
Automated Quantitative Analysis of Wound Histology using 
Deep Learning Neural Networks

Jake D. Jones, Kyle P. Quinn*

Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA

To the Editor:

Every year, ~8 million Americans require advanced care for nonhealing wounds that 

collectively are estimated to cost between $28-96 billion (Sen, 2019). Complications in 

healing disproportionally afflict the elderly who commonly suffer from comorbidities like 

vascular insufficiency and diabetes mellitus (Gosain and DiPietro, 2004, Gould et al., 2015) 

that disrupt wound closure. Histological staining of skin tissue sections with hematoxylin 

and eosin (H&E) can provide insight into cellular infiltration into the wound, infection, 

hyperproliferation at the edge of the wound, and/or fibrosis and serves as a critical technique 

in the research laboratory to understand wound pathophysiology and evaluate new wound 

care products (Eming et al., 2014, Gantwerker and Hom, 2012). However, the analysis of 

wound histology is time-intensive, reliant on subjective user input, and largely qualitative. 

The goal of this study was to develop an objective and automated method to quantitatively 

assess H&E stained wound sections to aid in wound healing research.

Recently, convolutional neural networks (CNNs) have been applied to many biomedical 

applications and demonstrated an ability to classify and segment large quantities of image 

data rapidly and accurately (Calderon-Delgado et al., 2018, Kose et al., 2020, Oskal et al., 

2019, Rivenson et al., 2019, Ronneberger et al., 2015, Tang et al., 2019). CNNs typically 

utilize a deep-learning approach that allows them to learn features unique to different image 

regions and delineate them from other distinct regions of an image. This is accomplished 

using supervised learning in which a CNN learns image features from user traced image 

segmentation it considers as ground truth. This contrasts with unsupervised approaches that 

do not require labeled data, and instead find intrinsic patterns and features within the data set 

provided. While unsupervised approaches are immune to any potential training biases, it is 

difficult to control what patterns the network will choose to delineate. Supervised learning 
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benefits from being able to teach a network a known number of relevant classes leading to 

its applications in biomedical image segmentation. Training a neural network can be a 

significant time investment, as it requires hundreds or more training images and significant 

processing power to learn to classify data accurately. Once trained, however, CNNs they 

produce repeatable, consistent results rapidly across datasets. In the last five years, networks 

employing U-Net architectures (Ronneberger et al., 2015) have proven capable of 

segmenting images on a pixel-by-pixel basis with accuracies greater than 90% in OCT 

images of skin (Calderon-Delgado et al., 2018) and uninjured H&E skin sections (Oskal et 

al., 2019). This pixel-wise accuracy makes U-Net CNNs ideal for collecting automated 

dimensional measurements and could provide quantitative metrics to evaluate pathological 

delays in healing.

In this study, we trained a CNN capable of segmenting morphologically distinct and 

clinically relevant regions of wound tissue for the automated calculation of wound depth, 

wound width, epidermal/dermal thicknesses, and re-epithelialization percentage. To 

accomplish this, a U-Net segmentation network was trained and evaluated using images of 

H&E stained murine skin tissue containing full-thickness, excisional wounds from animals 

between 4-24 months of age, with and without streptozotocin-induced diabetes (Jones et al., 

2018). Animal studies were conducted in accordance with University of Arkansas IACUC 

protocols #16001 and #17063. Full details on the methods can be found in the 

Supplementary Material.

The U-Net architecture was comprised of 4 symmetric encoding and decoding layers created 

using the deep learning toolbox in MATLAB 2019a (Figure S1a). To train the network, 395 

unique 512x512 pixel images from 25 H&E stained murine tissue sections were collected at 

days 3 (n=8), 5 (n=8), and 10 (n=9) post-wounding. Custom written MATLAB code was 

used to manually segment 7 regions including the epidermis, dermis/hypodermis, 

granulation tissue, scab, hair follicles, skeletal muscle, and background. The 395 images 

were each augmented by reflection to improve network accuracy and robustness (Perez and 

Wang, 2017), thus increasing the size of the image set to 790. 70% of the images were 

randomly assigned to a training set, 20% to a validation set, and 10% to a testing set (Figure 

S1b). Training was performed with an initial learning rate of 10−3 using an Adam optimizer 

and a cross-entropy loss function. Training continued for 100 epochs and was terminated 

when validation loss stopped decreasing to prevent overfitting.

Once trained, an independent test set of images was segmented by the network and its output 

masks were compared on a pixel-by-pixel basis directly to the corresponding user segmented 

image masks (Figure 1). The granulation tissue (GT), epidermis (E), dermis (D), muscle 

(M), and background (BG) all were classified with accuracies ≥ 90%, while the scab (S) and 

hair follicle (HF) classes were slightly lower with some misclassification along their 

boundaries with surrounding tissue regions (Figure 2b). Overall, the network had a 

classification accuracy of 92.5% when compared to the user-defined images in the test set, 

performing similarly to published segmentation networks for other applications (Calderon-

Delgado et al., 2018, Oskal et al., 2019, Roy et al., 2017, Tang et al., 2019).
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To assess the ability of the network to segment and quantify whole wound sections, an 

additional test set of 6 whole sections from days 3, 5, and 10 post wounding were manually 

traced and then segmented by the trained network (Figure 2a). Accuracy of the whole 

section classification was 94.06% (Figure 2b), which was similar to the original test set 

evaluation (Figure 1). The segmentation accuracies of individual slides all fell in a range 

between 92.32-96.22%. Based on the segmented regions, measurements of wound depth, 

wound width, epidermal/dermal thicknesses, and % re-epithelialization were automatically 

quantified from the whole tissue sections. Minimum separation distances based on the pixel-

wise locations of epidermis and dermis classes were used to define wound width and the 

percentage of re-epithelialization, while wound depth was assessed using the depth of the 

granulation at the midpoint (Figure 2a). The average thicknesses of the epithelium -

including the migrating epithelial tongue- and dermis/hypodermis were calculated using 

Euclidean distance transform measurements. Percent error was calculated for each metric 

based on the results from the network segmentation relative to the measurements of the user 

traced sections (Figure 2c). Overall error in these measurements was 4.3±2.7%, with no 

time-point demonstrating substantially different (>2 S.D.) levels of error. Additionally, 

thickness measurements along the length of the wound sections were strongly correlated 

between the user and network defined masks (R=0.91±0.04 for the epidermis and 

R=0.98±0.02 for the dermis) (Figure S2).

In summary, this work demonstrates that a CNN can be developed to accurately segment full 

H&E stained wound sections on a pixel-wise basis in less than 30 seconds using a desktop 

computer (Figure 1). These segmentation masks can be used to automatically measure 

wound geometry with minimal error (Figure 2). Automatic delineation of relevant wound 

regions also provides a foundation to further quantify other image features, and our network 

could be paired with additional neural networks or automated image processing techniques 

to quantify region-specific microvessel or cellular densities in the future. Furthermore, the 

network generated here for rapid segmentation and evaluation of H&E sections can be 

retrained via transfer learning (Shin et al., 2016) to develop future CNNs capable of 

quantifying wound features using substantially different staining protocols, imaging 

parameters, or sources of contrast.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations Used:

H&E Hematoxylin and eosin

CNN Convolutional neural network
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Figure 1. 
Validation of the CNN. (a) Three representative test set images from distinct areas of skin 

wound tissue are shown with brightfield H&E images in the top row, the user segmented 

ground truth masks in the middle row, and the corresponding network segmented masks in 

the bottom row. (b) A confusion matrix summarizes the pixel classification accuracy of the 

network for each wound region based on comparisons to the user traced masks. Color-coded 

classes included granulation tissue (blue), scab (teal), epidermis (green), hair follicles 

(yellow), muscle (orange), dermis (red), and background (black). Scale bar is 250 μm.
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Figure 2. 
Automated network segmentation and quantification of whole wound sections. (a) 

Representative H&E stained sections of skin wound tissue from days 3, 5 and 10 post-

wounding (top row) with segmentation results from manual user tracing (middle row) and 

the CNN (bottom row) demonstrate the network’s ability to accurately segment full-

thickness wounds. (b) The network demonstrated good accuracy across different wound 

regions and had an overall accuracy of 94.06%. (c) Automated measurements using the 

wound segmentation results revealed only small errors between the network and user-

defined ground truth results. All scale bars are 500 μm.
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