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Abstract: Accelerometers are increasingly being used in biomedical research, but the analysis of
accelerometry data is often complicated by both the massive size of the datasets and the collection of
unwanted data from the process of delivery to study participants. Current methods for removing
delivery data involve arduous manual review of dense datasets. We aimed to develop models for
the classification of days in accelerometry data as activity from human wear or the delivery process.
These models can be used to automate the cleaning of accelerometry datasets that are adulterated with
activity from delivery. We developed statistical and machine learning models for the classification
of accelerometry data in a supervised learning context using a large human activity and delivery
labeled accelerometry dataset. Model performances were assessed and compared using Monte Carlo
cross-validation. We found that a hybrid convolutional recurrent neural network performed best in
the classification task with an F1 score of 0.960 but simpler models such as logistic regression and
random forest also had excellent performance with F1 scores of 0.951 and 0.957, respectively. The
best performing models and related data processing techniques are made publicly available in the R
package, Physical Activity.

Keywords: accelerometry; statistical learning; machine learning; predictive modeling; neural
networks; physical activity

1. Introduction

The use of accelerometers has become increasingly common in engineering, indus-
try, and consumer electronics. Due to advances in microelectronics, the proliferation of
this technology has become particularly evident in healthcare research, where wearable
accelerometers are often used for measuring the activity of both patients and participants
in clinical trials [1]. Within the field of epidemiology, physical activity has become an
important area of study and has been found to be strongly associated with health status [2]
and disease progression [3]. Wearable accelerometers provide an accurate, affordable, and
non-invasive method of measuring physical activity. They have been successfully utilized
in a wide variety of healthcare studies such as monitoring rehabilitation following spine
surgery [4], fall detection in the elderly [5], and measuring energy expenditure [6].

Although accelerometry data measured from wearable sensors provides a wealth of
valuable information, the analysis of the data can present unique challenges due to massive
file sizes, participant non-adherence to protocols, and the data often being collected out-
side of controlled laboratory settings. In epidemiological studies accelerometers are often
activated prior to shipment to participants and are not deactivated until they are returned
to the laboratory. This process causes large portions of the data to be recorded while the
accelerometers are in transit to the participant or laboratory. Analysts must perform the
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arduous task of manually removing delivery activity from the dataset by looking through
data logs or using data visualization techniques. As accelerometers have been increasingly
used to measure physical activities in large studies (e.g., >7000 participants in Women’s
Health Study [7]), manual removal of delivery activity is an especially daunting task. The
purpose of this study is to develop models that can accurately classify a given day in
an accelerometer dataset as “human wear” or “delivery,” and to develop an R program
implementing the developed models. These models and the accompanying R program
can be used to automate the removal of delivery days in accelerometry datasets before the
analysis on human activity.

Our study is novel in four ways. First, to the best of our knowledge, no other models
have been developed specifically for discriminating between accelerometer-measured
activity from human wear and delivery. Classifying accelerometry data as human wear
or delivery is traditionally performed by human labor and is very time-consuming work
that can become infeasible in massive datasets. Our study is the first reporting a novel
model developed to perform and automate this task. Second, we applied sophisticated
neural network approaches to perform the delivery/human wear classification, which
resulted in excellent performance. Third, we have provided an in-depth comparison of the
performances of many different model architectures using rigorous validation techniques.
Lastly, we implemented the developed neural network as well as few simpler models in
an R package, which is freely available and able to function with accelerometry data from
a wide variety of devices and temporal resolutions. Users can directly use our models or
develop their own models with our accompanying feature extraction functions provided
in the R package.

Previous studies utilizing accelerometry data adulterated with delivery activity have
had to inappropriately utilize algorithms that were not developed for this specific goal or
have had to perform the painstaking task of manually identifying delivery days using mail
logs and visual identification of delivery days [7,8]. Algorithms have been developed for
identifying intervals during which participants are not wearing an accelerometer [9,10].
These algorithms have been found to have good performance in the context of classifying
wear and non-wear intervals [11,12], but the algorithms were not developed for the classifi-
cation of delivery versus human activity and have had poor performance when used for
this application [7].

The Women’s Health Study [7] mailed accelerometers to the study participants and
tested the performance of two wear/non-wear algorithms for the classification of days
in their data as either human activity or delivery. The first algorithm was used in the
National Health and Nutrition Examination Survey [9] and defined non-wear time as any
60 consecutive minutes, allowing any 1 to 2 min time span with less than 100 counts per
minute of activity. The second algorithm [10] was developed to improve upon the first
algorithm and defined non-wear time as any 90 consecutive minutes of no activity, allowing
a short time interval with nonzero counts lasting up to 2 min. The second algorithm
additionally added a second window 30 min upstream and downstream during which
any nonzero counts beyond the short allowed interval of movement classified the given
interval as wearing. The Women’s Health Study found that wear/non-wear algorithms
alone performed poorly in the context of delivery/human wear classification relative to
manually labeling.

Although epidemiologic studies often mail accelerometer devices to study partici-
pants [7], the field has not developed models for discriminating between delivery and
human activity. Fortunately, the field of human activity recognition is highly applicable
to this classification problem and algorithms utilized to classify human activity provide
a foundation for the development of models for this task. The primary goal in human
activity recognition research is to classify temporal partitions in a dataset in which different
activities are performed [13]. Human activity recognition is performed with data from a
wide variety of sensors such as video cameras, GPS, heart monitors, thermometers, and
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wearable accelerometers, which are one of the most commonly utilized devices due to
recent technical advances in microelectronics and the rich data they provide [14].

In the context of human activity recognition, accelerometry data are traditionally
analyzed by first extracting global features such as time between peaks and average
acceleration from the temporal intervals of the dataset. By extracting features, massive
datasets can be reduced such that regression models or machine learning methods can
be used with a reasonable number of variables. Kwapisz et al. [15] successfully utilized
extracted features from accelerometer data to accurately classify six human activities
with multilayer perceptron [16] and logistic regression models in the Wireless Sensor
Data Mining (WISDM) project. More recently, Ellis et al. [17] developed a random forest
model [18] that used extracted acceleration features to accurately classify human activity
into 4 types.

Utilizing feature extraction to develop models is very common in the field of human
activity recognition; however, the recent advancement of neural networks and computing
power allows direct analysis of the raw data to learn complex features. The convolu-
tional [19] and long short-term memory (LSTM) [20] neural network architectures have
been used in human activity recognition due to their ability to automate the collection
of local and temporal features. Ignatov [21] recently developed a convolutional neural
network for the purposes of human activity recognition that learned local spatial features,
while simultaneously using extracted global features. Another study [22] was successfully
able to predict human activity from accelerometry data using a hybrid convolutional LSTM
recurrent neural network. Recent clinical applications of convolutional recurrent neural
networks used to classify human activity using accelerometry data include patient activity
monitoring [23] and fall detection [24].

We considered several methods commonly used in the field of human activity recogni-
tion to develop models for the classification of days in an accelerometry dataset as human
wear or delivery. Our models were developed in a supervised learning context using a
large manually labeled human activity and delivery accelerometry dataset. We developed
logistic regression, mixed-effects logistic regression, random forest, and multilayer per-
ceptron models using extracted features from the dataset. Additionally, we developed
convolutional neural network, LSTM recurrent neural network, and hybrid convolutional
recurrent neural network models using scaled raw tri-axial accelerometer data as inputs
without specific feature extraction. The models are useful for clinicians and researchers
interested in classifying accelerometry data as either scientifically relevant human wear
days or delivery days to be removed.

2. Materials and Methods
2.1. Data Processing

The accelerometry dataset used to fit our models is composed of 779 assessments in
which 251 participants were mailed a tri-axial Actigraph GT3X accelerometer (Actigraph,
LLC, Pensacola, FL, USA) to wear for one week at three time-points during a randomized
clinical trial in patients undergoing spine surgery. Actigraph assessments occurred at
6 weeks, 6 months, and 12 months after surgery [4,25]. Approximately 54% of the days in
the dataset are delivery days, while the remainder are human wear. Physical activity was
measured with 1-min epoch from the x, y, and z axes. An example of accelerometry data
from the x-axis over the course of one assessment is shown in Figure 1.

The participants were requested to wear the Actigraph for the entire duration of the
assessment, except when sleeping. Additionally, participants were requested to keep a
timestamped log of when they received the Actigraph in the mail, when they returned
the Actigraph to postal services, and any other potential issues such as non-adherence
to protocol. These logs were used to label the days in the dataset as either human wear
or delivery.
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Figure 1. Example of accelerometry data for an assessment. The black lines represent the measure-
ments on the x-axis with a one-minute epoch. Vertical dashed blue lines indicate midnight. The 
‘Delivery’ label indicates 0 for a human wear day and 1 for a delivery day. The red text enumer-
ates the day of the assessment. 

Prior to modeling, we applied two methods to process the data. As the data were meas-
ured with 1-min epoch, a complete day consists of 1440 measurements for each of the three 
axes. Every assessment contained at least one incomplete day during which less than 1440 
measurements were taken. This occurred due to the accelerometer being activated or deac-
tivated at any time other than midnight. Since the convolutional layers of a neural network 
require all inputs to be the same shape, the days that contained less than 1440 measurements 
were zero-padded (i.e., zero count at each minute) to a length of 1440. If the truncated day 
occurred at the start of the assessment, the zero-padding occurred from midnight to the time 
the Actigraph was activated. If the truncated day occurred at the end of the assessment, the 
zero-padding occurred from the deactivation time to the next midnight. Data that were only 
zero-padded were denoted as “minimally processed” data. 

The data were also processed using procedures designed to remove days that contain 
little information or non-adherence. Any day was removed from the dataset if it had a 
total of less than 5000 counts or less than 10 min of movement in the vector magnitude of 
all three axes. Additionally, any day that was labeled as human wear was removed if less 
than 120 min of total activity occurred as this indicated a large amount of non-compliance 
with the protocol. The rational for this criterion is that these low activity days would likely 
not be included in a typical data analysis as they do not meet criteria as qualified data 
(e.g., many studies require 600 min of wearing to be qualified as valid day). Data that were 
both zero-padded and processed with aforementioned criteria were denoted as “fully pro-
cessed.” The difference in processing between the two methods is summarized in Table 1. 

Table 1. Summary of methods to generate minimally and fully processed data. 

Minimally Processed Fully Processed 
Zeropad days with <1440 min Zeropad days to = 1440 min  

 
Remove days with <5000 total counts 

Remove days with <120 min human activity 
Remove days with <10 min delivery activity 

Figure 1. Example of accelerometry data for an assessment. The black lines represent the measure-
ments on the x-axis with a one-minute epoch. Vertical dashed blue lines indicate midnight. The
‘Delivery’ label indicates 0 for a human wear day and 1 for a delivery day. The red text enumerates
the day of the assessment.

Prior to modeling, we applied two methods to process the data. As the data were
measured with 1-min epoch, a complete day consists of 1440 measurements for each of
the three axes. Every assessment contained at least one incomplete day during which
less than 1440 measurements were taken. This occurred due to the accelerometer being
activated or deactivated at any time other than midnight. Since the convolutional layers of
a neural network require all inputs to be the same shape, the days that contained less than
1440 measurements were zero-padded (i.e., zero count at each minute) to a length of 1440.
If the truncated day occurred at the start of the assessment, the zero-padding occurred
from midnight to the time the Actigraph was activated. If the truncated day occurred at the
end of the assessment, the zero-padding occurred from the deactivation time to the next
midnight. Data that were only zero-padded were denoted as “minimally processed” data.

The data were also processed using procedures designed to remove days that contain
little information or non-adherence. Any day was removed from the dataset if it had a total
of less than 5000 counts or less than 10 min of movement in the vector magnitude of all
three axes. Additionally, any day that was labeled as human wear was removed if less
than 120 min of total activity occurred as this indicated a large amount of non-compliance
with the protocol. The rational for this criterion is that these low activity days would
likely not be included in a typical data analysis as they do not meet criteria as qualified
data (e.g., many studies require 600 min of wearing to be qualified as valid day). Data
that were both zero-padded and processed with aforementioned criteria were denoted as
“fully processed.” The difference in processing between the two methods is summarized in
Table 1.

Table 1. Summary of methods to generate minimally and fully processed data.

Minimally Processed Fully Processed

Zeropad days with <1440 min Zeropad days to = 1440 min
Remove days with <5000 total counts

Remove days with <120 min human activity
Remove days with <10 min delivery activity
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In this analysis, both the minimally and fully processed datasets were modeled in
order to explore different algorithm’s capabilities of handling messier data. The minimally
processed data approximates accelerometer data that is confounded with participant
non-adherence, while the fully processed data is a much cleaner dataset. An example
and visualization of the differences between the minimally and fully processed data is
presented in Figure 2.
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Figure 2. Example of minimally and fully processed data. The minimally processed data retains all
of days from the raw data. The full processing removes days with non-compliant human activity
(days 10–11) and delivery days with little information (days 1–2, 16–18, and 20–21).

The data from each day were segmented into lengths of 1440 measurements between
the hours of 0:00 and 23:59. These segments were reshaped into three dimensional arrays
of stacks of 1440 by 3. The day long segments were used as inputs in the convolutional and
recurrent neural networks or to extract features. We extracted 8 features from the vector
magnitude, which include: mean, variance, maximum, 95th quantile, absolute energy,
absolute change in energy, kurtosis, and skewness. The definition of absolute energy is
defined as:

Absolute Energy =
n

∑
i=1

x2
i (1)

and absolute change is defined as:

Absolute Change = ∑n−1
i=1 |xi+1 − xi|. (2)
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All the features and the raw data from the x, y, and z axes were mean centered and
scaled by their standard deviations, which is both critical for achieving convergence in
many models and helps make the models more generalizable.

2.2. Model Development and Validation

Seven different models were developed: random forest [18], multi-layer percep-
tron [16], logistic regression, mixed-effects logistic regression, convolutional neural net-
work [19], LSTM recurrent neural network [20], and a convolutional LSTM recurrent neural
network [26]. The random forest, regression models, and multi-layer perceptron utilized
a traditional approach with extracted features from each data segment as inputs. On the
other hand, the convolutional and recurrent neural networks used the scaled raw data as
inputs in order to allow the models to learn local level features, but without including the
extracted features. All neural networks were fit with a binary cross-entropy loss function
and an Adam optimizer [27] over 10 epochs of training. Additional information on the
neural networks’ architecture can be found in the Supplementary Materials (Tables S1–S4).

The random forest model was developed using 8 extracted features and was composed
of 500 trees with a minimum terminal node size of 1. Gini impurity was utilized as the
criterion for measuring the quality of each split in individual trees and the number of
features considered at each split was the rounded down log base 2 of the number of total
features (i.e., log28 = 3) [18].

The logistic and mixed-effects logistic regression models were also fit with 8 extracted
features, each of which was flexibly modeled with a three knot restricted cubic spline. The
mixed effects model was fit with a random intercept for participant.

Five-fold Monte Carlo cross-validation was performed to assess model performance.
For each repetition, test and training sets were selected by randomly sampling 30% and
70% of participants’ data, respectively. The models were fit with the training sets, then the
mean sensitivity, positive predictive value, F1 score, and Brier score [28] were calculated
from the predictions of the test sets. Sensitivity (also known as recall) is calculated as the
ratio of true positive delivery classifications to true positives plus false negatives:

Sensitivity =
True Positive

True Positive + False Negative
. (3)

Positive predictive value (PPV) (also known as precision) is calculated as the ratio of
true positives to true positives plus false positives:

PPV =
True Positive

True Positive + False Positive
. (4)

F1 score is a commonly used general measure of model performance in the field of
machine learning and is calculated as the harmonic mean of sensitivity and PPV:

F1 Score =
2 ∗ (Sensitivity ∗ PPV)

Sensitivity + PPV
(5)

Brier score is the mean square error of a model’s predicted probability, where fi indi-
cates a model’s forecast and oi indicates the true outcome for ith sample across N samples:

Brier Score =
1
N ∑N

i=1(fi − oi)
2. (6)

3. Results
3.1. Data Description

After minimal processing, the data had a total of 10,546 days, while the fully processed
data had a total of 7433 days. The days removed during human wear were likely caused by
non-adherence. Figure 3 shows that only 46% of the days in the minimally processed dataset
are human wear, while 60% of the days in the fully processed dataset are human wear. Most
of the days removed from full processing are delivery days with little or no activity.



Sensors 2021, 21, 2726 7 of 12

Sensors 2021, 21, x FOR PEER REVIEW 7 of 12 
 

 

caused by non-adherence. Figure 3 shows that only 46% of the days in the minimally pro-
cessed dataset are human wear, while 60% of the days in the fully processed dataset are 
human wear. Most of the days removed from full processing are delivery days with little 
or no activity. 

 
Figure 3. The number of days by activity in the minimally and fully processed datasets. The percentage of each activity is 
presented on top of each bar. The fully processed data has a lower proportion of delivery days than the minimally pro-
cessed data. 

Each subject participated in a range of one to three assessments in which they were 
asked to wear the Actigraph for one week. On average, the accelerometer for each assess-
ment was active for approximately 17 days, much more than 7 days, suggesting many 
days are non-wear or delivery days. Across all assessments, the average number of days 
per participant was approximately 42 days. After fully processing the data, the average 
number of days per participant was reduced to approximately 30 days. The number of 
days by participant in the minimally and fully processed dataset is shown in Figure 4. 

 
Figure 4. Box plots of the number of days of data per participant for the minimally and fully pro-
cessed datasets. The center line of the boxplot indicates the median. The bottom and top hinges of the 

Figure 3. The number of days by activity in the minimally and fully processed datasets. The percentage of each activity is
presented on top of each bar. The fully processed data has a lower proportion of delivery days than the minimally processed data.

Each subject participated in a range of one to three assessments in which they were
asked to wear the Actigraph for one week. On average, the accelerometer for each assess-
ment was active for approximately 17 days, much more than 7 days, suggesting many
days are non-wear or delivery days. Across all assessments, the average number of days
per participant was approximately 42 days. After fully processing the data, the average
number of days per participant was reduced to approximately 30 days. The number of
days by participant in the minimally and fully processed dataset is shown in Figure 4.
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Figure 4. Box plots of the number of days of data per participant for the minimally and fully
processed datasets. The center line of the boxplot indicates the median. The bottom and top hinges of
the box indicate the 25th and 75th quantiles. The whiskers extend from the end of the box to a length
of 1.5 multiplied by the interquartile range. Additionally, data points are overlaid on the boxplot.

3.2. Model Performance

The mean of the sensitivity, PPV, F1 score, and Brier score across the 5 Monte Carlo
cross-validations are presented in Figure 5 for the minimally (Figure 5A) and fully processed
data (Figure 5B). The corresponding numerical results with both mean and standard devia-
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tion of the model performance metrics are also presented in the Supplementary Materials
(Table S5). All models had a lower Brier score for the fully processed dataset compared
to the minimally processed dataset; however, several models have a better F1 score in the
minimally processed dataset. For both forms of processing, the recurrent architecture had
the worst performance, while the convolutional recurrent neural network model marginally
outperformed the other models with a mean F1 score of 0.961 and 0.960 in the minimally
and fully processed datasets, respectively.
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Model; GLMM: Generalized Linear Mixed-Effects Model; MLP: Multilayer Perceptron; CNN: Convolutional Neural Net-
work; RNN: Recurrent Neural Network; CRNN: Convolutional Recurrent Neural Network; PPV: Positive Predictive Value.

Out of the feature input models, the mixed-effects logistic regressions generally per-
formed the worst, while the random forest marginally outperformed the other models in
most of the metrics. The mixed-effect model performed fairly well when used on the fully
processed dataset but performed poorly relative to the other feature input models when
used to model the minimally processed data. Out of the scaled raw data input models,
the recurrent neural network performed the worst. Similar to the mixed-effect model, the
recurrent neural network’s performance was particularly poor relative to other models
when used to model the minimally processed dataset. The convolutional neural network
performed very well in both the minimally and fully processed data, but it was marginally
outperformed by the convolutional recurrent neural network that performed best out of all
the models.

4. Discussion
4.1. Model Performance

This study used a large dataset of 10,546 days of activity with minimal processing
and 7433 days of activity after fully processing to develop models for the classification of
days in accelerometry data as either human wear or delivery activity. We trained several
statistical and machine learning models in a supervised learning context to discriminate
between human wear and delivery days. All models performed well, especially with
the fully processed data. A hybrid convolutional recurrent neural network marginally
outperformed the other models with a mean 5-fold cross-validated Brier score of 0.021 and
F1 score of 0.960. The logistic regression and random forest models also performed well
with mean Brier scores of 0.026 and 0.023, and F1 scores of 0.951 and 0.957, respectively.
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The convolutional and convolutional recurrent neural networks performed the best,
while the recurrent neural network performed the worst out of all models for both the
minimally processed and fully processed datasets. The slightly stronger performance of
the convolutional recurrent neural network relative to the convolutional neural network
indicates that incorporating time dependencies is helpful. However, the poor performance
of the recurrent neural network indicates that the data greatly benefits from being reduced
in dimensionality through convolutional layers before the recurrent layer processes the
sequence. It is likely that the LSTM recurrent neural network has difficulties processing the
thousands of days input with a length of 1440 measurements per day.

The convolutional recurrent neural network had the best performance, but the struc-
ture of the dataset makes the model somewhat naive in that it cannot differentiate between
unique assessments. Ideally, the data would have been zero padded between assessments in
order to reset the internal memory of the recurrent layers. Another potential improvement
to the convolutional recurrent neural network would be the inclusion of a bidirectional
LSTM layer. These layers incorporate information from both future and past states in
an input sequence and have recently been shown to have improved performance over
traditional LSTMs in certain contexts [29].

The random forest and logistic regression marginally outperformed the multilayer
perceptron model. The mixed effects model performed approximately as well as the random
forest and logistic regression model for the fully processed data but performed poorly
when modeling the minimally processed data.

Comparing our models’ performances to a benchmark is difficult as no other models
have been published specifically for predicting days as either human wear or delivery. The
Women’s Health Study [7] attempted to classify days as human or delivery activity using
wear/non-wear algorithms that were not developed for this specific task. They found
that 27.2% to 78% of the trials were inaccurately labeled using these methods. We did not
use accuracy as a metric because it is not robust in non-balanced datasets. Although their
metrics are not completely comparable with ours, our F1 and Brier Scores still suggest far
better performance than seen in the Women’s Study. While we cannot directly compare our
model to another deliver/human-wear classification model, we can indirectly compare our
models’ performances to models used in a similar context for human activity recognition.
A recent study [23] investigated the use of a convolutional recurrent neural network for
the classification of six unique activities commonly performed by hospitalized patients
as measured by an accelerometer. Their model was validated using a 75%/25% test-train
split and found to have an F1 score of 0.95. Although our models had marginally better
performance relative to this human activity recognition model, it is important to note our
binary classification context is simpler and easier to model than the multiclass classification
commonly performed in human activity recognition research.

4.2. Limitations

The largest limitation of this study is that the models were developed in a supervised
learning context and may not perform well with accelerometry data obtained from different
studies. However, we expect reasonably good performance when the models are applied to
new data considering the mechanistic nature of delivery activity and the high performance
of our models during internal validation.

One major advantage for our model’s potential generalizability is its strong perfor-
mance with low temporal resolution data. Many different types of accelerometers collect
data at different frequencies and a model that is a trained at a high temporal resolution
would be unusable for users with data collected at a lower resolution. The model was
trained on a dataset with a temporal resolution of one measurement per minute (1-min
epoch). Using a program such as the R package PhysicalActivity [30], an analyst can easily
collapse any accelerometry dataset with a higher temporal resolution such as one measure-
ment per second to our model’s 1-min epoch specification. Additionally, mean centering
and standard deviation scaling of the data will likely make the models applicable to data
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collected from a wide variety of accelerometers other than Actigraph. While we cannot
yet confirm the external validity of our models, we welcome contribution from users to
validate our models in a variety of other contexts.

4.3. Implementation

Our models were developed in order to create a publicly available tool that can
accurately automate the laborious task of classifying days in accelerometry data sets as
human wear that should be further analyzed and delivery data that need to be removed
prior to analysis. Currently this task can be performed by human with a high degree of
accuracy; however, this task is not always feasible due to potentially massive datasets
contained in thousands of files that cover years of dense activity. Although we expect our
models to perform well in small datasets as well, the models would be most useful in the
context of big data in which automation is vital.

Another important point to consider is the ease of each model’s implementation. The
random forest and logistic regression models are fairly simple to implement on a different
dataset but do require certain statistical features to be extracted. A function for extracting
the features that are key to our models is available in the PhysicalActivity R package [30].
One advantage of the feature extraction and scaling is that the models are easily applicable
to data with other temporal resolutions. The logistic regression model would be especially
easy to import for use in any programming language as it has a closed form solution and
would not require any package dependencies. Although the convolutional recurrent neural
network showed the best performance for our dataset, it is most difficult to implement
due to its dependency on the R package, keras. Although it is fairly simple to export and
import models, the requirement of both installing keras and running the model could deter
some users.

5. Conclusions

We developed several statistical and machine learning models that classify days in
an accelerometry dataset as human wear or delivery activity with a high level of predic-
tive accuracy. The majority of these models demonstrated excellent performance with
both minimally and fully processed datasets. The top performing three models (ran-
dom forest, logistic regression, and convolutional recurrent neural networks), feature
extraction, and data processing techniques from this study are implemented in the R
package, PhysicalActivity. Readers can find the most recent version of the R Package at
https://github.com/couthcommander/PhysicalActivity (accessed on 12 April 2021). These
models will allow an analyst to automate the cleaning of human activity accelerometry
data that is adulterated with delivery data. In choosing the best model for application in
identifying delivery days, the user can choose a model based on whether they want to use
raw data or utilize manual feature extraction. The user can also weigh the higher computa-
tional cost and greater performance of the convolutional recurrent neural networks against
the faster but slightly less powerful random forest or logistic regression models. Future
work is needed to externally validate the models with other datasets collected in diverse
studies, and we welcome contributions from users.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21082726/s1, Table S1: Architecture of multi-layer perceptron neural network, Table S2:
Architecture of 1-D convolutional neural network, Table S3: Architecture of long short-term memory
(LSTM) recurrent neural network, Table S4: Architecture of convolutional long short-term memory
neural network, Table S5: Average model performance metrics from 5-fold Monte Carlo cross-
validation with standard deviation in parentheses for the minimally and fully processed data.
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