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Abstract

The autoimmune encephalitis (AE) syndromes have been characterised by the detection of autoantibodies in serum and/or
cerebrospinal fluid which target the extracellular domains of specific neuroglial antigens. The clinical syndromes have phe-
notypes which are often highly characteristic of their associated antigen-specific autoantibody. For example, the constellation
of psychiatric features and the multi-faceted movement disorder observed in patients with NMDAR antibodies are highly
distinctive, as are the faciobrachial dystonic seizures observed in close association with LGI1 antibodies. These typically
tight correlations may be conferred by the presence of autoantibodies which can directly access and modulate their antigens
in vivo. AE remains an under-recognised clinical syndrome but one where early and accurate detection is critical as prompt
initiation of immunotherapy is closely associated with improved outcomes. In this review of a rapidly emerging field, we
outline molecular observations with translational value. We focus on contemporary methodologies of autoantibody detection,
the evolution and distinctive nature of the clinical phenotypes, generalisable therapeutic paradigms, and finally discuss the
likely mechanisms of autoimmunity in these patients which may inform future precision therapies.

Keywords Autoimmune encephalitis - NMDAR encephalitis - LGI1 encephalitis - Neuroimmunology - Autoantibodies -
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Introduction by medial temporal lobe signal changes on imaging, has

been referred to as limbic encephalitis (LE) [1-3]. Some

For over 5 decades, the clinical syndrome characterised by
the subacute onset of amnesia, agitation, confusion, halluci-
nations, seizures and sleep disturbance, often accompanied
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patients with LE have defined autoantibodies which are not
thought to be directly pathogenic, and target intracellular
onconeural antigens including nuclear or cytoplasmic pro-
teins (such as Hu, Ma, Ri, and Yo) [2]. These patients often
have underlying malignancies and these are likely domi-
nantly T cell-mediated conditions [4-6].

By contrast, in recent years, a group of autoimmune
encephalitis (AE) syndromes have been characterised by
the detection of autoantibodies in serum and/or cerebrospi-
nal fluid (CSF) which target the extracellular domains of
specific neuroglial cell-surface antigens [2, 3, 7-10]. These
autoantibodies can access their target antigens in vivo, and
it is now widely accepted that their disruption of the tar-
get antigen results in the observed neurological sequelae
[6, 7, 11-14]. Therefore, these antibodies have pathogenic
potential and their early and accurate detection is critical for
two main pragmatic clinical reasons. First, the incidence of
autoantibody-mediated encephalitis is equivalent to that of
infectious encephalitis [15]. In our clinical experience, it is
likely to exceed the frequency of infectious causes, when the
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seronegative forms of AE are also taken into account. Sec-
ond, while the clinical manifestations may range from mild
to life threatening, the syndromes are typically responsive to
immunotherapy [7], with early treatment being consistently
identified as a factor in improved long-term outcomes [8,
16, 17]. Hence, this review will summarise features which
should encourage early clinical recognition and outline cur-
rent treatment strategies. In addition, we discuss autoanti-
body detection methods and describe contemporary insights
into the neuroscience and cellular immunology which under-
lie these fascinating conditions.

Relative merits of autoantibody detection
methods

All autoantibodies which mediate AE bind conformational
antigenic epitopes. The tertiary structure of the target protein
is thought to create distinctive three-dimensional domains
to which autoantibodies preferentially bind. Conversely, loss
of this structure reduces the likelihood of binding and sub-
sequent detection of potentially pathogenic autoantibodies.
This principle has underpinned the development of assays
used in discovery phase research as well as those optimised
for routine diagnostic testing (Fig. 1).

HEK?293 cells provide a robust system for expressing pro-
teins in their native conformational state on a mammalian
surface membrane. As a result, they are a key reagent in the
successful mammalian expression of the conformationally
active extracellular domains of the known target antigens.
Indeed, they are commonly employed in cell-based assays
(CBAs), and have roles both in research to test for candidate
targets, and in diagnostic testing to specifically identify a
clinically suspected autoantibody. The patient serum or CSF
can be applied to the transfected HEK cells either when they
are live and intact (‘live CBA’) or after fixation and per-
meabilization (‘fixed CBA’). Live CBAs avoid permeabi-
lisation and fixation-induced disruption of autoantigens, so
patient autoantibodies are only exposed to the most clinically
relevant extracellular epitopes. In our experience, this test-
ing approach contributes to higher sensitivity for detecting
immunotherapy-responsive conditions [18-21]. However,
the cells must be cyclically prepared and used within a nar-
row time window, limiting their availability to expert labora-
tories. By contrast, fixed CBAs expose potentially denatured
and intracellular antigens, but can be easily disseminated
to other labs and used after preparation for several months.

Live cultured rodent neurons or fixed brain slices provide
substrates for ‘neuron-based assays’ or ‘tissue-based assays’,
respectively. These preparations express the native epitopes
from neurons, rather than those expressed by non-neuronal,
albeit mammalian, cells such as HEK cells. Therefore,
they may further improve the detection of autoantibodies
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Fig.1 Neuronal surface antibody detection methods. Prevail-
ing methods used in research and diagnostic practice expose neu-
ronal antigens to the test sample but differ in the properties of the
antigen(s). Cell-based assays (CBA) aim to largely expose a single
known antigen, by cell transfection. Conversely, neuron-based assays
and tissue-based assays expose multiple natively expressed antigens
which include those known to be targets of pathogenic antibodies, in
addition to as-yet unknown antigens. Additionally, the assays vary
on whether the antigen is fixed prior to incubation with the sample,
and whether the cell membrane is intact. Live CBAs and live neu-
ron-based assays neither fix the surface antigen nor permeabilise the
membrane prior to exposure to the patient’s sample. In contrast, in
fixed permeabilised CBAs and tissue-based assays, target antigens are
fixed and cell membrane integrity is lost. CBA cell-based assay

with pathogenic potential. Theoretically, they can be used
to screen for binding to any endogenous neuronal antigen,
although fixed slices will of course detect antibodies which
bind intracellular targets. Additionally, they may yield highly
characteristic binding patterns and provide information
about subcellular and whole brain localisation of autoan-
tigens. These approaches depend on considerable techni-
cal expertise to optimise antigen availability, autoantibody
detection, and image interpretation. Consequently, their
main role remains in research laboratories for autoantibody
discovery, or as an adjunct to confirm CBA-determined
autoantibody specificities in more native tissue [3, 21].

Use of serum versus CSF
The relative value of serum versus CSF for testing provides

an interesting set of challenges. Serum has both a high
level of IgG (around 10 mg/mL) and a huge diversity of
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antibody-binding specificities. Hence, serum testing is inher-
ently challenging, compared to the approximately 500-fold
lower total IgG in CSF. However, as nearly all potentially
pathogenic antibodies have a higher concentration in serum
compared to CSF, likely reflecting their initial peripheral
generation, serum findings have biological and diagnostic
importance. Particularly in serum, high-sensitivity assays
permit the detection of target-specific conformational anti-
bodies that are of low affinity and/or at a low level [22,
23]. However, the detection of these lower affinity/level
antibodies may increase the likelihood of detecting autoan-
tibodies which lack direct clinical relevance with respect
to the canonical AE syndrome in question. Yet, these find-
ings appear to be biochemically robust in defining the pres-
ence of antigen-specific reactivities [20, 22, 23]: they do
not appear to be false-positive results. Hence, we prefer the
term clinically irrelevant as they do not currently appear
directly translatable to the level of individual patients. In
contrast, CSF provides a ‘cleaner’ sample for autoantibody
determination and in many cases of AE there is a relative
overproduction of the antigen-specific autoantibodies in
the intrathecal compartment (‘intrathecal synthesis’), as
reflected in the high frequencies of antigen-specific B cells
in CSF [2, 24-26]. For some AE autoantibodies, this confers
CSF with low background, and it can often be tested with
minimal dilution to boost sensitivity without concern about
loss of specificity. However, some AE autoantibodies—such
as those against LGI1—are preferentially detected in serum
versus CSF in clear-cut clinical cases [27] (Michael, Ram-
berger, and Irani, unpublished observations). Therefore,
overall, the literature and our experience suggest that paired
serum—CSF testing in the context of a clear pre-test clinical
probability forms the basis of a reliable diagnostic approach.
This a priori clinical hypothesis remains the cornerstone of
successful diagnostic testing and is, therefore, the focus of
the next section.

Clinical features of the neuronal surface
autoantibody-mediated encephalitis
syndromes

N-Methyl-p-aspartate receptor (NMDAR) and leucine-rich
glioma-inactivated 1 (LGI1) antibodies define the most
prevalently recognised AE syndromes, and will be the pri-
mary focus of this review (Table 1). In addition, over the last
decade, numerous other CNS antigens have been identified
as targets in less frequent, clinically varied forms of AE.
These autoantibodies are directed against the y-aminobutyric
acid A and B receptors (GABA ), a-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptor (AMPAR),
glycine receptor (GlyR), dipeptidyl-peptidase-like pro-
tein-6 (DPPX), dopamine 2 receptor (D2R), metabotropic

glutamate receptor 5 (mGIluRS5), neurexin-3a, and IgLONS.
The demographics, clinical presentations, paraclinical inves-
tigations, and the therapeutic responses of these individual
syndromes are summarised in Table 2. Much of this clinical
information is based on retrospective diagnoses and rela-
tively small cohorts. Nevertheless, almost all studies still
point towards a consistent paradigm of an autoantibody-
medicated encephalitis occurring over an acute or subacute
duration, often with associated impaired cognition, neu-
ropsychiatric manifestations, seizures, movement disorders,
and sleep dysfunction, with or without a tumour association;
and a high likelihood of response to immunotherapy.

In clinical practice, it is well recognised that a proportion
of patients present with similar features and do not have
detectable autoantibodies. These ‘phenocopies’ are typi-
cally diagnosed as having a seronegative AE, and it is pre-
sumed that they have as-yet unrecognised neuronal surface
autoantibodies [25, 28, 29]. This concept has been recently
highlighted by a study describing 38 patients with immuno-
therapy-responsive brainstem—cerebellar presentations and
opsoclonus, plus ovarian teratomas, yet absent NMDAR
antibodies [30]. In such patients, it remains essential to make
a clinical diagnosis [28], exclude alternate aetiologies, and
manage these patients with immunotherapeutic treatment
algorithms which are based on those with proven neuronal
surface autoantibody-associated syndromes. Indeed, recent
consensus criteria have been developed with ‘possible’,
‘probable’, and ‘definite’ classifications of the disease to
promote instigation of immune treatments on the balance of
clinical probabilities, while investigations are arranged [28].

Signature features of NMDAR-antibody
encephalitis

NMDAR-antibody encephalitis is one of the most common
autoimmune encephalopathies [15, 31]. While it can affect
all ages and sexes, it most frequently presents in young
females. It is associated with ovarian teratomas in 20-40%
of cases, but has a greater female preponderance even when
this is taken into account. This demographic pattern is in
direct contrast to the other common AE syndrome, associ-
ated with LGI1 antibodies (Fig. 2A and Table 1). In addition
to this separation, patients with LGI1 antibodies are rarely
of African or Caribbean descent, whereas patients with
NMDAR antibodies are often within this ethnicity [8, 16].
The clinical syndrome and the associated NR1 subu-
nit IgG antibodies were characterised as recently as the
mid-2000s [32-36]. Yet, while newly described, it is most
likely not a de novo clinical disease entity. The character-
istic progressive pattern of abrupt-onset bizarre behaviour,
typically followed a few days later by abnormal movements,
seizures, dysautonomia, and disruption of consciousness, is
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Fig.2 Characteristic aspects of NMDAR-antibody encephalitis. a
Comparison of age, sex, and tumour association in adult patients with
NMDAR (red) versus LGI1-antibody encephalitis (blue). b The ovar-
ian teratomas associated with NMDAR-Ab-E can contain germinal
centre-like structures. Here, T (CD3) and B (CD20) cell lineages are
present, along with classical plasma cells (CD138), markers of T and
B cell subsets (CD27 and CD38), plus the target antigen, the NR1
subunit of the NMDA Receptor. Reproduced with permission from
[97]. ¢ The presentation of NMDAR-Ab-E typically includes psychi-
atric features and movement disorders. These are both characterised
by high levels of complexity, blending phenotypes which are usu-

reminiscent of multiple syndromes previously designated as
malignant catatonia, dyskinetic encephalitis lethargica, acute
juvenile female non-herpetic encephalitis, and even preter-
natural explanations such as demonic possession [37-39].
Despite greatly increased awareness over the past decade,
this symptomatic overlap with medical and non-medical
concepts beyond the scope of neurology continues to risk
delay in diagnosis and instigation of disease-modifying
therapies.

Since the initial descriptions of NMDAR-antibody
encephalitis, our understanding of the illness has been
refined. This has included the identification of cases in both
sexes and most commonly, without tumours; the recogni-
tion of herpes simplex encephalitis as a trigger; and the
role of lymphocyte-targeted second-line immunotherapies
as effective in relapse prevention [16, 40-42]. Our group
and others have systematically studied the two most promi-
nent and common clinical manifestations of this disease: the
psychiatric features and movement disorders. The primary

Psychiatric features
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ally discrete in individual patients. Here, a sub-group of individually
reported patients (n=115) with >6 psychiatric features are compared
with 14 primary psychiatric disorders using constrained combination
analysis. The heat map shows the pairs which best describe the data
from [47]. d The movement disorder similarly combines multiple
phenomenologies including stereotypies, dystonia and chorea. Modi-
fied with permission from [46]. APPD acute polymorphic psychotic
disorder, Cat Sz catatonic schizophrenia, D depression, Heb Sz hebe-
phrenic schizophrenia, M mania, PPP postpartum psychosis, P Sz
paranoid schizophrenia, Sz schizophrenia, SzAD schizoaffective disor-
der, + cat with catatonia, +psy with psychotic features

aim of such studies is not only to improve both positive
identification of patients with an immunotherapy-respon-
sive syndrome, but also to limit overconsideration of the
diagnosis in presentations where the autoantibodies are not
clinically relevant. In summary, the main finding has been
that NMDAR-antibody encephalitis is associated with highly
complex phenotypes that sample aspects from multiple
sub-syndromal domains [43]. For example, the movement
disorder shows almost all recognised movement disorder
phenomenologies, albeit with markedly differing frequen-
cies [44—46]. Most commonly, the movement disorder is
best described by a combination of dystonia, stereotypy,
and chorea with little tremor (Fig. 2b) [46]; these phenom-
enologies are very rarely seen together in other neurological
conditions making this combination highly distinctive for
NMDAR-antibody encephalitis. In an analogous manner, the
mental state shows a pattern that fits poorly with primary
psychiatric features and a study highlighting the psycho-
pathological features across 464 individual patients with
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NMDAR-antibody encephalitis described a highly mixed
mood—psychotic disorder with prominent disorganisation
that only a combination of mixed primary disorders could
adequately model [47]. Strikingly, an individual patient can
manifest up to twenty different psychiatric features. These
patterns, while complex over the time course of the disease,
show strong levels of coherence indicative of consistency
between patients (Fig. 2b). Recent observations also sug-
gest that other distinctive findings in the acute phase include
wandering, behavioural regression, and an abnormal sense
of strength [130]. Taken together, we suggest that this ste-
reotyped complexity can help clinicians in emergency medi-
cine, psychiatry, and neurology develop an index of suspi-
cion at the earliest clinical phases and, therefore, arrange for
paired serum—CSF antibody testing, and prompt considera-
tion of empirical immunotherapies [48—50]. This is critical
as widespread testing of serum without refining the clinical
syndrome can lead to conflation of other neurological and
psychiatric disorders with NMDAR-antibody encephalitis
and downstream errors of omission (lack of management
of the actual diagnosis) and commission (administration of
immunotherapy and exposure to side effects without a clear
indication) [23, 51].

Application of contemporary molecular and systems
neuroscience continues to expand our understanding of
how autoantibody-receptor interactions can provoke such a
clinically distinctive disease. Indeed, it is of relevance that
ketamine closely mimics several aspects of the psychopa-
thology and movement disorders associated with NMDAR-
antibody encephalitis, suggesting that modification of the
NMDAR alone may be sufficient to explain the clinical
observations [10, 35]. Appreciating receptor-level modifi-
cations may assist in identifying optimal symptomatic thera-
pies, as well as developing new approaches targeting the
stabilisation of NMDAR-expressing synapses. For example,
single-molecule microscopy techniques have demonstrated
that loss of synaptic NMDAR localisation, via disruption
of NMDAR-EphB2 interactions and postsynaptic den-
sity organisation, is a key pathogenic mechanism [52-54].
Importantly, these studies have demonstrated that the effect
of the NMDAR autoantibodies can be partially ameliorated
with pretreatment using the Ephrin-B2 receptor-ligand. This
could represent an important adjunctive approach, especially
when neuropsychiatric symptoms persist despite extensive
immunotherapy.

Nano-level results have been contextualised by interro-
gation of regional connectivity plus grey and white mat-
ter integrity with MRI. The main findings include largely
preserved grey matter, a degree of white matter damage,
but widespread disruption of network connectivity [55, 56].
A network model of brain dysfunction provides a credible
synthesis of how changes at the level of synaptic organi-
sation can lead to wide ranging clinical manifestations

@ Springer

in the absence of major abnormalities on routine clinical
brain imaging. The role of white matter abnormalities hints
at effects via glia or perhaps bystander inflammation, and
indeed oligodendrocytes do express NMDARs [57]. Along-
side these, the development of simple predictive clinical
tools such as the anti-NMDAR Encephalitis One-year Func-
tional Status (NEOS) Score and the Clinical Assessment
Scale in Autoimmune Encephalitis (CASE), to predict out-
comes and trajectories, respectively, is an important step
to clinically ground a potentially molecular approach [58,
59]. Collectively, these studies set the scene for precision
brain-targeted therapies, in both acute and convalescent
phases. They also reinforce the need for early diagnosis and
treatment to prevent disease progression during which the
possibility of reversibility reduces alongside an increased
likelihood of longer term cognitive burden and psychosocial
dysfunction.

Distinctive features of LGI1-antibody
encephalitis

Antibodies targeting the voltage-gated potassium channel
(VGKC) were originally described in three neurological syn-
dromes: LE—a primarily CNS disorder; neuromyotonia—a
predominantly peripheral nervous system (PNS) disorder
characterised by peripheral nerve hyperexcitability, muscle
cramps, and dysautonomia; and Morvan’s syndrome—an
overlap syndrome with clear evidence of both CNS and PNS
manifestations [60]. A radioimmunoprecipitation assay with
a-dendrotoxin-labelled VGKCs extracted from mammalian
brain lysates was used to detect antibodies to the VGKC.
Subsequently, it was discovered that, in fact, these antibod-
ies bound to proteins which were often complexed with the
VGKCs: LGI1, contactin-associated protein 2 (CASPR2)
and, more rarely, contactin-2 [60, 61] (Fig. 3a). VGKC anti-
bodies which do not bind to one of these proteins (often
termed ‘double negative’) are far more common than LGI1
or CASPR2-reactivities [62, 63], are not associated with a
defined immunotherapy-responsive clinical syndrome, have
low syndrome specificity, and appear to target cytosolic
epitopes unrelated to disease pathogenesis [60, 64—66]. In
addition to this issue around specificity of VGKC-antibod-
ies, the VGKC assay fails to detect a number of LGI and
CASPR2-specific autoantibodies, meaning that it also has
reduced sensitivity. Taken together, these findings indicate
that VGKC-antibody testing is clinically obsolete and has
no place in routine diagnostic laboratories. Rather, patients
with a suggestive clinical presentation should be specifically
tested for LGI1 or CASPR2 antibodies.

LGI1-antibody encephalitis is most common in the
elderly with a significant male preponderance [63, 67].
There is an annual incidence of approximately 1-2 per
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Fig.3 Genetic, biochemical and therapeutic aspects of LGII,
CASPR2 and double-negative voltage-gated potassium channel-
complex antibodies. a CASPR2 and LGII are cell-surface-exposed
proteins complexed with voltage-gated potassium channels (VGKC).
LGII is a secreted protein which binds a disintregin and metallo-
protease (ADAM) 22 and 23. The patients typically have immuno-
therapy-responsive diseases with strong HLA associations. In con-
trast, patients with VGKC-complex antibodies but without LGI1 or
CASPR?2 reactivities frequently bind intracellular components, do not

million per year (Irani and Waters, unpublished observa-
tions) [67]. Genetic studies have shown that around 90%
of patients with LGI1 antibodies from both Caucasian and
Asian cohorts [68—70] carry the human leukocyte antigen
(HLA) DRB*07:01.

The two cardinal clinical features of LGI1-antibody
encephalitis are seizures and cognitive impairment [60, 61,
67]. The pathognomonic seizure syndrome for this condition
is termed faciobrachial dystonic seizures (FBDS) and has
only been recognised in association with LGI1 antibodies
to date. This specificity may be akin to the stereotyped com-
plexity of movement disorders and psychopathology closely
associated with NMDAR-antibody encephalitis. FBDS refer
to brief stereotyped events, most commonly involving the
hemiface and ipsilateral arm which occur at a median of
50 times per day at disease nadir [71, 72]. They are associ-
ated with classically epileptic ictal features such as speech
arrest, agitation, fear, and automatisms [71, 72]. FBDS often

T T T T T T T T 1

Time 0 50 100 150 200 250 300 350 400_Days
During 80 42 23 14 7 7 4 4 At risk
Ceased 23 23 23 23 23 23 23 21 20

have specific HLA associations and do not have characteristic immu-
notherapy-responsive clinical associations. b Faciobrachial dystonic
seizures (FBDS) are highly responsive to immunotherapy (IT) but not
to antiepileptic drugs (AED) alone. ¢ Often, FBDS precede the onset
of cognitive impairment. Achieving cessation of FBDS usually pre-
vents progression to cognitive impairment. b and ¢ Reproduced with
permission from [8]. RIA radioimmunoassay, AED antiepileptic drug,
IT immunotherapy, FBDS faciobrachial dystonic seizures, CI cogni-
tive impairment

precede the development of the cognitive impairment seen in
patients with LGI1 antibodies which predominantly involves
episodic memory and executive function [27, 72-74]. Other
frequent focal seizure semiologies which may occur con-
currently with, or in the absence of FBDS, include thermal
sensations, body shuddering, motor automatisms, gelastic
seizures, and paroxysmal dizzy spells [27, 62, 75-77]. Gen-
eralised tonic—clonic seizures are uncommon and usually
manifest in the later stages of disease. Importantly, focal
seizures—in particular FBDS—are often the first feature of
this illness. Hence, their early clinical recognition is para-
mount prior to the development of a fulminant encephalitic
syndrome.

Ancillary investigations may be non-contributory, with
EEG often being non-specific and over 50% of patients
having normal MRI and CSF analysis [8, 27, 72, 75]. This
highlights the importance of the syndrome being a pre-
dominantly clinical diagnosis confirmed by detection of

@ Springer



1700

Journal of Neurology (2021) 268:1689-1707

LGI1-specific antibodies in the serum, and at a lower fre-
quency in CSF [27]. Where present, ancillary findings may
include serum hyponatraemia and MRI evidence of medial
temporal swelling during the acute presentation, with longer
term development of mesial temporal sclerosis [27, 60, 61,
75]. Exclusively in patients with FBDS, basal ganglia signal
changes contralateral to the side of clinical involvement are
well described [62, 72, 73, 78, 79]. LGI1 antibodies only
rarely associate with tumours, usually thymomas, which are
more common in the patients with both LGI1 and CASPR2
antibodies [62].

LGI1-antibody encephalitis is most convincingly dem-
onstrated to be an immunotherapy-responsive clinical syn-
drome by a large cohort of patients with FBDS who had
refractory seizures when treated with (often several) antie-
pileptic drugs alone [8]. By contrast, 90% had a favourable
response to the initiation of immunotherapy, which was
often very rapid, sometimes occurring a few days after com-
mencement of corticosteroids [8, 62] (Fig. 3b). As FBDS
and other focal seizure syndromes commonly precede the
onset of cognitive symptoms, their clinical recognition pro-
vides a critical therapeutic window to expedite diagnosis and
initiation of immunotherapy, with cessation of FBDS shown
to prevent the long-term functionally impairing sequelae of
cognitive impairment (Fig. 3¢) [8]. In addition, rapid cor-
ticosteroid withdrawal often appears to predispose to early
relapses [27, 72]. By contrast, our clinical observation is
that patients who receive longer term immunotherapies,
have very few relapses. However, as only small numbers of
reported patients have been administered chronic immuno-
suppression with steroid sparing agents, such as rituximab
and cyclophosphamide, the therapeutic efficacy of these
agents is currently difficult to more formally determine [80,
81].

LGI1- and CASPR2-antibody encephalitis syndromes
share significant overlap with regard to clinical and radio-
logical phenotypes (Table 2), yet patients with CASPR2
antibodies tend towards the neuromyotonia and Morvan’s
phenotypes, and often have underlying thymomas [81,
82]. The more precise phenotypic differences await formal
description although neuropathic pain syndromes appear to
be more common in patients with CASPR2 antibodies, and,
to date, these patients have not been reported to have FBDS
without concomitant LGI1 antibodies.

Differential diagnoses

While viral encephalitis may be considered in the differential
diagnosis of a patient with an acute-onset encephalopathy,
its presentation differs from AE with a higher likelihood
of fevers, CSF inflammation, and the absence of the sig-
nature neuropsychiatric, seizure, and movement disorder

@ Springer

manifestations seen in patients with LGI1- or NMDAR-
antibody encephalitis [7]. Differential diagnoses apart from
established neuronal surface antibody syndromes and seron-
egative AE include rare CNS inflammatory disorders such
as Hashimoto’s encephalopathy, Rasmussen’s encephalitis,
Bickerstaff’s encephalitis, and progressive encephalomyelitis
with rigidity and myoclonus [28], as well as prion disease
such as Creutzfeldt—Jakob disease [83]. Drugs which result
in pharmacological disruption of the NMDAR, such as keta-
mine, may present similar to NMDAR-antibody encephalitis
[35]. Recent expert consensus suggests that AE should be
considered in patients with subacute memory impairment
and psychiatric symptoms, plus at least one of the follow-
ing: new focal CNS findings, seizures without an alternate
aetiology, MRI consistent with encephalitis, and exclusion
of alternative diagnoses [28].

Therapeutic paradigms in autoimmune
encephalitis

Multicentre observational studies involving relatively large
cohorts of patients with NMDAR- and LGI1-antibody
encephalitis show intrinsic methodological biases, but high-
light common themes in therapeutic efficacy and outcomes,
which we can reasonably extrapolate to the treatment of
other forms of AE [3, 84].

First-line therapy is often in the form of pulsed intrave-
nous methylprednisolone (often followed by high-dose oral
prednisone), plus plasmapheresis and/or intravenous immu-
noglobulin [7, 16]. In addition, early tumour surveillance is
recommended as tumour-directed therapy can be important
[6, 16, 40]. Failure to respond to first-line agents should lead
to therapy escalation including further steroids/plasmapher-
esis plus consideration of second-line therapies including
rituximab or cyclophosphamide [4, 29, 84, 85]. The interval
between waiting for first-line therapy to take effect and com-
mencing second-line therapy is debated, and may be rea-
sonably dictated by the severity of presentation, the degree
and rate of improvement, and the relative clinical experience
of different centres. However, a critical theme in the treat-
ment of AE is that the early institution of immunotherapy is
closely linked to reducing long-term sequelae and relapses,
and improving outcomes in the short and longer terms [8,
12, 16, 80, 84]. A minority of patients remain refractory to
second-line therapy and in a small number of these patients,
case reports and case series have highlighted the possible
use of third-line immunotherapies such as tocilizumab and
bortezomib [86, 87]. These principles are illustrated in a
proposed therapeutic algorithm (Fig. 4) but currently lack
a robust immunomechanism-based set of concepts for the
choice of immunotherapy.
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Fig.4 A diagnostic and therapeutic approach to suspected autoimmune encephalitis Adapted with permission from [7]
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Fig.5 Potential pathogenic mechanisms of neuronal surface antibod-
ies and B cell lineages underlying generation of antibody-secreting
cells. a Antibodies against neuronal surface epitopes can mediate
pathogenic effects through multiple mechanisms which include cross-
linking and internalisation of the target, fixation of Clq and activa-
tion of the classical complement pathway, and direct interference with
channel function including pharmacological-type block. b B cells
are formed from haematopoietic stem cells in the bone marrow and
undergo recombination of V, D and J immunoglobulin genes to gen-
erate a functional B cell receptor. They enter peripheral blood becom-
ing a naive B cell, and in lymphatic tissue encounter cognate antigen,
leading to B cell activation and generation of germinal centres. In

Proposed pathophysiological mechanisms
of action of autoantibodies

Several in vitro and in vivo studies demonstrate potential
pathogenic mechanisms of action by which neuronal sur-
face antibodies may manifest their deleterious downstream
effects. Broadly, the predominant mechanisms are target
internalisation and complement activation (Fig. 5).
NMDAR IgG autoantibodies have been shown to exert a
highly selective and concentration-dependent reduction of
postsynaptic clusters of NMDAR in hippocampal neurons
which has been observed in vitro and in vivo [88]. This is
likely due to the antibody-induced internalisation of surface-
expressed NMDARs [5, 34, 89, 90]. Removal of the anti-
bodies restores the surface NMDARs, suggesting that this
process is reversible, consistent with the observed improve-
ments of patients after immunotherapy, and the absence of
neuronal loss in imaging and histopathology studies. Simi-
lar phenomena of receptor internalisation have been noted
with AMPAR, glycine receptor, and GABA R antibodies
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germinal centres, B cells process antigen and present it as peptide on
surface MHC molecules to T-helper cells, which in turn provide sup-
port for the activated B cells. During the process of affinity matura-
tion, B cells undergo somatic hypermutation leading to a diversity of
antigen-specific B cell receptors. Alongside this, the immunoglobulin
class often switches from IgM to IgG. This reaction generates mem-
ory B cells, as well as antibody-secreting cells in the periphery (plas-
mablasts). Antibody-secreting cells vary in their longevity and migra-
tion back to the bone marrow to a survival niche and are associated
with long-term antibody secretion. Reproduced with permission from
[102]

[91-93], but not GABARZR antibodies [94]. In addition,
using the soluble LGI1 protein and its known receptor
ADAM22, we recently showed that internalisation of the
LGI1-ADAM?22 complex could be mediated by LGI1 anti-
bodies [8, 91].

Finally, complement deposition may be a pathogenic
mechanism in select cases. By contrast to the IgG4-domi-
nant antibodies which target LGI1, CASPR2, and IgLONS,
other pathogenic neuroglial surface receptor antibodies are
of the IgG1 subclass. IgG1 antibodies have the ability to
activate complement [40]. This is of interest because despite
the majority of LGI1 antibodies being of the IgG4 subclass,
a proportion of patients with LGI1 IgG1 antibodies are over-
represented in those with cognitive impairment, suggesting
that some irreversible sequelae in LGI1-antibody encepha-
litis may be associated with complement-mediated effects
[8]. These questions are not likely to be directly addressed
in future post-mortem studies, given the pleasingly low con-
temporary mortality associated with these diseases. Hence,
in vitro studies and in vivo imaging of humans may be more
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informative opportunities to more formally model these
observations.

How is autoimmunity initiated in these
patients?

The studies outlined above address possible mechanisms
by which pathogenic autoantibodies exert their functional
effects. However, they do not identify the original initiating
autoimmune process. Below, we will explore identified trig-
gers including tumours and infections, underlying genetic
susceptibilities, and what is known about the production of
pathogenic antibodies across stages of B cell development.
These immunological observations aim to inform mecha-
nisms underlying the propagation and the cause of these
diseases.

Paraneoplastic associations are present in several neu-
ronal surface antibody syndromes. In particular, the fre-
quent relationship between NMDAR-antibody encephalitis
and teratomas generates a compelling line of investigation.
Histopathological studies of patient teratomas have high-
lighted dense B and T cell infiltrates, neuroglial NR1 anti-
gen expression plus dysplastic neuronal elements (Fig. 2c)
[95-97]. These observations imply ectopic antigen expres-
sion and reactive germinal centre reactions in NMDAR-anti-
body encephalitis—teratomas, which may be important for
disease induction [97]. Furthermore, and more definitively
pathogenic, teratoma explants can produce the NMDAR
antibodies in vitro, suggesting intratumoural B cells have
the capacity to secrete pathogenic antibodies [97]. Taken
together with the time-dependent clinical efficacy of oopho-
rectomy in improving outcomes [16, 34, 40], this suggests
that the initiation of the immune process occurs in the
peripheral compartments with intratumoural synthesis, and
the subsequent passage of B cells to the circulation, and the
intrathecal space. Indeed, this model aligns well with the
consistently higher serum levels of autoantibodies in these
conditions [24, 25, 27, 40].

In support of this peripheral-to-central flux of the immune
process, a recent clinical observation has shed light on the
exposure of brain antigens to the immune system as a poten-
tial trigger of AE. Patients with proven herpes simplex virus
encephalitis (HSVE) have been noted to develop a clini-
cal worsening a few weeks after initiation of their HSVE.
This worsening is associated with the de novo generation
of autoantibodies [41, 42, 98, 99]. Around 50% of patients
seroconvert, with generation of several surface neuronal
autoantibodies during the first few months of HSVE [25].
Around 50% of the autoantibodies had NMDAR reactivity,
but other non-NMDAR targets have also been found, includ-
ing D2R, AMPAR, and GABA , receptor antibodies plus
surface neuronal binding without an identified target [3, 25,

42, 100]. HSVE animal models have mimicked this sero-
conversion with the generation of serum NMDAR antibod-
ies after intranasal HSV inoculation [101]. There have also
been reports of NMDAR antibodies following other CNS
viral infections, which argue against classical molecular
mimicry being a dominant mechanism in this natural human
immunisation paradigm [100]. Indeed, generic viral nucleic
acid mimics are known to efficiently stimulate circulating B
cells to produce antigen-specific autoantibodies [97, 102],
adding to the evidence that viral infections may contribute
directly to autoimmunity. A parsimonious explanation is that
neuronal damage, the inflammatory milieu, and the virus
directly may expose previously sequestered brain antigens to
reactive lymphocytes within draining cervical lymph nodes,
thereby overcoming the status quo of CNS immune privilege
and generating brain-specific autoantibodies. Yet, how the
antigen-specific lymphocytes originally escape immunologi-
cal tolerance has been studied in only a few patients to date.

We have identified naive pre-germinal centre B cells
capable of differentiating to secrete aquaporin-4-specific
autoantibodies in patients with another CNS autoantibody-
mediated condition, neuromyelitis optica [102]. Therefore,
preformed B cells can possess antigen-specific reactivity.
This may also be the case in NMDAR-antibody encephalitis
where some monoclonal NR1-specific antibodies derived
from patient CSF B cells showed no or few somatic hyper-
mutations [26]; these antibodies were able to bind NMDARSs
and mediate functional effects in vitro [103]. This also sug-
gests that a naive repertoire of antigen-specific B cells is
present in patients. However, by contrast to aquaporin-4
antibodies, this initial report suggests that the NMDAR
antibodies do not appear to mutate heavily, even once in the
intrathecal space. Yet, the teratoma histology provides strong
evidence for a germinal centre, a classical site of hypermuta-
tion. Circulating NR1-IgG concentrations are proportional to
the ex vivo capacity of patient B cells to secrete NR1 IgGs,
again suggesting cells derived from germinal centre spillover
account for serum NR1 IgGs [97]. Therefore, the relative
roles of naive B cells and hypermutated memory B cells
remain to be established and may have implications for opti-
mal tailored therapies or identification of ‘at risk’ patients.

Studies in patients with LGI1 and CASPR2 antibodies
have also implied a role for germinal centre reactions, via
the identification of strong and dichotomous genetic sus-
ceptibilities. Over 90% of LGI1-antibody-positive encepha-
litis patients, of both East Asian and Caucasian extraction,
have the HLA-DRB1*#07:01allele [68—70], while patients
with CASPR2-antibody encephalitis have a marked over-
representation of HLA DRB1*11:01 [70]. There is a
strong correlation between IgLONS5 antibodies and HLA-
DRB1#10:01-DQB1*05:01 [104], and a weak association
with NMDAR-antibody encephalitis and the HLA-B*07:02
allele [105]. While none of the alleles are likely to be the
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sole susceptibility factor involved, these associations imply
restricted T-B cell interactions are critical in the generation
of autoantibodies. In addition, we are finding that these HLA
associations are absent in patients with autoantibodies but
without clinically compatible syndromes [70], suggesting
that they may emerge as useful ancillary tools in clinical
diagnosis.

Conclusion

Many of the early clinical observations in AE have been
further refined to permit the accurate recognition of distinc-
tive clinical phenotypes. This serves as a starting point not
only to guide clinical practice, but also to inform focussed
laboratory lines of enquiry. The relative rarity of these con-
ditions on a population level remains a challenge to research,
and highlights the notion that international and multicentre
collaborations remain essential to move the field forward.
AE is now identified as an important and previously under-
recognised cause of CNS inflammation—it is highly treata-
ble, and early diagnosis and initiation of immunotherapy are
paramount to optimise outcomes. The field is now entering
a more mature phase of research with advanced approaches
in imaging, molecular immunology, and neuroscience. This
will ideally permit a more cohesive understanding of aeti-
ology and pathogenesis, and ultimately advance precision
therapy in the future.
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