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Abstract: Contrast-enhanced spectral mammography (CESM) is an advanced instrument for breast
care that is still operator dependent. The aim of this paper is the proposal of an automated system
able to discriminate benign and malignant breast lesions based on radiomic analysis. We selected a
set of 58 regions of interest (ROIs) extracted from 53 patients referred to Istituto Tumori “Giovanni
Paolo II” of Bari (Italy) for the breast cancer screening phase between March 2017 and June 2018.
We extracted 464 features of different kinds, such as points and corners of interest, textural and
statistical features from both the original ROIs and the ones obtained by a Haar decomposition and a
gradient image implementation. The features data had a large dimension that can affect the process
and accuracy of cancer classification. Therefore, a classification scheme for dimension reduction
was needed. Specifically, a principal component analysis (PCA) dimension reduction technique
that includes the calculation of variance proportion for eigenvector selection was used. For the
classification method, we trained three different classifiers, that is a random forest, a naïve Bayes and
a logistic regression, on each sub-set of principal components (PC) selected by a sequential forward
algorithm. Moreover, we focused on the starting features that contributed most to the calculation
of the related PCs, which returned the best classification models. The method obtained with the
aid of the random forest classifier resulted in the best prediction of benign/malignant ROIs with
median values for sensitivity and specificity of 88.37% and 100%, respectively, by using only three
PCs. The features that had shown the greatest contribution to the definition of the same were almost
all extracted from the LE images. Our system could represent a valid support tool for radiologists for
interpreting CESM images.

Keywords: breast cancer; contrast-enhanced spectral mammography (CESM); principal component
analysis (PCA); computer-automated diagnosis (CADx); feature extraction; feature reduction
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1. Introduction

Reducing the breast cancer mortality rate in the population of women worldwide is
greatly impacted by early diagnosis using mammography [1,2].

In recent years, new mammography techniques such as contrast-enhanced spectral
mammography (CESM) and tomosynthesis have contributed to further improve the per-
formance of mammography, even in less “readable” types of breasts due to their high
density [3,4].

Specifically, the CESM represents a unique and very particular methodology in the
clinical and scientific field due to the considerable amount of information derived from
morphological images and contrast dynamics obtained simultaneously on the same breast
and the same region of interest.

While CESM has the same type of indications as DCE-MRI due to the radiation dose
and non-uniform availability of the territory, CESM is currently used according to the
guidelines as an alternative to DCE-MRI in cases where this is not feasible (for absolute
contraindications or related) or not available [5].

In MRI the performance of the human reader can be reduced by the presence of
marked background parenchymal enhancement (BPE), defined as the normal background
impregnation of the breast but with very different intensity and distribution in relation to
age, hormonal phase, menopausal state and any therapies in progress [6]. In these circum-
stances, diagnostic aids to reporting and fusion-imaging systems in different positions can
support the diagnosis [7–9]. These aspects are also expected in CESM.

Nowadays, clinicians are aided in the interpretation of these images by automated
support systems, known as computer-aided detection/diagnosis (CAD), which is software
used in clinical medicine to suggest diagnoses and treatments based on the clinical data and
algorithms for their interpretation. Although various models of CAD systems for breast
diseases using mammographic images have been developed in the past years [10–15], the
literature is limited with regard to CAD systems for breast lesions using CESM images.
Most of the recent literature includes comparative studies on the diagnostic performance
of human readers on CESM images with respect to those of mammographic and MR
images [3,16–18]. However, interest in this new instrumentation is strong and some
support tools have recently been proposed for characterizing breast lesions [19–23] and
predicting the response to neoadjuvant therapy [24,25].

For this reason, we have developed an accurate computer-aided diagnosis tool to
classify breast cancer lesions based on radiomic analysis of CESM images. In our previous
work, we proposed a preliminary radiomics analysis aimed to explore the usefulness of
quantitative information extracted from CESM images, to understand the behavior of each
different set of well-known textural features automatically extracted from CESM images,
and to compare them with each other [21,23]. In these works, an important role was played
by the feature selection processes used to describe and characterize the regions of interest
(ROIs) identified by our expert radiologists. In order to reduce the dataset dimensionality,
starting from the initial feature set, a sub-set of these features, which were characterized
by their high discriminating power, was selected by filtering techniques (i.e., statistical
tests) for more manageable data processing [26]. Then, we selected the most important
features by developing different approaches to feature selection, such as embedded and
wrapper methods.

The feature selection techniques can influence the process and accuracy of cancer
classification. Indeed, although the subset of features identified was the one with the
greatest discriminating power with respect to the various evaluation criteria considered,
the feature selection techniques involve a natural and inevitable loss of information due
to the exclusion of features from the original dataset. For this reason, before proceeding
with the exploration of new features useful for increasing the accuracy of the classification
performance, we considered it appropriate to evaluate a different dimensionality reduction
technique that does not produce information losses but only a reduction of the noise
inherent in the dataset.
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Therefore, we evaluated a classification scheme that includes dimension reduction.
Specifically, firstly, a principal component analysis (PCA) dimension reduction method that
includes the calculation of the proportion of variance for eigenvector selection was used.
Following, the ROIs classification was performed by training different binary classifiers on
a subset identified by sequential supervised learning procedures.

2. Materials and Methods
2.1. Materials
2.1.1. CESM Examination

The CESM is based on a dual-energy exposure after a single injection of an iodinated
contrast medium (CM), which produces three images: a low-energy (LE), a high-energy
(HE) and a third image, defined as a recombined (RC) image that is obtained thanks to the
digital subtraction of the LE image from the HE one.

Finally, two images are displayed by the radiologist on the reporting monitor for
diagnostic purposes: the LE, which can be superimposed on a standard 2D mammography,
which allows morphological surveys, and the RC, which provides information on the
tumor neoangiogenesis of the breast.

An example of CESM images is shown in Figure 1, which includes a LE image (a), a
HE image (b) and their RC image (c).
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Figure 1. Images produced by contrast-enhanced spectral mammography (CESM instrumentation).
Typical example of low energy (a), high energy (b), and recombined (c) images [17]. The white arrow
points out a suspicious lesion.

For all CESM exams, a modified Full-Field Digital Mammography (FFDM) system
derived from a standard Senographe Essential (GE Healthcare) was used. First, the breast
with no pathology was imaged, then the breast with the suspected lesion. Both craniocaudal
(CC) and mediolateral oblique (MLO) views were collected. All of the images obtained
were in DICOM format and were evaluated by a dedicated radiologist with more than
10 years of experience in reading mammography and breast MR images and trained in
reading contrast-enhanced images.

2.1.2. Experimental Dataset

The study was pre-approved by the Scientific Board of the Istituto Tumori “Giovanni
Paolo II” of Bari, Italy. As this is a retrospective study, the anonymized images of patients
who had given consent to the use of data for scientific purposes, as required by our
Regulations, were acquired.

Once we had selected images from 53 patients aged between 37 and 76 years (with
a mean of 52.2 ± 10.1 years), showing a positive result according to CESM, a radiologist
from our Institute dedicated to senologic diagnostics manually identified the ROIs with
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a box on the image by using the reporting tool. Some patients had more than one, so
a total of 58 ROIs were identified according to the BIRADS classification [27]: lesions
belonging to BIRADS 2 and 3 classes were considered as benign, while lesions belonging
to BIRADS 4 and 5 classes were labeled as malignant. Then, the histological diagnosis
based on bioptic sampling established that 15 ROIs contained benign lesions while 43 ROIs
included malignant ones.

2.2. Methods

As summarized in Figure 2, after the radiologist manually segmented a region of
interest (ROI) from each LE and RC image, a large feature set consisting of five different
kinds was extracted, such as points and corners of interest, textural and statistical features
from both the original ROIs and also the ones obtained by a Haar decomposition and a
gradient image implementation. Subsequently, principal component analysis (PCA) dimen-
sion reduction method that includes the calculation of variance proportion for eigenvector
selection was used from each of five features set. Finally, different binary classifiers were
trained to discriminate benign and malignant ROIs by developing a sequential forward
feature selection algorithm that selected feature sub-sets first individually, and then simul-
taneously. MATLAB R2017a (MathWorks, Inc., Natick, MA, USA) software was used for
all analyses.
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three binary classifiers were trained and their performances were evaluated on 100 ten-fold cross-validation rounds.

2.2.1. Feature Extraction

Starting from each ROI extracted from both original LE and RC images, five feature
sets were automatically extracted to make the lesion classification more objective and
operator independent. We then started to mathematically define a digital image [28].

An image can be defined as a two-dimensional function mapping the spatial coordi-
nates x and y into a value f (x, y) representing the intensity of gray level of the image at
that point. When x, y, and f (x, y) are all finite and discrete quantities, we call the image a
digital image. A digital image is composed of a finite number of elements called pixels,
each one having a particular position and gray intensity value. The section of the real plane
spanned by the coordinates of the image is called the spatial domain. A very common
representation for a digital image is a two-dimensional array represented as an M× N
numerical matrix.

Therefore, given a digital image represented by a matrix, it was possible to extract
statistical and textural features and, moreover, to identify points, edges and corners of
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interest. As shown in Figure 3, in this work we used five different extracted feature subsets,
which we named as follows: STAT set, COUNT set, GRAD set, HAAR set and GLCM
set [21,23].
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Figure 3. Scheme of the feature extraction process.

The STAT set consists of 22 statistical features that describe the distribution of the ROI
gray levels, measuring the likelihood of observing a gray value in random positions in
the image, without taking into account the spatial information [29]. From each LE and
RC original ROI, we extracted the following features: mean, standard deviation and their
ratio, variance, skewness, entropy, relative smoothness, kurtosis, minimum and maximum
values of gray-level and their difference.

The COUNT set contains a total of 10 features that describe the points, edges and
corners of interest. In this work, we used five known learning algorithms:
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• Scale invariant feature transform (SIFT) algorithm [30,31], which detects and describes
image local features

• Minimum eigenvalue algorithm, which underlies the Shi-Tomasi corner detection
algorithm [32] for identifying the corners of an object

• Features from the accelerate segment test (FAST) algorithm [33,34], which is another
corner detection method

• Binary robust invariant scalable key-points (BRISK) method [35], which combines
the SIFT and the FAST algorithms to feature detection, descriptor composition and
key-points matching

• Maximally stable external regions (MSER) algorithm [36], which is a method of blob
detection in images whose aim consists of finding correspondence between image
elements from two images with different viewpoints.

The GRAD set is formed by 24 features and contains some previously defined statistical
features, that is, mean, variance, skewness, entropy, relative smoothness and kurtosis,
extracted from the gradient’s magnitude and direction of each LE and RC original ROI. The
gradient of an image is represented as a two-component vector (x- and y-derivative) defined
at each pixel [28]. These can be computed by the convolution with a kernel, such as the Sobel
or Prewitt operator, since the image is a discrete function for which the derivatives are not
defined. For each vector, the magnitude Gmag shows how quickly the intensity of each pixel
is changing in the neighborhood of the pixel (x, y) in the direction of the gradient, while the
direction Gdir represents the orientation of greatest intensity change in the neighborhood
of the pixel (x, y). The gradient can be approximated by convolving a kernel, in this work
a Sobel kernel, with the original image [28]. The importance of calculating the gradient
image lies in the two pieces of information it provides: the magnitude, which is a measure
of how quickly the image is changing and the direction, which illustrates the direction in
which the image is changing most rapidly.

The HAAR set contains 96 features, the same statistical features previously computed
in the GRAD set, but this time extracted from each sub-ROI obtained by decomposing
each LE and RC original ROI thanks to the Haar wavelet transform [28,37]. This technique
obtains multi-resolution representations of images, which are very effective for analyzing
the information content of images due to the dependence of the texture on the scale at
which an image is analyzed. Particularly, once Haar two-dimensional scaling and wavelets
functions are computed, these can be used as filters in order to decompose the image into
four bands. First the image is low-pass filtered and downscaled in order to obtain the low
low (LL1) band, then it is high-pass filtered in the three different directions in order to
obtain the three types of detail images: horizontal (HL1), vertical (LH1) and diagonal
(HH1). The operations can then be repeated on the LL1 band using the identical filters, as
shown in Figure 4.
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Finally, the GLCM set is formed by a total of 312 features, which represent the spatial
relationship that on average links the gray levels of the image to each other. Texture
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analysis returns textural variables, which are any geometric and repetitive arrangement
of gray levels. The textural information of an image can be described by second-order
variables computed on the N × N gray-level co-occurrence matrix (GLCM) (N represents
the number of intensity values in the gray-scale image, which is usually reduced from 256
to 8 at the beginning of the algorithm to reduce the computational cost) [38,39].

Given a gray-level image f, the first step in building the matrix consists in defining
a specific spatial relationship between pixels. This relationship, known as offset, is the
distance D between a pixel of interest and its neighbors with respect to a specific direction,
identified by an angle θ ∈ {0◦, 45◦, 90◦, 135◦}. Thus, the (i, j) element in GLCM matrix
represents the number of times the combination of level i and j occurs in two pixels in the
image, which satisfy the relationship given by the offset [28].

Thus, for each sub-ROI previously decomposed by the Haar transform only at first
level, the co-occurence matrices are extracted in the four possible directions by choosing
the parameter D equal to 2 in order to evaluate the relationship between the gray levels
of the pixels immediately close in the image. Finally, the following features are extracted
from both LE and RC sub-ROIs: contrast, correlation, cluster prominence, cluster shade,
dissimilarity, energy, entropy, homogeneity, sum average, sum variance, sum entropy,
difference entropy and normalized inverse difference moment.

2.2.2. Principal Component Analysis

The feature extraction procedures returned five feature sets. The next step consisted of
exploring the discriminating power of these sets to identify a sub-set of significant features.
To do this, a feature reduction was performed through PCA [40].

The central idea of PCA is to reduce the dimensionality of a dataset consisting of a
large number of interrelated variables while retaining as much as possible of the variation
present in the data set. This is achieved by performing a linear transformation of the
features that projects the original ones into a new Cartesian system, where the variables
are sorted in descending order with respect to the overall variance percentage explained.
In this work, a PCA was performed for each feature set.

The first step consists of representing the data set as a matrix. In particular, if n is
the number of observations, in this case ROIs, and m the number of variables, a n × m
matrix X is obtained. Then, the raw data in the matrix have to be standardized so that each
variable contributes equally to the analysis. Thus, a new matrix Z is computed.

The next step consists of processing the correlation matrix R of Z, a m× m matrix
whose elements are the correlation coefficients between the variables.

In general, the k-th principal component yk is such that:

yk = Zγk and var(yk) = λk ∀k = 2, . . . , m, (1)

where λk is the k-th largest eigenvalue of R and γk is the corresponding eigenvector.
Now, a sub-set of principal components has to be selected to replace the m elements

of Z by a much smaller number p of PCs. There are different rules for deciding how
many PCs should be retained in order to account for most of the variation in Z, without
serious information loss [40]. In this work, we adopted the explained variance criterion:
the required number of PCs is the smallest value of p for which the chosen percentage,
in this case 80%, is exceeded. In particular, since the principal components are sorted in
descending order with respect to their variance, it is sufficient to select the p components
whose summed variance exceeds the selected threshold value.

2.2.3. Classification Model

Once the significant PCs were selected for each feature set, three different classification
models were trained to discriminate the ROIs into benign and malignant, first on each PCs’
sub-set, then on the set containing all the selected PCs. We trained a random forest (RF)
classifier [41], a naïve Bayes (NB) classifier [42] and a logistic regression (GLM) [43] in a
procedure of PCs stepwise forward selection [44].
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The RF algorithm is among the most popular machine learning algorithms because
it generally provides good predictive performance combined with low over-fitting. In
particular, the tree-based strategy used by RF naturally ranks by how well they improve
the purity of the node: nodes with the greatest decrease in impurity are at the start of the
trees, while nodes with the least decrease in impurity occur at the end of trees measured by
Gini’s diversity index.

The NB algorithm is a probabilistic approach based on Bayes’ theorem with an as-
sumption of independence among predictors. In simple terms, a naive Bayes classifier
assumes that the presence of a particular feature in a class is unrelated to the presence of
any other feature.

The GLM is a statistical model that uses a logistic function to model a binary variable.
This regression transforms its output using the sigmoid function to return a probability
value that can then be mapped to the two classes under question.

The stepwise forward selection algorithm identifies the best sub-set of PCs by se-
quentially adding a PC to the set selected in the previous steps. Starting from a model
composed by a single PC that showed the highest median AUC [45] on 100 ten-fold
cross-validation rounds, we iteratively added the PC that allowed us to obtain the highest
classification performances in terms of median value AUC. The process was repeated until
all variables were included into the model. The performance of each classification was
evaluated on 100 ten-fold cross-validation rounds in order to obtain the variability of the
experimental results.

Once the best model was selected for each method and dataset, we compared the
classification performances of these prediction models also in terms of:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (2)

Sensitivity = TP/(TP + FN) (3)

Specificity = TN/(TN + FP) (4)

where TP and TN stand for true positive (number of true malignant ROIs identified) and
true negative (number of true benign ROIs identified) cases, while FP (number of benign
ROIs identified as malignant) and FN (number of malignant ROIs identified as benign) are
the false positive and false negative ones, respectively. Specifically, the above values were
calculated to identify the optimal threshold by means of Youden’s index on ROC curves [46],
an index able to solve dataset unbalance problems (15 benign and 43 malignant).

3. Results

The aim of this study was to devise a prediction model that was successful in discrim-
inating benign and malignant ROIs. First, we reduced the initial dataset dimensionality
through a principal component analysis, and we obtained one sub-set of discriminant
principal components for each initial feature set. Then, we used three different classifica-
tion algorithms on both the individual obtained sub-set and on the complete sub-set of
significant principal components.

3.1. Principal Component Analysis

We performed a PCA for each standardized set of features, then we adopted the
explained variance criterion to select a sub-set of discriminant principal components. We
chose a threshold value equal to 0.8.

The STAT set required 4 PCs, the GRAD set was represented by a set of 9 PCs, the
COUNT set was replaced by a set of 3 PCs, the sub-set linked to the HAAR set was formed
by a total of 19 PCs, and the GLCM set needed 11 PCs, as shown in Figure 5.
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3.2. Classification Performances

Once the PCs’ subsets were extracted, we trained the random forest algorithm, the
naïve Bayes method and the logistic regression in the procedure of PCs stepwise forward
selection, first on each PCs’ sub-set, then on the set containing all the selected PCs.

Concerning the individual PCs’ sub-sets, the best models were obtained by training
either the RF or the GLM classifier on sub-sets containing two PCs at most (Table 1).

Table 1. Classification performances of the best models obtained from the individual PCs’ sets
calculated on 100 ten-fold cross-validation rounds. For each set of features, the performance measures
of the different classification algorithms implemented are reported in correspondence with the best
PC combination. with the best PC combination. The third column shows the PCs selected by the
sequential forward selection algorithm. The best results are highlighted in bold.

PCs’ Set Classifier PCs Best Combination AUC (%) Acc (%) Sens (%) Spec (%)

STAT RF 1 + 2 78.29 77.59 81.40 73.33
NB 1 81.71 74.14 67.44 93.33

GLM 1 83.49 74.41 67.44 93.33
GRAD RF 1 + 5 85.31 81.03 79.07 93.33

NB 1 + 2 76.59 75.86 76.74 73.33
GLM 1 + 5 + 2 + 9 83.10 74.14 65.12 100

COUNT RF 1 + 3 66.82 62.07 58.14 0.8
NB 2 + 1 64.88 60.34 50.00 86.67

GLM 1 + 3 75.66 79.31 88.37 53.33
HAAR RF 2 + 12 94.65 87.93 86.05 100

NB 1 + 3 + 16 + 19 + 15 + 14 86.51 84.48 87.21 80.00
GLM 1 + 3 + 9 + 19 + 16 + 8 + 12 83.72 77.59 74.42 93.33

GLCM RF 2 + 1 86.40 81.03 79.07 86.67
NB 2 + 4 + 1 + 11 + 10 + 9 75.50 75.86 72.09 86.67

GLM 2 + 4 + 1 + 9 + 11 + 10 82.33 87.93 93.02 73.33
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Since the PCs were obtained as a linear combination of the starting variables, we were
interested in understanding which of these features contributed most and positively to the
computation of the PCs, which determined the best classification model for each set. We
selected the variables shown in Table 2, excluding the ones characterized by coefficients
close to zero compared to the those of the chosen variables.

Table 2. Overview of the features that were important in the computation of the selected PCs on 100 ten-fold cross-validation
rounds. The factors, LE and RC identify the features extracted from the LE images and the RC images, respectively.

Set PC Important Features

STAT 1 RC_Entropy RC_Std RC_Max-Min RC_Relative
Smoothness

RC_
Variance

GRAD 1 RC_Mean_
Gmag

LE_Mean_
Gmag

RC_Entropy_
Gmag

RC_Relative
Smoothness_Gmag

RC_Variance_
Gmag

5 LE_Kurtosis_
Gmag

LE_Skewness_
Gdir

RC_Skewness_
Gdir

RC_Kurtosis_
Gdir

RC_Entropy_
Gdir

COUNT 1 RC_Fast RC_Brisk LE_Brisk LE_Fast

3 LE_Sift RC_Sift LE_MSER RC_Minimum
Eigenvalue

HAAR 2
LE_Relative
Smoothness_

HL2

LE_ Relative
Smoothness_

LH2

LE_ Relative
Smoothness_

HL1

LE_Entropy_
LL1

LE_Relative
Smoothness_

HH2

12 LE_Skewnes_
LL1

RC_Skewness_
LH2

LE_Kurtosis_
HL1

LE_Skewness_
HH1

GLCM 2
RC_Sum
Entropy_
HH1 dir2

RC_Entropy_
HH1 dir2

RC_Entropy_
HH1 dir3

RC_Entropy_
HH1 dir4

RC_Sum
Entropy_
HH1 dir4

1
LE_Sum
Average_
HH1 dir3

LE_Sum
Average_
HH1 dir1

LE_Sum
Average_
HH1 dir4

LE_Sum
Average_
HH1 dir2

As regards the STAT set, the best model had a median AUC of 83.49% and was
obtained by training the GLM on the sub-set containing only the first PC, which was
determined based on the contributions of the variables’ entropy, standard deviation, range,
relative smoothness and variance, all computed on the RC images. The best model obtained
with the GRAD set’s PCs reached a median AUC of 85.31% and included the RF classifier
and the sub-set containing the first and the fifth PCs. These were estimated considering the
variables’ mean, entropy, relative smoothness, variance, kurtosis and skewness computed
on both the gradient’s magnitude and the gradient’s direction extracted from the RC and
the LE images. Concerning the COUNT set, the GLM was the best classifier, achieving a
median AUC of 75.66% when trained on the sub-set including the first and the third PCs.
The most important features in the computation of these two PCs were the ones calculated
on both the LE and the RC images by all five algorithms. As far as the HAAR set, the best
model was obtained by training the RF classifier on the sub-set containing the second and
the twelfth PCs. This model, with a median AUC of 94.65%, was the best, even compared to
the best performing models of each set. The above-mentioned PCs were calculated mainly
thanks to the contributions of the variables’ relative smoothness, entropy, skewness and
kurtosis, which were all extracted from the LE images, except one extracted from the RC
images, after the Haar decomposition. Finally, with regards to the GLCM set, a median
AUC of 86.40% was reached with the RF classifier when trained on the sub-set including
the first and the second PCs. The features that contributed most to their computation were
entropy, sum entropy and sum average; the first were two extracted from the RC images
while the third was extracted from the LE images.

As regards the models obtained by training the three classifiers on the complete set of
PCs previously computed, the best was the one obtained with the RF classifier (Table 3).
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Table 3. Classification performance of the best models obtained from the complete set of PCs
calculated on 100 ten-fold cross-validation rounds. The best result is highlighted in bold.

Classifier Best Model AUC (%) Acc (%) Sens (%) Spec (%)

RF H2 + G1 + H12 95.66 90.52 88.37 100

NB S1 + GL10 + G2 + GL11
+ H16 + H3 + H19 88.99 89.66 93.02 80

GLM S1 + G2 + G9 + S3 + H8
+ GL2 + GL1 90.08 84.48 81.40 100

Indeed, while the NB classifier reached a median AUC of 88.99% and the GLM
achieved a median AUC of 90.08%, the model obtained by training the RF classifier on the
set, including the second and the twelfth PCs belonging to the HAAR set and the first PC
belonging to the GRAD set, reached a median AUC of 95.66% and a median accuracy of
90.52%. This model is also characterized by a better classification performance than the
performance of the best model obtained by considering the single PCs’ sets, and reached a
sensitivity of 88.37% and a specificity of 100%.

4. Discussion

Although its use is still not very widespread in the area, CESM is a very interesting
technique in our opinion, and due to its intrinsic characteristics, it is particularly suitable for
the analysis of images using radiomics. The opportunity to simultaneously analyze similar
morphological images on the same mammographic and dynamic images with contrast
medium for the evaluation of neoangiogenesis provides the system with a remarkable and
varied series of information that can achieve excellent results. Moreover, the absence of a
consistent number of studies on this method and on these issues, in our opinion, makes
this work even more precious.

In this work, we proposed an automated support system able to characterize and
discriminate breast lesions as benign/malignant. We extracted 58 ROIs from 53 CESM
images and for each ROI we determined five set of features: the STAT set, which in-
cluded statistical features extracted from the original ROIs, the GRAD and the HAAR
set that comprised statistical measures extracted from the ROIs’ manipulations by filters
and wavelet functions, respectively, the GLCM set that included textural features and the
COUNT set, which comprised information about points and corners of interest. Subse-
quently, each above-mentioned feature set was replaced by the set containing the related
discriminant principal components. In particular, for each set a principal component
analysis was performed and a sub-set of principal components was selected by setting
a variance explained threshold value of 0.8. Then, all the PCs’ sets obtained were used,
first individually and then simultaneously, to train three different classifiers combined
with a stepwise forward algorithm. The classification performances were evaluated and
compared in terms of accuracy, sensitivity and specificity and AUC values on 100 ten-fold
cross-validation rounds.

The best model among the ones developed on the single PCs’ sets turned out to be
the model obtained by training the RF classifier on the HAAR PCs’ sub-set including the
second and the twelfth PCs. It was observed that using only these two variables led to a
median AUC value of 94.95%, a median accuracy of 87.93%, a sensitivity of 86.05% and a
specificity of 100%.

On the other hand, it was observed that adding the first GRAD set’s PC to the previous
model led to better results. Indeed, this new model reached a median AUC value of 95.66%,
a median accuracy of 90.52%, a sensitivity of 88.37% and a specificity of 100%. In both
cases, the specificity value highlights that these prediction models are able to correctly
identify all the benign ROIs.

Thus, the sequential forward selection algorithm allowed us to obtain a very well
performing classification model by selecting only three PCs: the second and the twelfth
PCs from the HAAR set and the first PC from the GRAD set. The above-mentioned HAAR
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PCs were estimated thanks to the contributions of the variables, mainly calculated on
LE images, only one of them was extracted from the RC images. On the other hand, the
features that contributed most to the calculation of the first GRAD PC were all extracted
from the LE images.

We compared the performance of the proposed approach with respect to the literature,
and in this work, we improved the classification performances obtained with the CAD sys-
tem developed in our previous work [21] (Table 4). Indeed, by using principal component
analysis as a feature selection technique, instead of a backward feature selection algorithm
combined with a naïve Bayes classifier, we reduced the number of discriminant variables
and at the same time we obtained better results in terms of sensitivity and specificity (in
the previous work we obtained a sensitivity of 87.5% and a specificity of 91.7%).

Table 4. Benign vs. malignant breast lesion classification evaluated on CESM images: comparison of
the performance results of the proposed models in the literature.

Article No. of ROIs Features Classifier Performance (%)

Patel et al. [19] 50 SVM

AUC: 95
Acc: 90
Sens: 88
Spec: 92

Perek et al. [20] 129 Multimodal
Network

AUC: 89
Sens: 100
Spec: 66

Fanizzi et al. [21] 48 12 Random
Forest

AUC: 93.1
Acc: 87.5
Sens: 87.5
Spec: 91.7

Losurdo et al. [23] 55 10 SVM
Acc: 80.91
Sens: 90.28
Spec: 71.55

Best proposed model 58 2 Random
Forest

AUC: 95.66
Acc: 90.52
Sens: 88.37
Spec: 100

Moreover, compared to state of the art models, our model seems to perform better.
In [19], the authors reached a sensitivity of 88% and a specificity of 92% by training a SVM
classifier on a feature set extracted from 50 lesions manually segmented by radiologists.

Finally, we want to emphasize the importance of radiomic analysis for the charac-
terization of benign and malignant ROIs and the achievement of more balanced values
for sensitivity and specificity. Specifically, we want to compare our results with the ones
obtained in [20] (a sensitivity of 100% and a specificity of 66%) with the use of only textural
descriptors provided by the radiologist combined with CESM pixel information extracted
directly from the images.

5. Conclusions

With the aim of improving the number of early diagnoses of breast cancer, in this
work we proposed an automated expert system for discriminating benign and malignant
ROIs. We proposed the use of a principal component analysis combined with machine
learning techniques in order to select the optimal subset for characterizing breast regions
and classifying them. Particularly, we trained three binary classifiers on an increasing
number of features sorted by their diagnostic power, evaluated in terms of AUC. Our
model’s performance represents a step forward compared to our previous work, both in
regard to the greater accuracy achieved in the classification of benign and malignant lesions
and the smaller number of variables used to obtain these results.
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Abbreviations
CC Craniocaudal
CESM Contrast-Enhanced Spectral Mammography
CI Confidence Interval
CM Contrast Medium
dir1 Direction 1 (0_)
dir2 Direction 2 (45_)
dir3 Direction 3 (90_)
dir4 Direction 4 (135_)
FN False Negative
FP False Positive
Gdir Gradient direction
Gmag Gradient magnitude
GLCM Gray-Level Co-occurrence Matrix
HE High Energy
HH High-High
HL High-Low
LDA Linear Discriminant Analysis
LE Low Energy
LH Low-High
LL Low-Low
MLO Mediolateral Oblique
MR Magnetic Resonance
PC(A) Principal Component (Analysis)
RC Recombined
RF Random Forest
ROI Region Of Interest
SD Standard Deviation
TN True Negative
TP True Positive
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