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Abstract

Viroids are single-stranded circular noncoding RNAs that infect plants. The noncoding nature 

indicates that viroids must harness their RNA genomes to redirect host machinery for infection. 

Therefore, the viroid model provides invaluable opportunities for delineating fundamental 

principles of RNA structure-function relationships and for dissecting the composition and 

mechanism of RNA-related cellular machinery. There are two viroid families, Pospiviroidae and 

Avsunviroidae. Members of both families replicate via the RNA-based rolling-circle mechanism 

with some variations. Viroid replication is generally divided into three steps: transcription, 

cleavage, and ligation. Decades of studies have uncovered numerous viroid RNA structures with a 

regulatory role in replication and multiple enzymes critical for the three replication steps. This 

review discusses these findings and highlights the latest discoveries. Future studies will continue 

to elucidate regulatory factors and mechanism of host machinery exploited by viroids and provide 

new insights into host-viroid interactions in the context of pathogenesis.
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Introduction

Viroids are single-stranded circular noncoding RNAs that replicate and systemically traffic 

in plants [1,2]. To date, there are more than 30 viroids grouped into two families, 

Pospiviroidae and Avsunviroidae [3]. Members of the two families are categorized by the 

distinct features in overall genome structure, replication sites and processes, and whether 

they possess ribozymes [1,2,4]. By and large, members of Pospiviroidae have a rod-shaped 

RNA genome, replicate via the asymmetric rolling-circle model in the nucleus, and do not 

have intrinsic ribozyme activity. PSTVd is the type species of Pospiviroidae. In contrast, 

members of Avsunviroidae adopt a highly branched structure at one end of their RNA 

genome, replicate via the symmetric rolling-circle model in chloroplasts, and possess 
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hammerhead ribozymes. Avocado sunblotch viroid (ASBVd) is the type species of 

Avsunviroidae.

Viroids, as noncoding RNAs, must co-opt host factors to complete infection. Therefore, the 

viroid replication system offers excellent opportunities to unravel the function and 

mechanism of RNA-related host machinery. For instance, viroids of Pospiviroidae are 

substrates of DNA ligase I, uncovering an unexpected function of this deeply conserved 

enzyme [5]. In addition, all viroids redirect host DNA-dependent RNA polymerases 

(DdRPs) for RNA-templated replication [1,2,4]. It was later found that the human Hepatitis 

delta virus exploits this RNA-dependent RNA polymerase activity of DdRPs for replication 

[6]. Moreover, this RNA-templated activity regulates gene expression in bacteria [7] and 

mammalian cells [8] as a widely used mechanism in gene regulation.

Rolling-circle replication of viroids

After entering a cell through opportunistic mechanical wounds or with the aid of insect 

vectors, viroids traffic to specific organelles for replication. The replication process can 

largely be divided into three steps: transcription, cleavage, and ligation (Figure 1) [4]. 

Members of Pospiviroidae replicate in the nucleus starting from the circular (+)-RNA 

genome, via oligomeric (−)-RNA intermediates, to the generation of oligomeric (+)-RNAs. 

The oligomeric (+)-RNAs are cleaved into unit-length (+)-strands and ligated to yield 

progeny. Members of Avsunviroidae replicate in chloroplasts using circular (+)-RNA 

templates to generate oligomeric (−)-RNAs, which are cleaved and ligated to unit-length 

circular (−)-RNAs. Circular (−)-RNAs then serve as templates for producing oligomeric (+)-

RNAs that are cleaved and subsequently ligated to generate unit-length progeny circular 

molecules.

The presence of circular viroids [9–11], longer-than-unit-length (−)-RNAs [12–19] and (+)-

RNAs [12,15,17,18,20,21], as well as duplexes composed of one unit-length (+)-RNA and 

one longer-than-unit-length (−)-RNA [12,14,22,23] led to the rolling-circle replication 

model [12,14,17,23]. The finding that circular (−)-PSTVd does not exist established the 

asymmetric rolling-circle mechanism for members of Pospiviroidae [24]. The 

aforementioned double-stranded duplexes may serve as an efficient trigger of plant RNA 

silencing activity for small RNA (vd-sRNA) generation [25]. Interestingly, a novel 

homology-independent bioinformatics approach exploits vd-sRNAs to assemble viroid 

genomes [26]. Notably, some vd-sRNAs, derived from viroids of both families, are mapped 

to junction regions of oligomers, implying the existence of oligomeric duplexes during 

replication [26].

DNA-dependent RNA polymerases for RNA-templated transcription

Early studies reported that multiple polymerases could transcribe the PSTVd RNA genome 

in vitro [27–29]. However, mounting evidence supports DNA-dependent RNA Polymerase II 

(Pol II) as the authentic transcription enzyme for viroids of Pospiviroidae. First, purified 

tomato Pol II complex could transcribe the (+)-PSTVd RNA templates in vitro [27,30,31]. 

Second, a low concentration of α-amanitin, known to specifically impair Pol II activity, 
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inhibits PSTVd transcription in nuclear extracts [32] and the transcription from (+)-PSTVd 

to (−)-PSTVd by partially purified Pol II [27]. In addition, the low concentration of α-

amanitin inhibits the replication of PSTVd [33,34], cucumber pale fruit viroid [33], hop 

stunt viroid (HSVd) [35], and citrus exocortis viroid (CEVd) [36–39] in cells. Third, RNA-

immunoprecipitation demonstrated that the largest subunit of Pol II interacts with both (−)- 

and (+)-strands of CEVd [40] and PSTVd [30] in vivo. Furthermore, Pol II preferentially 

interacts with circular (+)-PSTVd in plants [30]. Whether Pol II recognizes oligomeric (−)-

strands as templates remains unclear due to the discrepancy in the literature [34,41]. 

Notably, transcription is a continuous process in vivo as the products from circular (+)-

strands readily serve as templates for producing oligomeric (+)-RNAs. Therefore, 

uncoupling the two steps is required to confirm the authentic enzyme using oligomeric (−)-

RNAs as templates. For all members of Avsunviroidae, their transcription is probably 

catalyzed by the single-subunit nuclear-encoded plastid RNA polymerase (NEP) [4], based 

on the observation that ASBVd in vivo replication is sensitive to NEP inhibitor targetoxin 

[42].

Transcription on viroid RNA templates starts at defined positions. Pol II initiates 

transcription at C1 or U359 position using circular (+)-PSTVd templates [32], whereas the 

initiation site from oligomeric (−)-PSTVd to oligomeric (+)-PSTVd awaits to be mapped. 

Moreover, the initiation sites of other viroids of Pospiviroidae remain to be elucidated. As 

the type species of Avsunviroidae, the transcription initiation sites of ASBVd were mapped 

to U121 and U119 in (+)- and (−)-strands, respectively, both residing in the right terminal 

loop [43]. However, the in vivo initiation sites in another chloroplastic viroid, peach latent 

mosaic viroid (PLMVd), were mapped to C51 and A286 for the (+)- and (−)-strand 

templates, respectively [44,45]. The PLMVd initiation sites in both strands locate at similar 

double-stranded motifs containing the conserved GUC triplet proximal to the cleavage sites 

[44,45]. Taken together, chloroplastic viroids adopt their specific strategies for transcription 

initiation during infection. Viroid transcription initiation at defined positions can be 

explained by the de novo transcription mode, akin to DNA-dependent transcription. In line 

with this assumption, a recent report provides empirical evidence supporting the de novo 
transcription of Pol II on PSTVd circular (+)-RNA templates [31].

Regulatory mechanism underlying RNA-templated transcription

Recent studies unraveled the first host transcription factor dedicated to viroid RNA-

templated transcription. Transcription factor IIIA (TFIIIA) was shown to directly bind 

PSTVd in a gel shift assay [46]. Following this work, a recent study showed that a splicing 

variant of TFIIIA, TFIIIA-7ZF, is the critical transcription factor for RNA-templated 

transcription catalyzed by Pol II [30]. TFIIIA-7ZF interacts with Pol II and both (+)- and 

(−)-PSTVd RNAs, modulates PSTVd replication in plants and directly enhances Pol II 

processivity when transcribing PSTVd RNA templates [30]. It is noteworthy that 

TFIIIA-7ZF also binds with HSVd [47] and has been suggested to play a role in the 

replication of apple fruit crinkle viroid [48]. Thus, TFIIIA-7ZF-based replication catalyzed 

by Pol II is possibly conserved for members of Pospiviroidae.
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Purified Pol II alone, without general transcription factors, cannot initiate DNA promoter-

dependent transcription [31,49–51]. When mixing with TFIIIA-7ZF and circular PSTVd 

RNA templates, however, purified Pol II can initiate de novo transcription generating longer-

than-unit-length products. This observation suggests that TFIIIA-7ZF acts as a general 

transcription factor in RNA-templated transcription [31]. Moreover, a conserved general 

transcription factor TFIIS, which is critical for DNA-dependent transcription, is dispensable 

for PSTVd RNA-templated transcription in cells. This observation implies that distinct Pol II 

machinery is formed for RNA-templated transcription [31]. It will be critical to dissect the 

functional components of Pol II and NEP machinery on viroid templates to achieve a 

comprehensive understanding of RNA-templated transcription.

Viroid RNA-templated transcription is error-prone. Chloroplastic viroids display the highest 

mutation rate among all biological entities [52,53], whereas nuclear-replicating viroids 

possess a mutation rate similar to some RNA viruses [53]. Mutations in accumulated (−)-

PSTVd intermediates are nearly absent from the regions corresponding to the central 

conserved region (CCR) in (+)-PSTVd [54], reflecting the biased Pol II fidelity in 

transcribing distinct regions [54] or the selection pressure from RNA 3D structure-based 

constraint [55].

Cleavage and ligation steps in viroid biogenesis

Members of Pospiviroidae do not possess intrinsic ribozymes, so they must rely on a host 

ribonuclease for cleavage. Using CEVd as a model, dimeric (+)-CEVd is cleaved between 

G96 and G97 in the CCR in vivo, specifically the upper strand of CCR [56]. The equivalent 

cleavage site on oligomeric (+)-PSTVd is mapped between G95 and G96 in vitro [57]. Thus, 

the cleavage site is probably conserved in members of Pospiviroidae. The cleavage products 

of CEVd possess a 5’-phosphomonoester and 3’-hydroxyl termini, hinting at the 

involvement of a host RNase III-type enzyme [4,58] yet to be identified. Interestingly, the 

ligation of PSTVd and several relatives are catalyzed by DNA ligase I [5]. To date, viroids of 

Pospiviroidae are the only known RNA substrates of DNA ligase I, raising the question of 

whether this enzyme accepts any endogenous RNA substrates and, if so, the biological 

significance.

ASBVd and all members of Avsunviroidae possess the intrinsic hammerhead ribozyme to 

cleave their oligomeric intermediates to unit-length linear products [2,4]. The cleavages 

occur between C55-U56 in (+)-ASBVd and between C90-G91 in (−)-ASBVd [59]. Despite 

possessing ribozyme activities, ASBVd interacts with a host factor, PARBP33, to enhance 

cleavage efficiency [60]. The cleavage products possess the 5’-hydroxyl and 2’,3’-cyclic 

phosphodiester termini structures [59]. It is generally accepted that the chloroplastic tRNA 

ligase is responsible for the ligation of chloroplastic viroids [61]. Whether viroid replication 

impairs or reduces the endogenous function of this tRNA ligase as one of the causes of 

symptoms deserves further investigation.
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Critical RNA motifs that interact with host factors in replication

In the past 40 years, many RNA structures in various viroids have been found to be critical 

for one or multiple steps in infection. Some of those RNA structures are known to interact 

with host factors. Recently, the TFIIIA-7ZF binding site has been established as an RNA 

promoter [31]. This promoter resides at the lower strand of the left terminal region spanning 

loops 3–5 [30], which is proximal to the transcription initiation site [32], overlapping with 

the Pol II binding region [62], and critical for replication [63]. This promoter also overlaps 

with a GC box that was regarded as a potential promoter based on the mapping of the 

transcription initiation site and mutational analysis [32]. However, the left terminal region of 

PSTVd may fold into two distinct conformations [64–66]. Since it is unclear which 

confirmation is involved in the transcription initiation, the structural basis of this RNA 

promoter remains to be determined [47].

Genome-wide functional analysis has identified two regions in PSTVd genome critical for 

replication [63]. One region, spanning loops 1–4, has been identified as the binding sites for 

TFIIIA-7ZF [30] and Pol II [62]. The other region in the CCR, spanning loops 13–15, has 

been shown to be critical for RPL5 (ribosomal protein L5) binding [67]. Notably, RPL5 is a 

splicing regulator suppressing the generation of TFIIIA-7ZF [68,69]. PSTVd interaction 

with RPL5 impairs the splicing regulation activity of RPL5 and is critical to modulate the 

expression of TFIIIA-7ZF, thereby influencing PSTVd transcription (Figure 2) [67]. It 

awaits to be clarified whether related viroids of Pospiviroidae employ the same RPL5/

TFIIIA-7ZF regulatory cascade in regulating replication.

The CCR is also critical for processing (i.e. cleavage and ligation) [4]. Particularly, hairpin I, 

which is conserved in all five genera in Pospiviroidae, is critical for cleavage [56]. Hairpin I 

is formed by the rearrangement of the upper strand of the CCR and consists of a tetraloop, 

an internal symmetric loop of 1–3 nt in each strand, and occasionally a 1 nt symmetric or 

asymmetric loop flanked by short stems [4]. Two adjacent hairpin I structures in oligomeric 

intermediates form a kissing loop via their palindromic tetraloops, providing a double-

stranded structure for cleavage [56]. The cleavage results in two protruding nucleotides in 

each strand, which is the characteristic feature of RNase III activity [56]. The cleaved 

products then form the loop E structure for DNA ligase I-mediated ligation [56]. Since loop 

E is not conserved in Pospiviroidae, it remains to be clarified whether DNA ligase I relies on 

loop E or a more general structure in the CCR.

Summary and perspectives

Several seminal discoveries regarding viroid replication were reported in the last decade. 

Discoveries of ligases for members of both families and the terminal structures of cleavage 

products provide new insights into the ligation steps. The dedicated transcription factor, 

TFIIIA-7ZF, has been uncovered to be critical for Pol II-catalyzed transcription using 

PSTVd RNA templates. PSTVd can modulate its replication through interaction with RPL5, 

leading to an optimized expression of TFIIIA-7ZF.
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Due to technical constraints, genetic approaches were rarely applied in viroid research, 

which may be essential to corroborate the function of host factors harnessed by viroids. The 

progress in understanding the host machinery for viroids replication also presents new 

opportunities to elucidate the significance of such interactions in the context of viroid 

pathogenesis. It is well demonstrated that the viroid model can help dissect various RNA-

related host machinery. From this prospect, future studies on RNA promoters and auxiliary 

factors dedicated to RNA templates may shed a novel light on RNA structure-function 

relationships.
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Figure 1. Rolling-circle replication mechanism.
PSTVd and ASBVd are selected to represent members of Pospiviroidae and Avsunviroidae, 

respectively. Red and black lines refer to (+)- and (−)-strands of PSTVd, respectively. Purple 

and yellow lines refer to (+)- and (−)-strands of ASBVd, respectively. Pol II, DNA-

dependent RNA polymerase II. NEP, nuclear-encoded plastid RNA polymerase. P, phosphate 

terminus. OH, hydroxyl terminus.
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Figure 2. PSTVd modulating TFIIIA-7ZF expression through interaction with RPL5.
PSTVd directly binds RPL5 and reduces the intron removal of TFIIIA transcripts, resulting 

in optimized expression of TFIIIA-7ZF. AS, alternative splicing.
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