Skip to main content
. 2021 Apr 10;11(4):685. doi: 10.3390/diagnostics11040685

Table 1.

Detailed structure of each block of 3D U-Net model, where Nf is the number of filters of corresponding blocks (see Figure 4).

Block Type Layers # of Filters Filter Size Stride Size Padding Activation
Contracting Convolution Nf (3,3,3) (1,1,1) yes ReLU
Batch normalization - - - - -
Convolution Nf (3,3,3) (1,1,1) yes ReLU
Batch normalization - - - - -
Max pooling - (2,2,2) - - -
Bottleneck Convolution Nf (3,3,3) (1,1,1) yes ReLU
Batch normalization - - - - -
Convolution Nf (3,3,3) (1,1,1) yes ReLU
Batch normalization - - - - -
Expanding Up-sampling Nf (2,2,2) (2,2,2) yes -
Convolution Nf (3,3,3) (1,1,1) yes ReLU
Batch normalization - - - - -
Convolution Nf (3,3,3) (1,1,1) yes ReLU
Batch normalization - - - - -
Outputs Convolution Nf (1,1,1) (1,1,1) - sigmoid