-actin level. Data are presented as mean ± SEM of three independent
experiments; ∗∗P < 0:01 compared with the control group; ##P < 0:01 compared with the OA group.
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Figure 3: Effects of EGCG on the apoptosis of OA-treated QSG-7701 and L02 cells. (a) Flow cytometry assay was used to determine the
apoptotic level. (b) The results of flow cytometry were analyzed. (c) Western blot analysis for the expression levels of Bax, Bcl-2, Bad, Bcl-
xl, cleaved caspase-3/9, and cleaved PARP in each group. β-Actin was used as the loading control. (d) The densitometry analysis of each
factor was performed in each group, normalized to the corresponding β-actin level. Data are presented as mean ± SEM of three
independent experiments; ∗P < 0:05, ∗∗P < 0:01 compared with the control group; #P < 0:05, ##P < 0:01 compared with the OA group.
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Figure 4: Effects of EGCG on the autophagy of OA-treated QSG-7701 and L02 cells. (a) GFP-RFP-LC3-transfected QSG-7701 and L02 cells
were examined by fluorescence microscopy; original magnification ×1000. (b) The ratios of red and yellow dots to transfected cells were
calculated. (c) Representative photographs of MDC staining. (d) The fluorescence intensity was analyzed. (e) Western blot analysis for the
expression levels of LC3A/B, beclin-1, and P62 in each group. β-Actin was used as the loading control. (f) The densitometry analysis of
each factor was performed in each group, normalized to the corresponding β-actin level. Data are presented as mean ± SEM of three
independent experiments; ∗∗P < 0:01 compared with the control group; #P < 0:05, ##P < 0:01 compared with the OA group.
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Figure 5: Effects of EGCG on the ROS/MAPK signaling pathway in OA-treated QSG-7701 and L02 cells. (a) The intracellular ROS
production was detected using the fluorescent probe DCF-DA (shown in green; original magnification, ×400). (b) The intracellular ROS
production and the activities of SOD, GSH-Px, and CAT were measured. (c) The protein expressions of ERK1/2, p-ERK1/2, JNK, p-JNK,
p38, and p-p38 were analyzed by Western blot. β-Actin was used as the loading control. (d) The densitometry analysis of each factor was
performed in each group, normalized to the corresponding β-actin level. Data are presented as mean ± SEM of three independent
experiments; ∗P < 0:05, ∗∗P < 0:01 compared with the control group; #P < 0:05, ##P < 0:01 compared with the OA group.
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Figure 6: Continued.
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stimulating autophagic flux in liver cells and the mouse liver
[57]. Our data showed that EGCG could increase autophagy
in OA-treated liver cells, indicating that autophagic activa-
tion can serve as a potential therapeutic target for NAFLD.

It has been shown that low concentrations of intracellular
ROS are necessary for many physiological roles including sig-
nal transduction and cell proliferation. Nevertheless, ROS
overproduction can induce oxidative stress and cellular redox
imbalance, thus ultimately affecting many cellular functions
[41, 58]. Our data indicated that OA increased ROS levels
and decreased the activities of GSH-Px, SOD, and CAT,
which were consistent with the results of a previous study
[59]. The effects were significantly reversed by the treatment
with EGCG. In mammalian cells, three major types of MAP
kinases are present: ERK, p38, and JNK, which are associated
with EGCG interaction in the MAPK pathway [60, 61].
MAPK cascades play key roles in the progression of NAFLD,
and elevation of ROS activates the MAPK pathway [38, 41,
62]. It has been revealed that intraperitoneal administration
of EGCG (5mg/kg) for 14 days inhibits phosphorylation of
ERK, JNK, and p38 in animals with artificial unilateral ure-

teral obstruction [63]. Another study indicates that MAPK
and hypoxia-inducible factor-1α are decreased after the treat-
ment with EGCG, suggesting that EGCG could suppress
MAPK-related oxidative stress [64]. A recent study has
shown that EGCG can increase the expression levels of anti-
oxidant enzymes, reverse the increase of ROS production,
and regulate mitochondrial-involved autophagy [65]. Fur-
thermore, EGCG could prevent αTC1-6 cells from H2O2-
induced ROS production via the activation of Akt signaling
and suppression of the p38 and JNK pathway [66]. In this
study, OA upregulated the expression levels of p-JNK and
p-p38 but downregulated the levels of p-ERK1/2. However,
administration of EGCG remarkably reversed the levels of
the proteins. Furthermore, the ROS/MAPK pathway is an
important signaling cascade which can mediate the processes
of apoptosis and autophagy in mammalian cells [67, 68]. In
sum, the data suggest that EGCG can reduce apoptosis and
induce autophagy possibly through the ROS/MAPK pathway
in OA-treated liver cells.

In this study, a mouse model of HFD-induced NAFLD
was used to imitate unhealthy dietary habits. Our results
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Figure 6: Effects of EGCG on HFD-induced NAFLD in mice. (a) Representative photographs of mice in each group. (b, c) The body weights
of mice were measured. (d, e) Food intake and water intake were determined. (f–h) The liver weight, white fat weight, and brown fat weight
were calculated. (i–l) The levels of TC, TG, ALT, and AST in the plasma of mice were detected. (m–o) The expression levels of TC, TG, and
NEFA in the liver of mice were detected. Data are presented as mean ± SEM (n = 6). ∗P < 0:05, ∗∗P < 0:01 compared with the control group;
##P < 0:01 compared with the OA group.
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suggested that HFD feeding induced obvious increases in
body weight, liver weight, white fat weight, and brown fat
weight, as well as the levels of TC, TG, ALT, and AST in
the plasma of mice, indicating the successful establishment
of the NAFLD model. It has been reported that NAFLD
patients tend to have higher TC and TG levels [69]. EGCG
markedly decreased the levels of TG and TC in both the
plasma and the liver. Furthermore, ALT and AST are impor-
tant indicators of liver damage in NAFLD [70]. Administra-

tion of EGCG significantly alleviated liver damage in HFD-
fed mice by reducing ALT and AST levels. The flux of NEFA
can be delivered to hepatocytes for TG synthesis, resulting in the
development of NAFLD [71]. Treatment with EGCG decreased
the level of NEFA in the liver of HFD-fed mice. Moreover,
EGCG can increase the proliferation and autophagy but
decrease the apoptosis in the liver of HFD-fed mice. The data
together indicate that EGCG might alleviate HFD-induced
NAFLD by inhibiting apoptosis and promoting autophagy.
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Figure 7: Effects of EGCG on the proliferation, apoptosis, and autophagy in liver tissues of the NAFLDmice. (a) Representative photographs
of HE, Ki67, cleaved caspase-3, and beclin-1 staining in the liver of mice; original magnification ×400. (b–d) The proliferation index, apoptotic
index, and autophagic index were calculated. Data are presented as mean ± SEM (n = 3). ∗∗P < 0:01 compared with the control group;
##P < 0:01 compared with the OA group.
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In summary, our data suggest that EGCG can alleviate
HFD-induced NAFLD through inhibition of apoptosis and
promotion of autophagy possibly via the ROS/MAPK pathway.
EGCG could be developed as an effective agent for the treat-
ment of NAFLD.
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