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Abstract

The large volume of data used in cancer diagnosis presents a unique opportunity for deep learning 

algorithms, which improve in predictive performance with increasing data. When applying deep 

learning to cancer diagnosis, the goal is often to learn how to classify an input sample (such as 

images or biomarkers) into predefined categories (such as benign or cancerous). In this article, we 

examine examples of how deep learning algorithms have been implemented to make predictions 

related to cancer diagnosis using clinical, radiological, and pathological image data. We present a 

systematic approach for evaluating the development and application of clinical deep learning 

algorithms. Based on these examples and the current state of deep learning in medicine, we 

discuss the future possibilities in this space and outline a roadmap for implementations of deep 

learning in cancer diagnosis.

Introduction:

Diagnosing cancer often relies on physicians using visual pattern recognition to identify 

concerning lesions clinically, radiologically, or pathologically. For example, during a clinical 

exam, a dermatologist notes the irregular border and abnormal colors of a lesion suspicious 

for melanoma. Similarly, a radiologist reviewing a mammogram notes atypia concerning for 

breast cancer. In both examples, as with most cancer diagnoses, biopsies are ultimately taken 

to aid in the diagnosis. A pathologist then reviews the tissue under a microscope to help 

make a diagnosis; both clinical and pathological information is considered. The 

aforementioned workflows depend on a human physician who has undergone years of 
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training on large volumes of data to recognize the features that are concerning for 

malignancy.

The large volume of data used in cancer diagnosis presents a unique opportunity for machine 

learning algorithms, which improve in predictive performance with increasing experience 

and data.1 Machine learning algorithms can be supervised or unsupervised.2 Supervised 

algorithms rely on the use of labeled data (for example, labeled photos of normal and 

abnormal mammograms) to make predictions, while unsupervised algorithms find hidden 

patterns and relationships without labels.2

When applying machine learning to cancer diagnosis, the goal is often to learn how to 

classify an input sample (such as a clinical, radiologic, or pathology image) into predefined 

categories (such as benign or cancerous). These categories could be a specific diagnosis (e.g. 

melanoma) or a diagnostic category (e.g. malignant versus benign). In a supervised learning 

framework, these algorithms rely on a training set of labeled data to learn the representative 

features of each category or diagnosis.

For image classification tasks, deep learning, a subset of machine learning, has been 

particularly successful.2 Deep learning relies on multi-layer neural networks with many 

hidden layers, composed of connected artificial neurons that perform mathematical 

operations on input data.3 In particular, image tasks often rely on convolutional neural 

networks (CNNs), a type of neural network that is particularly adept at classifying images.4 

Image classification has worked exceedingly well because CNNs, which mimic natural 

visual processing in the brain, are able to interpret dense information such as the relationship 

of nearby pixels and objects.4

In a medical setting, a deep learning algorithm may be trained to take in a photo of a skin 

lesion and be able to predict whether or not the lesion is indicative of skin cancer (Figure 1). 

During training, labeled image data is inputted to the neural network and undergoes filtering 

(i.e. convolutions) and subsampling (i.e. pooling) steps in order for the network to learn the 

image features. Just as the network learns the simple image features, it adjusts weights in 

later layers of the neural network in order to optimize the relationship between imaging 

features and classification of the input images.3

In Figure 2, we show an overview of how deep learning models are implemented for image 

classification tasks. In the first step, a model architecture is selected based on the task. For 

image classification tasks, deep CNNs pre-trained on ImageNet, a database of 1.28 million 

images representing over 1000 categories, are a common choice.3–5 The benefit of this 

pretraining is that the model already has representations of the basic lines and shapes needed 

for any image recognition task. This model is then trained using labeled training and 

validation data to optimize of the weights in the neural network which define the difference 

between the prediction and the known true label.3 By minimizing that distance or “loss”, the 

model learns the salient features and how to correctly classify the input images. A separate 

validation set is used during training to understand the performance of the model and ensure 

that the network does not overfit to the data.3 Once a model is trained, it is tested on an 

independent test set so that its final performance can be evaluated. For example, to check 
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that a clinical deep learning algorithm is generalizable, the independent test set data may 

come from a different hospital system. In the future, these models can eventually be tested 

prospectively in a clinical environment in order to demonstrate their clinical utility in a real-

world environment.

In this article, we examine examples of how deep learning algorithms have been 

implemented to make predictions related to cancer diagnosis using clinical, radiological, and 

pathological image data. We approach this evaluation through four questions (Figure 3) that 

aid in dissecting the appropriate development and application of clinical deep learning 

algorithms. Based on these examples and the current state of deep learning in cancer 

diagnosis, we discuss the future possibilities in this space and outline a roadmap for future 

implementations of deep learning in cancer diagnosis.

What is the clinical task versus the machine learning task?

The application of deep learning in medicine aims to ultimately automate a task currently 

carried out by humans either with greater speed and/or accuracy. To understand how well an 

algorithm is performing, its performance must be benchmarked against human decisions or 

another ‘ground truth’ set of diagnoses or classifications. In the clinical applications 

discussed here, deep learning is used in a supervised manner: the model is created using 

these labels to train the model. When evaluating deep learning papers, it is important to ask 

if the classification task is representative of the actual clinical workflow and whether it is a 

fair comparison.

For example, Esteva et al. created a deep learning model that was able to distinguish 

between benign versus malignant skin lesions.6 Their team used a deep CNN trained on 

129,450 clinical images representing 2,032 different skin diseases to these images into 757 

diseases classes.6 When testing their CNN, they looked at its ability to classify images into a 

three classes: benign lesions, malignant lesions, and non-neoplastic lesions.6 They also 

looked at the ability of the CNN to classify images into nine classes based on similar 

treatment modalities.6 Finally, they tested their CNN on biopsy-proven images to see if the 

algorithm could distinguish between malignant keratinocyte lesions and seborrheic keratoses 

and melanoma versus benign nevi.6 Esteva et al compared the performance of their CNN on 

these three test classification tasks to that of board-certified dermatologists performing the 

same task and concluded that the CNN performed at the level of the a board-certified 

dermatologist.6

While their results are promising, the tasks presented were not entirely representative of the 

clinical workflow in dermatology. A dermatologist performing a full body skin exam has to 

first identify lesions of interest prior to deciding whether or not such a lesion may represent 

malignancy. During the skin exam, tactile feedback provides additional information. 

Dermatologists also take into account a patient’s medical history, the history of the lesion, 

and other risk factors. In comparison, the CNN was presented with already identified lesions 

to make predictions. Identifying melanoma versus benign nevus or malignant keratinocyte 

lesions versus seborrheic keratoses only captures part of a clinician’s task. Melanoma can be 

phenotypically diverse: benign nevi, seborrheic keratoses, pigmented basal cells, 

hematomas, and vascular growths are just some of the lesions that may mimic melanoma.7 

Daneshjou et al. Page 3

Biochim Biophys Acta Rev Cancer. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In Esteva et al’s paper, the three class (benign lesions, malignant lesions, and non-neoplastic 

lesions) and nine class (based on treatment modalities) classification tasks approximate 

some of the triage decisions that dermatologists make, but still do not encapsulate the full 

clinical workflow.6 More recently, Liu et. al developed a machine learning algorithm that 

generates top three differential diagnoses using patient images and medical history from 

across 26 different skin disease diagnoses, including melanoma, basal cell carcinoma, and 

squamous cell carcinoma.8 The incorporation of additional medical history, the expansion of 

diagnoses considered, and the generation of differential diagnoses brings the Liu et al 

algorithm closer to the clinical realm.8

In another example, Coudray et al trained a CNN to distinguish between adenocarcinoma of 

the lung, squamous cell carcinoma of the lung, and normal lung tissue using whole slide 

images obtained from the Cancer Genome Atlas.9 A total of 1,634 whole slide images 

representing 1,176 tumor tissues and 459 normal tissues were split into training, validation, 

and test sets to train and evaluate the model. Notably, because of the size of the images, each 

slide was split into tiles, resulting in large sample sizes for training/validation and testing. 

When testing on whole slide images, the CNN achieved an area under the curve (AUC) of 

0.97.9 This algorithm was then tested on an independent cohort of whole slide images of 

frozen and formalin-fixed paraffin-embedded tissue and lung biopsies, which led to a drop in 

performance, with an AUC above 0.83 in all cases.9 In this case, the clinical workflow is 

similar to the deep learning task – pathologists make a diagnosis based off visualizing a 

slide, similarly the algorithm makes its classification based on slide visualization.9 Notably, 

the algorithm was trained on whole slide images from The Cancer Genome Atlas, and the 

authors demonstrated that there is a drop in AUC when the algorithm is tested on images 

derived from tissue processed in different ways at their academic center.9 The CNN was 

trained using only hematoxylin and eosin (H&E) stained slides, while in real clinical 

practice, additional immunohistochemical stains are often used to aid in diagnosis.9 

However, there is the possibility that machine learning tools may be able to make diagnoses 

without the need for special stains; further validation will be needed to evaluate this 

possibility.

For both Esteva et al and Coudray et al’s algorithms, there are some mismatches between the 

framing of the machine learning task and the clinical context and auxiliary information 

frequently used by dermatologists and pathologists. It is important to understand the impact 

of this mismatch in evaluating the suitability of the trained machine learning algorithm and 

in designing deployment pilot studies.

How robust is the underlying data used to train the machine learning model?

When assessing the model performance, the data underlying the model is important to 

consider. Important factors include data adjudication, patient inclusion and exclusion 

criteria, and patient representation.

Deep learning algorithms rely on training/validation and testing data that have been properly 

labelled. Data adjudication is important as “junk in” can lead to “junk out” for algorithms. 

For each machine learning task, a gold standard should be set for proper data labeling. For 

example, with skin cancer, the gold standard in clinical care is pathological confirmation 
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rather than simply clinical agreement. The two aforementioned deep learning papers in the 

skin cancer field had only a subset of their data pathologically confirmed, the rest were 

“clinically” diagnosed.6, 8 Labeling the training/validation and testing data appropriately is 

not always straightforward as the clinical task may differ from the endpoint of diagnosis. For 

example, radiologists aren’t trained based on the eventual biopsy results of patients who 

undergo imaging, but rather classify images based on standards of risk and confidence for 

which multiple readers might disagree. Even within pathology, there is debate about how 

pathological confirmation should be viewed.10 Even with pathology-based gold standards 

there are limitations, and pathologists have had interobserver disagreement documented 

across multiple cancer types, including melanoma.10 Adamson et al suggested a solution to 

this problem: re-considering the labeling of pathology images in cancer discrimination tasks 

into three bins based on a panel of experts – total agreement of cancer diagnosis, total 

agreement of cancer absence, and disagreement on diagnosis.11

For a model to be applicable to a broad patient population, the training data need to be 

representative of this population. To this end, detailed descriptions of the inclusion and 

exclusion criteria used to select patients or patient samples is necessary.12 Moreover, a 

detailed description of patient demographics is likewise important. Biases in the input 

dataset can be propagated in the training of the model.13 For example, skin cancer is far less 

prevalent in darker skin types; however, it still does occur. Basal cell carcinoma, the most 

common cutaneous malignancy, occurs at a yearly incidence 212 to 250 per 100,000 in 

Caucasians, 1–2 per 100,000 in African Americans, 5.8–6.4 per 100,000 in Chinese 

individuals, and 50–171 in Hispanic individuals.14 However, most of the studies using deep 

learning to predict skin cancer from image data have largely left out darker skin types from 

their training/validation and test data.11 For example, Liu et al’s predictive algorithm that 

classifies across 26 common skin conditions had only one individual of the darkest skin type 

and less than 3% of the second darkest skin type in the test data set.15 Not including a subset 

of the population in algorithm creation can perpetuate bias and health disparities.11

Another issue to consider when assessing the training/validation and testing data is whether 

the classes are balanced.16, 17 Class imbalance means a significant skew towards a particular 

category; as a result, algorithms trained on highly imbalanced data can end up over-

classifying to the majority group.16 Class imbalance in the test set can also be an issue – for 

example, if a test contains 98% benign lesions and 2% malignant lesions, a simple classifier 

that simply labels all test samples as benign will have a 98% accuracy, though its 

performance will be poor in actual practice.16 When dealing with uncommon diseases, 

studies are at risk of having unbalanced datasets because the number of control samples 

available can be up to 1000 times higher than the number of cancer cases.17 There are 

methodologies, such as data augmentation, to deal with cases of class imbalance, and any 

algorithm that trains/validates or tests on imbalanced data should explicitly outline how this 

imbalance is addressed.17

How is the model designed?

The choice of the deep learning architecture can greatly impact the model’s performance. 

Most image classification tasks use CNNs, which do particularly well on this type of task 
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due to their ability to learn image features. There are several standard architectures available, 

and they differ in the network depth and connection patterns that impose different priors 

over images. Popular architectures includes ResNet and Inception, which capture lessons 

learned from computer science and represent the state of the art in image classification with 

deep learning algorithms. The architecture selected for the algorithm should be clearly 

described within the paper.

When the architecture used is not clearly described, it can be difficult to understand the 

underlying algorithm or to make attempts to replicate it. For example, McKinney et al aimed 

to predict biopsy-proven breast cancer based on mammogram images using a deep learning 

model.18 However, the model is described as an ensemble of three different models, whose 

details are not fully described nor the contribution in performance for each model in the 

ensemble.18 A major concern in applying machine learning to medicine is the presence of 

over-engineering when a simpler or smaller model could do just as well. In general, if novel 

architectures are used within a paper, there should be a comparison to standard benchmarks 

to help justify the use of the novel architecture.

How is the model evaluated?

Understanding how a model is evaluated is important for understanding how well the model 

may generalize in the real world. A model that does well on the training data but does poorly 

on the test data may suffer from overfitting. Metrics for evaluating machine learning 

algorithms include sensitivity, specificity, and positive predictive value.2 Receiver operating 

characteristics (ROC) curve plots the sensitivity (the true positive rate) on the x-axis versus 

1-specificity (the false positive rate) on the y-axis; a random classifier is represented by a 

diagonal line with a slope of 1 and an intercept at 0.2 The area under the curve (AUC) of the 

ROC curve demonstrates the classifier’s capability of distinguishing between classes.2

The evaluation metrics should be computed based on the model’s performance on an 

independent test set.2 Often this independent test set is retrospective in nature; however, in 

order to truly validate the generalizability of a deep learning algorithm on clinical tasks, 

prospective application and evaluation is required given differences between real world data 

and retrospective data. The gold standard for showing the efficacy of a medical intervention 

is the randomized controlled trial (RCT), and guidelines for RCTs using AI have been 

developed.12 To date, there have been a few RCTs using AI algorithms.19 Two recent trials 

were completed using a deep learning algorithm to aid in endoscopic tasks.20, 21 The 

adenoma detection rate (ADR) during colonoscopies is used as a quality indicator of 

colonoscopies; though it is a surrogate clinical metric for the clinical outcome that matters – 

reducing the number of colon cancers.21 In Wang et al’s trial, 1046 patients were enrolled in 

a double-blind sham-controlled trial using colonoscopy with computer-aided detection to 

evaluate ADR.21 In the computer-aided detection arm of the trial, endoscopists had a 

statistically significant higher ADR of 34%, compared to 28% in the sham-controlled arm.21

A second study evaluated the additional value in AI aided esophagogastroduodenoscopy 

(EGD) in assessing upper gastrointestinal diseases, including gastric cancer.20 During EGD, 

endoscopists must comprehensively visualize the stomach in order to avoid missing subtle 

gastric cancers; an area that is missed is a blind spot.20 Chen et al tested the ability of an AI 
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assistive tool to help reduce the blind spot rate.20 Their prospective, single-blind, 

randomized trial was done at a single center with three parallel groups (unsedated ultrathin 

transoral endoscopy, unsedated conventional EGD, and sedated conventional EGD), each of 

which had an AI assistance arm and an unassisted arm.20 In all three groups, the blind spot 

rate of the AI assisted arm of the study was significantly lower than the blind spot rate of the 

group without AI assistance.20

While these results are promising, a higher level question needs to be investigated for AI 

assistance particularly used in cancer screening tasks. Like any tool used in cancer 

screening, AI should not increase the number of benign lesions that are misclassified as 

cancer, as this leads to unnecessary procedures nor should it miss clinically obvious lesions.
22 Rather, a clinically useful AI algorithm would identify additional curable cancers that 

would have been otherwise missed while not overcalling early cancer lesions that would 

never progress or be life threatening.22 To understand whether AI is leading to clinically 

meaningful outcomes in cancer screening, additional longitudinal data is necessary.

Additionally, the recent randomized controlled trials demonstrate another important reality – 

in most cases, real clinical evaluation will require physicians working with an AI tool, rather 

than an AI tool replacing a physician.19 Clinical medicine always has a certain level of 

uncertainty, and a clinical case may not neatly fall into the categories predicted by the AI 

algorithm. Given the complexities of clinical care and the limitations of training data, 

creating an AI tool that completely replaces the clinical workflow of a physician is not 

currently feasible.

Next steps in the applications of AI for cancer diagnostics

A rigorously evaluated AI tool in the hands of a physician has the potential to improve 

workflows, improve accuracy, and cut costs. As reviewed above, there are several factors to 

consider when evaluating AI algorithms applied to tasks in cancer diagnostics. Even though 

the AI algorithms reviewed above do not perfectly approximate the clinical task, there is still 

ample opportunity for these algorithms to work hand in hand with healthcare workers. For 

example, skin lesions are not always seen by dermatologists initially, who are skin 

specialists, but are often first evaluated by primary care physicians or nurse practitioners and 

family doctors. Both Esteva et al and Liu et al’s dermatology algorithms can distinguish 

between benign lesions, malignant lesions, and non-neoplastic lesions with similar 

performance to board certified dermatologists; such an algorithm may serve as a useful 

triage tool for non-specialists making decisions about dermatology referrals.6, 15

AI presents the opportunity to not only build tools that will improve physician workflows, 

but also accomplish tasks that were previously not possible. AI algorithms are able to pick 

up patterns that are not discernable by humans, and this creates the potential for endless 

creative applications. For example, human pathologist cannot look at a histopathology slide 

without any special stains or testing and discern what genetic mutations might be present. 

However, Coudray et al demonstrated the ability of AI to predict multiple clinically relevant 

gene mutations in EGFR, STK11, FAT1, SETBP1, KRAS, and TP53 from H&E 

histopathology slides of lung cancer samples.9 This type of task could be replicated from 
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other cancer types and provide feedback to pathologists about what additional testing might 

be indicated for a tissue sample.

Another problem in cancer diagnosis and treatment is identifying the primary tumor’s origin, 

particularly when the disease is metastatic and not well-differentiated.23 In fact, an estimated 

3% of metastatic cancer cases have no obvious primary based on human assessment of the 

cancer.23 Jiao et al developed a deep learning algorithm that used somatic passenger 

mutations from whole genome sequencing of 24 tumor types to be able to predict the 

primary tumor of origin.23 They found this algorithm had an accuracy of 88% and 83% on 

independent primary and metastatic tumor samples.23 These early findings suggest that 

machine learning could be used with molecular data to learn new insights about tumors.

Artificial intelligence has the potential to revolutionize cancer diagnosis in several different 

domains. By thinking critically about how the machine learning algorithm aligns with how 

clinical workflow, how it is designed and tested, and what data is used, physicians can 

understand the potential of machine learning and play a key role in their development, 

evaluation, and deployment.
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Figure 1: 
During training, labeled image data (in this case skin lesions) is inputted to the neural 

network. Images undergo feature extraction (i.e. convolutions) and subsampling (i.e. 

pooling) steps in order for the network to learn the image features. As the network learns the 

image features, it adjusts weights to these features in order to optimize the correct 

classification of the input images. In this example, the output is whether an image represents 

a benign nevus or a melanoma.
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Figure 2: 
An overview of how deep learning models are implemented for image classification tasks.
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Figure 3: 
Four questions that aid in assessing the appropriate development and application of clinical 

deep learning algorithms
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