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Abstract: While vaccination campaigns are ongoing worldwide, there is still a tremendous med-
ical need for efficient antivirals against SARS-CoV-2 infection. Among several drug candidates,
chloroquine (CQN) and hydroxychloroquine (H-CQN) were tested intensively, and any contentious
therapeutic effect of both has been discussed controversially in the light of severe side effects and
missing efficacy. Originally, H-CQN descended from the natural substance quinine, a medicinal
product used since the Middle Ages, which actually is regulatory approved for various indications.
We hypothesized that quinine also exerts anti-SARS-CoV-2 activity. In Vero cells, quinine inhibited
SARS-CoV-2 infection more effectively than CQN, and H-CQN and was less toxic. In human Caco-2
colon epithelial cells as well as the lung cell line A549 stably expressing ACE2 and TMPRSS2, quinine
also showed antiviral activity. In consistence with Vero cells, quinine was less toxic in A549 as
compared to CQN and H-CQN. Finally, we confirmed our findings in Calu-3 lung cells, expressing
ACE2 and TMPRSS2 endogenously. In Calu-3, infections with high titers of SARS-CoV-2 were com-
pletely blocked by quinine, CQN, and H-CQN in concentrations above 50 µM. The estimated IC50s
were ~25 µM in Calu-3, while overall, the inhibitors exhibit IC50 values between ~3.7 to ~50 µM,
dependent on the cell line and multiplicity of infection (MOI). Conclusively, our data indicate that
quinine could have the potential of a treatment option for SARS-CoV-2, as the toxicological and
pharmacological profile seems more favorable when compared to its progeny drugs H-CQN or CQN.

Keywords: SARS-CoV-2; quinine; COVID-19; antiviral

1. Introduction

In the last two decades, three coronaviruses, SARS-CoV, MERS-CoV, and very recently,
SARS-CoV-2, emerged from the animal kingdom, causing in each case life-threatening
diseases in humans, particularly as non-immunocompetent populations were encountered.
Infection with SARS-CoV-2 can cause the multi-organ disease COVID-19 (Coronavirus
disease 2019), resulting, among other pathologies, in the acute respiratory distress syn-
drome (ARDS), a clinical condition of acute lung injury with severe hypoxemia [1]. Of all
SARS-CoV-2-infected people, 80% remain asymptomatic or develop only mild symptoms,
while others require hospitalization [2].
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COVID-19 was declared as a worldwide public health emergency crisis in January
with a pandemic dimension in March of 2020. As of 11.03.2021, over 118 million COVID-19
cases have been confirmed that have caused over 2.6 million deaths worldwide, according
to Johns Hopkins University reports [3]. While vaccination campaigns are ongoing, the only
antiviral therapeutic option approved in the U.S. for late-stage hospitalized patients remains
remdesivir, a nucleotide analog originally developed to cure Ebola infection [4]. However,
recent trials on remdesivir showed no real benefit [5]. In addition, there is evidence that
plasma of convalescent patients [6] and application of certain monoclonal antibodies [7] can
prevent outbreaks or support recovery from COVID-19. Furthermore, some repurposed
drugs were in clinical development: favipiravir, an inhibitor of a viral RNA-dependent
RNA polymerase showing activity against many RNA viruses, as well as ritonavir and
lopinavir, both HIV-1 protease inhibitors [8,9]. However, the so far largest randomized
evaluation of COVID-19 therapy (RECOVERY) study revealed the only therapeutic benefit
for low dose treatment with dexamethasone, while all other repurposed drugs failed [10].
This included hydroxychloroquine (H-CQN) and chloroquine (CQN). Both did also show
no benefit in hospitalized patients with COVID-19 [10].

After first promising in vivo and in vitro results, the lack of antiviral activity of H-CQN
has been reported for hospitalized patients with COVID-19 by multiple double-blinded
clinical trials [5,11–13]. Similarly, H-CQN was ineffective in non-human primates [14]
and several animal models [15]. Limited antiviral activity of H-CQN and CQN was
shown in Calu-3 [16,17] and human airway epithelium cells [14]. Very recently, it was
shown that the antiviral effect of H-CQN can be augmented by combinational treatment
with TMPRSS2 inhibitors [16]. The non-hydroxy analog CQN was also ineffective in
preventing SARS-CoV-2 infection in human lung cells depending on the expression of the
protease TMPRSS2 [17]. CQN and H-CQN (Figure 1a) are commonly used for malaria
treatment and for autoimmune diseases, e.g., rheumatoid arthritis and systemic lupus
erythematosus [18,19]. Like other antimalarial drugs, they have also been evaluated as
antivirals for various viral diseases [20].
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Figure 1. Influence of quinine, H-CQN, and CQN on the replication of SARS-CoV-2 in Vero B4 cells. (a) Molecular structures
of quinine, H-CQN, and CQN. (b) Western blot analysis of virus fractions (anti-SARS-CoV-2 Ig). The cell fractions were
stained with ß-actin antibody. Quinine-sulfate was used as (b) Q-L or (c) Q-S. Cell culture supernatants were harvested at
3 d post-infection (dpi). The virions were purified and analyzed by Western blot using a SARS-CoV-2 convalescent serum.
(c) Densitometric analysis of Western blot analysis was performed using AIDA®. Analysis of five independent experiments
±standard deviation (SD) (Q-S **** p < 0.001 using a one-sample t-test), three independent experiments ±SD (H-CQN
* p = 0.0270), or four independent experiments ±SD (CQN ** p = 0.0039).

Mechanistically, H-CQN and CQN were shown to increase the pH of acidic or-
ganelles, such as endosomes, thereby interfering with the receptor-mediated endocytosis
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of viruses [21,22]. They were also shown to act on lymphocytes and macrophages, leading
to a reduction in an inflammatory response, which might suppress the cytokine storm
associated with the COVID-19 progression [21]. However, the potential of a therapeutic
effect of H-CQN and CQN remains controversially discussed in the light of severe side
effects associated with these drugs, e.g., gastrointestinal problems, visual and hemogram
disorders, cramps, cardiac arrhythmias (prolonged QT syndrome), and retinopathy [23–25].

Given the fact that H-CQN and CQN originated from the natural substance quinine,
we hypothesized that quinine might exert antiviral activity against SARS-CoV-2. We hence
tested quinine in two versions: (i) quinine-sulfate extracted from a tablet (Limptar N,
Cassella Med GmbH), termed Q-Limptar (Q-L), and (ii) quinine-sulfate as solid material
directly obtained from a supplier (Sigma), termed Q-Sigma(Q-S). Our data suggest that
quinine exerts antiviral activity against SARS-CoV-2 with lower cytotoxicity as compared
to H-CQN and CQN and that this antiviral effect occurs in several TMPRSS2+ human
cancer cell lines.

2. Materials and Methods
2.1. Viruses

From a 61-year-old patient, nasal and pharyngeal swab samples were taken 6 days
after the presumed date of infection and 2 days after the start of mild symptoms of COVID-
19. This first swab was positive by real-time-PCR with Ct value of 15, further follow-up
swab after 10 days was still positive with Ct value of 31, and further follow-up swabs 18,
19, and 35 days after the first swab remained negative [26].

The virus strain SARS-CoV-2PR1 was amplified in Vero B4 cells. Viral titers were
determined by an endpoint titration assay. For the generation of new virus stock, virus-
containing cell culture supernatant was harvested at 72 h post-infection (hpi) and passed
through a 0.45 µm pore-size filter. Virus stocks were stored at −80 ◦C until further usage.
For Western blot analysis, Vero B4 cells were infected with SARS-CoV-2PR1 (multiplicity of
infection (MOI) = 0.008) for 1 h and further treated with interventions. At 72 hpi, virus-
containing cell culture supernatants were harvested, and released virions were purified
through 20% (w/v) sucrose cushion (20,000× g, 4 ◦C, 90 min). For MOI determination of
SARS-CoV-2PR1 virus stocks, Vero B4 cells were infected with serial dilutions of the virus
stock over 72 h. Afterward, cells were fixed (4% PFA), permeabilized (0.5% Triton/PBS),
blocked (1% BSA/PBS-T), and finally stained with a SARS-CoV-2 NP antibody (Biozol, Ech-
ing, Germany). The endpoint of virus infection was analyzed via fluorescence microscopy,
and viral titer was calculated by the method of Reed and Muench [27].

The recombinant SARS-CoV-2 expressing mNeonGreen (icSARS-CoV-2-mNG) [28]
was obtained from the World Reference Center for Emerging Viruses and Arboviruses
(WRCEVA) at the University of Texas Medical Branch (UTMB). To generate icSARS-CoV-
2-mNG stocks, Caco-2 cells were infected, the supernatant was harvested at 48 hpi, cen-
trifuged, and stored at −80 ◦C. For MOI determination, a titration using serial dilutions of
the virus stock was conducted. The number of infectious virus particles per mL was calcu-
lated as the (MOI × cell number)/(infection volume), where MOI = −ln(1 − infection rate).

2.2. Cell Culture

Vero B4 cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)
containing 10% (v/v) inactivated fetal calf serum (FCS), 2 mM l-glutamine, 100 U/mL
penicillin, and 100 µg/mL streptomycin.

Caco-2 (human colorectal adenocarcinoma) cells were cultured at 37 ◦C with 5% CO2
in DMEM containing 10% FCS, with 2 mM l-glutamine, 100 µg/mL penicillin-streptomycin,
and 1% NEAA. A549 cells were cultured at 37 ◦C with 5% CO2 in RPMI-1640 containing
10% FCS, with 100 µg/mL penicillin-streptomycin.

Calu-3 (human lung adenocarcinoma) cells were cultured at 37 ◦C with 5% CO2 in
DMEM containing 10% FCS, with 2 mM l-glutamine and 100 µg/mL penicillin-streptomycin.
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A549-cells expressing ACE2 and TMPRSS2 were generated by retroviral transduc-
tion. Briefly, 293T-cells were seeded in 6-well plates and transfected with a lentiviral
construct expressing hACE2 and puromycin with an IRES (pLV-EF1a_hACE2_IRES-puro,
kindly provided by Daniel Sauter, Ulm) and helper plasmids pVSV-G and psPAX2 by
using polyethylenimmine (PEI). In addition, we generated MLV-based retroviral particles
expressing TMPRSS2 by using pQCXIBL_hTMPRSS2_c-myc-BlaR and helper plasmids
pVSV-G and pMLV-gag/pol. After 24 h, the medium containing the virus was collected
and centrifuged at 3200× g for 10 min. The supernatant was transferred to a new col-
lection tube and stored at 4 ◦C. A549 seeded in a T25 flask were then transduced with
2 mL virus-containing supernatant and cultured for 14 days with 1.5 µg/mL puromycin
in RPMI as a selection marker. After this period, ACE2-expression was confirmed by
Western blot (data not shown). Then, ACE2-expressing A549 cells were further transduced
with the MLV-based hTMPRSS2-expressing VLPs. The procedure was similar; however,
cells were further treated with 5 µg/mL blasticidin as a resistance marker. Furthermore,
using the same protocol, we generated A549-cells that were transduced with MLV-based
pQCXIP_hACE2_Puro and pQCXIBL_hTMPRSS2_c-myc-BlaR from Markus Hoffmann
(DPZ Göttingen, Germany). Altogether, we ended up with four A549 cell lines. They were
termed A549-ACE2/TMPRSS2_c1 generated with the lentiviral ACE2 construct, A549-
ACE2/TMPRSS2_c2 generated with an MLV-based construct and the two A549-ACE2
only expressing cell lines. For unknown reasons, only the A549-ACE2 generated with the
lentiviral construct were permissive for infection in the absence of TMPRSS2, which is why
we only used this cell clone for further experiments.

2.3. Determination of the Number of Viral RNA Copies from Released Viruses by qRT-PCR

The virus was quantified by real-time PCR AgPath-ID One-Step RT-PCR Kit from Am-
bion (Cat: 4387424), allowing reverse transcription, cDNA synthesis, and PCR amplification
in a single step. Samples were analyzed by 7500 software v2.3 (Applied Bioscience). PCR
primers were used according to [26]: RdRp_fwd: 5′-GTG-ARA-TGG-TCA-TGT-GTG-GCG-
G-3′ and RdRp_rev 5′-CAR-ATG-TTA-AAS-ACA-CTA-TTA-GCA-TA-C-3′. The probe was
5′-CAG-GTG-GAA-/ZEN/CCT-CAT-CAG-GAG-ATG-C-3′ (label: FAM/IBFQ Iowa Black
FQ). As a positive control, a specific target for the E and RdRp gene of SARS-CoV2 was used
and made by Integrated DNA Technologies. Control: 5′-TAA-TAC-GAC-TCA-CTA-TAG-
GGT-ATT-GAG-TGA-AAT-GGT-CAT-GTG-TGG-CGG-TTC-ACT-ATA-TGT-TAA-ACC-
AGG-TGG-AAC-CTC-ATC-AGG-AGA-TGC-CAC-AAC-TGC-TTA-TGC-TAA-TAG-TGT-
TTT-TAA-CAT-TTG-GAA-GAG-ACA-GGT-ACG-TTA-ATA-GTT-AAT-AGC-GTA-CTT-
CTT-TTT-CTT-GCT-TTC-GTG-GTA-TTC-TTG-CTA-GTT-ACA-CTA-GCC-ATC-CTT-ACT-
GCG-CTT-CGA-TTG-TGT-GCG-TAC-TGC-TGC-AAT-ATT-GTT-3′.

2.4. Inhibitors

Q-S as well as CQN were obtained from Sigma-Aldrich (St. Louis, MO, USA) and
dissolved in DMSO. 200 mg Q-L (brand name: Limptar N, Cassella Med GmbH, Köln,
Germany), was extracted from a tablet, pulverized, and dissolved in DMSO, resulting in a
stock solution of 12.5 µM. H-CQN was acquired as a pure substance (Cayman, Ann Arbor,
MI, USA) and dissolved in PBS, resulting in a stock solution of 11.5 mM. All interventions
were used at the concentrations indicated in the different experiments.

2.5. Infection Experiments

Confluent monolayers of Vero B4, A549-ACE2, and A549-ACE2/TMPRSS2_c1 cells
were infected in FCS-free DMEM with an MOI of 0.008 of the field isolate SARS-CoV-2PR-1
for 1 h. At 1 h post-infection (hpi), the inoculum was removed, and cells were treated with
interventions. At 72 h post-infection, cells and supernatants were harvested. Cells were
lysed in radioimmunoprecipitation assay (RIPA) buffer (150 mM NaCl, 50 mM Tris-HCl
pH 8.0, 1% NP-40, 0.5% Na-deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 10 mM
ethylenediaminetetraacetic acid (EDTA)) containing protease inhibitor cocktail Complete
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(Roche, Basel, Switzerland), 5 mM N-ethylmaleimide (NEM), and 1 mM phenylmethylsul-
fonylfluoride (PMSF) and further used for Western blot analysis. Viral supernatants were
either centrifuged by 20% sucrose cushion and analyzed via Western blot or incubated for
10 min at 95 ◦C and finally used for qRT-PCR analysis.

A total of 1 × 104 Caco-2 or A549 cells/well were seeded in 96-well plates the day
before infection in media containing 5% FCS. For Calu-3 cells, 4 × 104 cells/well were used.
Caco-2 cells were infected with the SARS-CoV-2 strain icSARS-CoV-2-mNG for 1 h at 37 ◦C
at a multiplicity of infection (MOI) = 3 or mock-infected, A549 cells with MOI of 0.2 (low)
or 1.1 (high), and Calu-3 cells with MOI of 0.8. At 1 hpi, the inoculum was removed, and
the cells were treated with the inhibitors in concentrations from 0–100 µM during 48 h at
37 ◦C. A time-course of the infection was recorded using Cytation3 (Biotek, Winooski, VT,
USA). Images of bright field and mNeonGreen (500,542) were taken every hour for 48 h at
4-fold magnification. After treatment, the cells were fixed with 2% PFA and stained with
Hoechst (1 µg/mL final concentration). For quantification of infection rates, images were
taken with Cytation3 (Biotek, Winooski, VT, USA), and Hoechst+ and mNeonGreen+ cells
were automatically counted by the Gen5 Software (Biotek, Winooski, VT, USA).

2.6. SDS-PAGE and Western Blotting

Protein samples generated by infection experiments were separated by SDS-PAGE,
transferred onto nitrocellulose membranes, blocked with 3% bovine serum albumin, and
incubated with the appropriate primary antibody (Ab). Viral proteins were detected by
antibodies derived from convalescent SARS-CoV-2 patient sera. The anti-β-actin anti-
body was purchased from Sigma-Aldrich (St. Louis, MO, USA). The anti-human and
anti-rabbit secondary antibodies coupled to horseradish peroxidase (HRP) were obtained
from Dianova (Hamburg, Germany).

For ACE2 detection, the proteins were separated by SDS-PAGE and transferred to
PVDF-membrane. Blocking was performed with 5% milk. The anti-ACE2 antibody was
purchased from AdipoGen life sciences (Liestal, Switzerland) and the anti-actin antibody
from Sigma-Aldrich (St. Louis, MO, USA). The anti-mouse secondary antibody coupled to
IRDye®-680RD was purchased from LI-COR (Lincoln, NE, USA).

2.7. Assessment of Cell Viability

The viability of uninfected cells was assessed by the water-soluble tetrazolium salt
(WST)-1 assay (Roche) according to the manufacturer’s instructions. Cells were treated for
72 h with various inhibitors according to the protocols of the infection experiments.

2.8. Quantitative Real-Time PCR

RNA was extracted from A549 cell lines using the Qiagen RNeasy Mini Kit. Reverse
transcription was performed with the Qiagen QuantiTect Reverse Transcription Kit using
primers indicated in Table 1. For the qPCR, the New England Biolabs Luna Universal
qPCR Master Mix was used. The reactions were performed following the manufacturers’
protocols. The qPCR was conducted using the Roche LightCycler 480 II.

Table 1. Primer sequences used for quantitative real-time PCR.

Primer Name Sequence

qRT hGAPDH_fwd tgc acc acc aac tgc tta gc
qRT hGAPDH_rev ggc atg gac tgt ggt cat gag
qRT_hACE2 fwd gat gcc tcc ctg ctc att tg
qRT_hACE2 rev aac ttc tcg gcc tcc ttg aa

qRT_hTMPRSS2 fwd agg acg aga atc ggt gtg tt
qRT_hTMPRSS2_ rev gga tcc gct gtc atc cac ta



Viruses 2021, 13, 647 6 of 17

2.9. Software and Statistics

We used Microsoft Word and Excel. GraphPad Prism 8.0 was used for statistical anal-
yses and to generate graphs. Figures were generated with CorelDrawX7. Other software
used included Gen5 v.3.04.

3. Results
3.1. Quinine Inhibits SARS-CoV-2 More Potently as Compared to H-CQN and CQN in Vero
B4 Cells

In order to analyze if quinine displays antiviral activity against SARS-CoV-2, first,
Vero B4 cells were infected with SARS-CoV-2PR1 and treated with quinine, either as Q-L
or as Q-S, and, as a control, with H-CQN or CQN (Figure 1a). Three days post-infection
(dpi), cell culture supernatants were harvested, and virus production was analyzed by
Western blot (Figure 1b). Treatment with quinine leads to a strong reduction of SARS-CoV-2
replication. At 10 µM, the production of progeny virions was almost completely blocked
(Figure 1b,c). The level of antiviral activity was independent of whether quinine was added
as Q-L (Figure 1b) or Q-S (Figure 1c). Of note, quinine displays an even higher efficacy
in the inhibition of SARS-CoV-2 replication than H-CQN or CQN: at 10 µM quinine, the
replication was reduced by up to 90%, whereas 10 µM H-CQN led to a reduction of ~50%
(Figure 1c). Thus, these data implicate that quinine exhibits antiviral activity against SARS-
CoV-2, which is in Vero B4 cells even more potent than the described antiviral activities of
H-CQN and CQN [17].

To control for potential unspecific effects of drug treatment on cell viability, water-
soluble tetrazolium salt (WST)-1 assays were performed in uninfected cells treated with
increasing concentrations of the drugs. Treatment at concentrations that effectively sup-
pressed SARS-CoV-2 replication had no impact on cell viability (Figure 2a,b). In Vero B4
cells, the TD50 was ~300 µM for Q-L (Figure 2a) and ~100 µM for Q-S (Figure 2b), which is
again better than that of H-CQN and CQN (~50 µM) (Figure 2c,d).
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Viruses 2021, 13, 647 7 of 17

3.2. Quinine Inhibits SARS-CoV-2 Infection and Spread in Human TMPRSS2+ Colon Cells

We next aimed to validate the finding that quinine has antiviral activity in a SARS-CoV-2
permissive human cell system. For this, we employed human Caco-2 colon carcinoma-
derived epithelial cells expressing TMPRSS2, a protease required for virus entry [29,30]
and that was reported to restrict responsiveness to SARS-CoV-2 infection toward treatment
with CQN [16,17]. To facilitate the detection and analyses of infected cells, as well as
to quantify viral spread in living cells, we used the recombinant SARS-CoV-2 infectious
clone, icSARS-CoV-2-mNG, expressing mNeonGreen as a reporter gene [28]. For a robust
fluorescence readout, we infected Caco-2 cells in 96-well plates with a high MOI of 3.
Afterward, cells were treated with different amounts of Q-L and Q-S. At 48 hpi, cells were
fixed and nuclei were stained with Hoechst in order to determine the relative infection
rate (mNeonGreen+/Hoechst+ cells) as well as any potential toxic effects of the treatment
and infection (Figure 3). As for Vero B4 cells (Figure 2), the effect of the compounds on
cell viability was further analyzed by WST-assays at a dose range up to 100 µM (Figure 4).
Both Hoechst-staining as well as WST-assays confirmed our results obtained from Vero
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2 cells (Figures 3a and 4). Furthermore, Q-L or Q-S treatment in doses of 50 µM and
above inhibited SARS-CoV-2 infection at this high MOI setting nearly completely, with a
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Figure 3. Influence of quinine on SARS-CoV-2-mNG infection in Caco-2 cells. Cells were infected
with SARS-CoV-2-mNG at an MOI of 3 for 1 h or mock-infected. Then the inoculum was removed,
and the cells were treated with the indicated amounts of Q-L or Q-S. At 48 h post-infection (hpi),
cells were fixed with 2% PFA and nuclei were stained with 1 µg/mL Hoechst. The total amount
of cells (Hoechst+) and infected cells (mNeonGreen+) were analyzed by automated microscopy.
(a) Quantitative analyses of total cells and infected cells. Mean values and SD are calculated from
two experiments with duplicate infections. (b) Representative fluorescence microscopy images taken
at 4-fold magnification.
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Taking advantage of the possibility to monitor viral spread in living cells, we imaged
cells infected with icSARS-CoV-2-mNG and treated with Q-L/Q-S over a period of 48 h in
1 h intervals (Figure 5). Of note, quinine treatment strongly delayed as well as suppressed
viral spread and SARS-CoV-2 replication in Caco-2 cells (Figure 5 as well as Supplemental
Movies S1 and S2). Hence, quinine is effective against SARS-CoV-2 in human colon cells,
and this inhibitory effect occurs early during infection and even at high virus doses of
initial infection.
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Figure 5. Influence of quinine on the replication of SARS-CoV-2-mNG in Caco-2 cells. Similar experi-
mental layout as described in the legend of Figure 3. However, cells were imaged every hour post
removal of the virus, and the number of infected cells (mNeonGreen+) was analyzed by automated
microscopy. (a) Quantitative analyses of the time-course of viral replication as determined by the
amount of mNeonGreen+ cells over 48 h. (b) Representative fluorescence microscopy images for 24,
36 and 48 hpi of mNeonGreen+, i.e., SARS-CoV-2-mNG-infected cells taken at 4-fold magnification.
The full-length time-course analyses are available as Supplemental Videos (S1 and S2).
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3.3. Quinine Restricts Viral Infection in Human Transgenic Lung Cancer Cells

Furthermore, we aimed to confirm our findings in human lung alveolar basal epithe-
lial cells, as lung cells are the major host cells for SARS-CoV-2 infection in vivo. For this, we
employed A549 cells, which were generated from a human lung adenocarcinoma [31]. As
these cells usually do not express the ACE2 receptor and the TMPRSS2 protease necessary
for SARS-CoV-2 entry, we generated cell lines stably expressing either the receptor ACE2
or both ACE2 as well as TMPRSS2. We used two different ACE2 constructs to generate
stable cell lines, which were either termed A549-ACE2/TMPRSS2_c1, using a lentiviral
ACE2 construct, or A549-ACE2/TMPRSS2_c2, using an MLV-based construct. Expression
of ACE2 and TMPRSS2 in the transgenic cell lines was confirmed by Western blot (Supple-
mentary Figure S1a) and qRT-PCR (Supplementary Figure S1b). Notably, only A549-ACE2
generated with the lentiviral construct were permissive for infection in the absence of
TMPRSS2, which is why we only employed one cell clone that expresses ACE2 alone in
subsequent experiments.

As for Caco-2 cells (Figures 3 and 5), icSARS-CoV-2-mNG expressing mNeonGreen as a
reporter gene was used to quantify viral infection. A549-ACE2, A549-ACE2/TMPRSS2_c1,
and c2 were infected with different doses of icSARS-CoV-2-mNG and treated with different
amounts of Q-L and Q-S. At 48 hpi, cells were fixed and nuclei were stained with Hoechst
in order to determine the relative infection rate (mNeonGreen+/Hoechst+ cells) (Figure 6).
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fection nearly completely, with a dose-dependent effect down to 3.125 µM (Figure 6). 
Importantly, while the expression of TMPRSS2 lowered the antiviral activity of quinine 
in one cell clone, it did not cause complete loss of activity, as it was demonstrated by 
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Figure 6. Influence of Q-S, Q-L on SARS-CoV-2-mNG infection in ACE2 and TMPRSS2-expressing A549 cells. A549-stably
transduced to express ACE2, ACE2/TMPRSS2 clone 1, and ACE2/TMPRSS2 clone 2 were infected with SARS-CoV-2-
mNG at high and low MOIs (see M&M) for 1 h or mock-infected. Then the inoculum was removed, and the cells were
treated with the indicated amounts of Q-S and Q-L. At 48 hpi, cells were fixed with 2% PFA and nuclei were stained
with 1 µg/mL Hoechst. (a) The total amount of cells (Hoechst+) and infected cells (mNeonGreen+) were analyzed by
automated microscopy to calculate the absolute % of infected cells. Mean values and SEM are calculated from three
independent experiments. (b) Representative fluorescence microscopy images (4-fold magnification) of high titer infection
of the respective cell line treated with the indicated amounts of Q-L.
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Treatment with Q-L or Q-S in doses of 50 µM and above inhibited SARS-CoV-2
infection nearly completely, with a dose-dependent effect down to 3.125 µM (Figure 6).
Importantly, while the expression of TMPRSS2 lowered the antiviral activity of quinine in
one cell clone, it did not cause complete loss of activity, as it was demonstrated by others
for CQN [17]. Even though, and as expected, A549-cells expressing TMPRSS2 in addition
to ACE2 allowed for higher infection rates, the antiviral activity of quinine was clearly
detectable with a nearly complete block of infection at high concentrations. The IC50 varied
strongly dependent on the cell clone and the MOI and was in the range of ~7.5 to ~50 µM
for high and ~3.7 to 50 µM for low virus titers (compare Figure 6a and Table 2).

Table 2. IC50 (µM) values of Q-L and Q-S in A549-cells stably expressing ACE2 and TMPRSS2. The
IC50 [µM] was calculated with GraphPad Prism (log(inhibitor) vs. response—variable slope (four
parameters)). MOI for hi is 1.1 and lo is 0.2.

Compound
IC50 [µM]

A549-ACE2 A549-
ACE2/TMPRSS2_c1

A549-
ACE2/hTMPRSS2_c2

hi lo hi lo hi lo

Q-S 29.07 5.98 50.02 52.82 7.48 3.75
Q-L 24.42 13.35 55.82 52.86 7.50 5.58

To further evaluate the antiviral effect of the compounds, A549-ACE2 or A549-
ACE2/TMPRSS2_c1 were infected with SARS-CoV-2PR1 and treated with different con-
centrations of Q-S, H-CQN, or CQN. At 3 dpi, cell culture supernatants were harvested,
and virus production was analyzed by Western blot and qRT-PCR (Figure 7). Consistent
with the results obtained with SARS-CoV-2 mNG, treatment with quinine leads to a strong
reduction of SARS-CoV-2 replication in both ACE2 and ACE2/TMPRSS2-expressing A549
cells. In A549-ACE2 cells, 40 µM of Q-S led to a nearly complete restriction of progeny
virions, while the same treatment of cells expressing ACE2 and TMPRSS2 led to a reduction
of only 40% (Figure 7). Of note, H-CQN and CQN were more effective in this system than
Q-S: at 10 µM quinine, the replication was reduced by 50% in ACE2 positive cells and
25% in TMPRSS2 expressing cells, whereas 10 µM CQN led to a reduction of either 80% or
65% (Figure 7).
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To exclude unspecific cytotoxic effects of the compounds, WST-1 assays were con-
ducted (Figure 8). Thereby, concentrations used for antiviral treatment had no effect on 
cell viability in A549-ACE2 (Figure 8a) or A549-ACE2/TMPRSS2_c1 (Figure 8b). The TD50 
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Figure 7. Influence of quinine, H-CQN, and CQN on the replication of SARS-CoV-2 in ACE2- and TMPRSS2-expressing
A549 cells. Western blot analyses and q-RT-PCR of virus fractions in (a) ACE2- and (b) ACE2/TMPRSS2_c1-expressing
A549 cells with corresponding IC50 values of Q-S. For both cell lines, cell culture supernatants were harvested at 3 dpi.
The virions were either purified and analyzed by Western blot using a SARS-CoV-2 convalescent serum (upper inserts) or
analyzed by q-RT-PCR. PCR results are shown as analysis of three independent experiments ±standard deviation (SD).
* p ≤ 0.05, ** p < 0.005, *** p < 0.0009 and **** p < 0.0001 using a one-sample t-test.
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To exclude unspecific cytotoxic effects of the compounds, WST-1 assays were con-
ducted (Figure 8). Thereby, concentrations used for antiviral treatment had no effect on
cell viability in A549-ACE2 (Figure 8a) or A549-ACE2/TMPRSS2_c1 (Figure 8b). The TD50
values were ~300 µM for Q-L and ~150 µM for Q-S, which is better than that of H-CQN
and CQN (~40–50 µM) (Figure 8).
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Figure 8. Influence of quinine, H-CQN, and CQN on the cell viability of A549-ACE2 and A549-ACE2/TMPRSS2 cells.
Similar to the drug treatment scheme described in Figure 2, the influence on cell viability was measured in (a) A549-ACE2
or (b) A549-ACE2/TMPRSS2_c1 cells by WST-1 assays. Quinine-sulfate was used as Q-L or Q-S. Bars represent mean values
of 3 independent experiments ±SD.

Conclusively, the results implicate that quinine exhibits antiviral activity against SARS-
CoV-2 in A549 lung cancer cell lines and that its antiviral activity might be modulated but
not abrogated by the expression of TMPRSS2.
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3.4. Quinine Inhibits SARS-CoV-2 Infection in Human Calu-3 Lung Cells

The best characterized and most extensively studied surrogate lung cell infection
model for SARS-CoV-2 are Calu-3 cells expressing ACE2 and TMPRSS2 endogenously [32].
We infected Calu-3 with icSARS-CoV-2 mNG and treated the cells with different concentra-
tions of H-CQN, CQN, and Q-S (Figure 9). Consistent with previous cell systems (Figure 1,
Figure 3, Figure 6, and Figure 7) also in this model, quinine exerted antiviral activity (IC50
27 µM), which was comparable to that of H-CQN and CQN (IC50 for both 25 µM).
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with SARS-CoV-2-mNG at an MOI of 0.2 for 1 h or mock-infected. Then the inoculum was removed, and the cells were
treated with the indicated amounts of H-CQN, CQN, or Q-S. At 48 hpi, cells were fixed with 2% PFA and nuclei were
stained with 1 µg/mL Hoechst. The total amount of cells (Hoechst+) and infected cells (mNeonGreen+) were analyzed by
automated microscopy. (a) Quantitative analyses of infection rates and the total number of cells for the treatment with the
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Altogether, even though we detected differences in the IC50 values dependent on the
cell line and the MOI used, our cumulated data demonstrate that in various cancer cell
lines, H-CQN, CQN as well as quinine exert antiviral activity against SARS-CoV-2 and that
those antiviral activities occur in the presence of TMPRSS2.

4. Discussion

The natural substance quinine exerts antiviral activity against SARS-CoV-2 that was
comparable to its chemical derivatives, H-CQN and CQN, particularly in TMPRSS2+
human lung cancer cell lines. This is of importance, as it was suggested that TMPRSS2
expression might be one factor limiting the effectivity of CQN [17]. However, we found
that the antiviral activity of this class of compounds is not abrogated by the expression
of TMPRSS2.

Originally, H-CQN was first shown to interfere with SARS-CoV-2 replication in vitro [33],
and soon in the pandemic, H-CQN and CQN have been tested most intensively in more
than 80 clinical studies leading to different regional recommendations for treatment of
hospitalized COVID-19 patients [11,13,33–42]. In the U.S., H-CQN and CQN were fast-
tracked through clinical trials in order to determine their efficacy in the treatment of
COVID-19, although this recommendation has been retracted nowadays [43].

Quinine is being tested in clinical studies for its antiviral effect against SARS-CoV-2: In
Indonesia, health authorities are trialing quinine as a possible treatment of COVID-19 [44].
In Russia, the Federal Biomedical Agency wants to test the quinine derivative mefloquine
in clinical trials [45]. In the US, a randomized, placebo-controlled study assesses the effect
of a quinine-containing nasal spray in healthcare professionals [46]. Although there is first
enigmatic in vitro data that quinine and analogs restrict SARS-CoV-2, neither clinical nor
preclinical evidence for any potential therapeutic activity of quinine against this virus has
been reported so far [47].

Looking at the history, H-CQN and CQN are derivatives from their natural predecessor
quinine, an extract of the bark of the Chinchona tree (native to the Andes of South America),
that was used to treat feverish infections, particularly malaria, for hundreds of years
almost worldwide [43,48]. Quinine and quinidine, both content of the Chinchona bark, are
alkaloids and stereoisomers of each other [43]. The first records for medical use of quinine
date back to 1630, where in Peru, the countess of Chinchon developed malaria and was
successfully treated with an extract of the bark of the fever tree, which was later termed
Chinchona bark [49]. First isolated in 1820 and chemically synthesized in 1944, it was
the only antimalarial drug available [49]. In the 19th century, British citizens and soldiers
used tons of the Chinchona bark to protect themselves from malaria and thus permitted a
stable British population in tropical colonies. Based on this natural product, H-CQN was
synthesized in 1946 and mainly used for the treatment of malaria. Nevertheless, and even
until now, quinine is used for the treatment of severe and H-CQN-resistant cases of malaria
tropica [50].

It is also approved for the treatment of calf cramps, and it is commonly used as an
aromatic agent. For instance, it is added to bitter lemon and tonic water. Quinine has
been commercialized since the 19th century in beverages known as Indian quinine tonic.
The latter was the standard beverage for the pioneers in malaria-invested tropical areas.
Particularly British soldiers mixed tonic water with lime and gin. Winston Churchill said:
“The gin and tonic has saved more Englishmen’s lives, and minds, than all the doctors in the
Empire” [51].

Quinine can be added up to 100 mg/kg for food or up to 85 mg/L to beverages and
up to 250 mg/L to alcoholic beverages [52]. Quinine has antimicrobial activities useful for
the treatment of bacteria and viruses. For instance, it has been shown in vitro that quinine
has antiviral activity against dengue, herpes simplex, and influenza A viruses [53–55].

Facing the recent SARS-CoV-2 and possible future pandemics, there is the general
challenge to bridge the gap between the emergence of the virus and the development
of specifically and directly acting antiviral drugs and antibodies. In the early face of a



Viruses 2021, 13, 647 14 of 17

pandemic where only hygienic measures and confinements are the options to stop the
spread of infections among the affected population, either repurposed synthetic drugs
or natural substances with a broadly acting antiviral capacity are the only options for
therapeutic intervention. Similar to quinine, the natural substance iota-carrageenan was
shown to interfere with SARS-CoV-2 replication in vitro [56–58]. For this polysaccharide
isolated from red algae, which can be used as a prophylactic nasal and throat spray or as a
lozenge, first clinical trials in Austria, the United States, Argentina, and Great Britain have
been reported, and first positive results have been published [56,59,60].

Medical analysis showed that high levels of cytokines in the plasma of patients
correlate with a severe SARS-CoV-2 infection, assuming that an enhanced cytokine storm
could be responsible for the need to transfer severe COVID-19 cases to the intensive care
unit [1]. It was previously demonstrated that H-CQN and CQN have the ability to reduce
the inflammatory response and thus have antipyretic activity [21]. In addition, quinine with
a long-standing record as medication against feverish illnesses might be able to mitigate
the cytokine storm associated with severe COVID-19.

In addition, as an approved aromatic agent, quinine is added to bitter lemon and tonic
water. According to the well-elaborated pharmacokinetics, 85 mg quinine, present in 1 L of,
e.g., tonic water, could lead to a plasma concentration of ~0.5 µg/mL, which corresponds
to a molarity of ~1.5 µM [61,62], which would reach values that show already some efficacy
in our in vitro systems.

Notably, H-CQN and quinine have different pharmacokinetics. According to in vivo
studies, treatment results in an estimated 20 times higher plasma concentration for quinine
than for H-CQN [63,64]. For instance, a 200 mg dose translates into plasma molarity of
~0.15 µM for H-CQN and ~2.9 µM for quinine [62,65]. Thus, quinine appears to exert a
clear antiviral effect against SARS-CoV-2 with a significantly better toxicity profile in vitro
and has a predictable better plasma availability when compared to H-CQN and CQN.
Indeed, there are rudimentary reports about first cases of total recovery after treatment
with quinine [66].

If SARS-CoV-2 caused a pathogenic profile similar to typical seasonal coronaviruses
without transition into the severe COVID-19 stage, the world would be enfranchised
from one of its most serious current problems. Thus, there is a tremendous medical need
to prevent the infection and, if occurred, the transition of a mild SARS-CoV-2 infection
into a severe COVID-19 stage by having access to a safe, relatively cheap, and easily
distributable drug. Altogether, if our data would hold up in further clinical studies, it
would be legitimate to conclude that the usage of quinine is an alternative option for the
treatment of SARS-CoV-2 infections.
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